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Abstract

Background: Within the cancer domain, ontologies play an important role in the integration and annotation of
data in order to support numerous biomedical tools and applications. This work seeks to leverage existing
standards in immunophenotyping cell types found in hematologic malignancies to provide an ontological
representation of them to aid in data annotation and analysis for patient data.

Results: We have developed the Cancer Cell Ontology according to OBO Foundry principles as an extension of the
Cell Ontology. We define classes in Cancer Cell Ontology by using a genus-differentia approach using logical
axioms capturing the expression of cellular surface markers in order to represent types of hematologic
malignancies. By adopting conventions used in the Cell Ontology, we have created human and computer-readable
definitions for 300 classes of blood cancers, based on the EGIL classification system for leukemias, and relying upon
additional classification approaches for multiple myelomas and other hematologic malignancies.

Conclusion: We have demonstrated a proof of concept for leveraging the built-in logical axioms of the ontology in
order to classify patient surface marker data into appropriate diagnostic categories. We plan to integrate our ontology
into existing tools for flow cytometry data analysis to facilitate the automated diagnosis of hematologic malignancies.
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Background
Preface
We live in an age of ever-increasing troves of data com-
prised of genomic, imaging and clinical information.
Within the field of medicine, oncology leads in this re-
gard by using large, varied datasets to refine therapies
and stratify patient populations into meaningful sub-
groups. The explosion of data heralds new challenges for
researchers and technologists that struggle to keep track
of these mountains of information while maintaining
interoperability between systems. [1] One of the methods
to manage, sort, and analyze this data comes in the form
of ontologies, which are representational artifacts com-
prised of universals and the relations between them that
designate entities in reality. [2] Briefly, ontologies at their
core are semantic terminologies that exist as two types:

reference ontologies, which embody established know-
ledge via rich, precise meanings for terms in a domain,
and application ontologies, which are designed for a spe-
cific purpose and weave together sets of related classes
from reference ontologies in order to represent the en-
tities of complex domains. [3, 4]

The cell ontology
A description of past ontologies that represent cells is
warranted as the work presented here directly builds
upon these artifacts. The Cell Ontology (CL) was origin-
ally developed in 2005 with the goal of representing a
variety of cell types from the prokaryotic, fungal, animal
and plant worlds. [5] As interest and support has shifted
over the years, the scope of the CL has shifted to focus
primarily on vertebrate cell types with special attention
to hematopoietic cell types. [6, 7] The CL links to other
ontologies within the Open Biological and Biomedical
Ontology (OBO) foundry via relations from the Relations
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Ontology. [8, 9] These relations often take the form of
has_plasma_membrane_part to connect cell types to ap-
propriate surface markers found in the Protein Ontology.
Similarly, the relations, has_high_plasma_membrane_a-
mount and has_low_plasma_membrane_amount are used
within computable definitions to denote surface protein
expression that is above or below the mean of a popula-
tion of cells and were originally described in Masci et al.,
and generally relate to relative expression values deter-
mined by flow cytometry. [10] Lastly, negative criteria are
also implemented in definitions using lacks_part and
lacks_plasma_membrane_part relations.

Cancer ontologies
Within the cancer domain, ontologies are an important
component of numerous biomedical tools and applica-
tions. Without question, the most successful ontology in
cancer research is the Gene Ontology (GO) owing to its
widespread use. A PubMed search using the search
terms “cancer”, “oncology” and “gene ontology” reveals
hundreds of articles published within the last five years.
Even after excluding the GO, it is apparent a number of
diverse ontologies have seen varied application in cancer
research. Longstanding ontologies have been used to an-
notate and integrate oncologic data. The Foundational
Model of Anatomy has been used to annotate bio-
markers for brain tumors while the Disease Ontology
(DO) has been used to integrate several databases into a
cohesive set. [11, 12] Newer ontologies have cropped up
in recent years to represent the many facets of cancer
care including ontologies representing staging systems
(TMN ontology), cancer treatments, brachytherapy
(ENT COBRA ontology), and after-care treatment plans
that enhance patient engagement (Profile Ontology for
Adolescent and Young Adult Cancer Survivors). [13–16]
Additionally, ontologies support text mining applications,
clinical decision support systems, the analyzing of adverse
events, and the targeting of cancer drugs. [17–20] The Na-
tional Cancer Institute (NCI) Thesaurus is one of the largest
and most widely used resources within the field of cancer.
Although technically a terminology with ontology-like fea-
tures, the NCI Thesaurus covers 110,000 terms in 36,000
concepts in the cancer research domain and arose from a
need to integrate varied data systems through a unified cod-
ing system. [21, 22]

Diagnosing blood cancers
The diagnosis of hematologic malignancies like acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML) involves a myriad of tests and clinical examination
ranging from a simple history and physical to advanced gen-
etic testing. In terms of pathological assessment, patient
blood samples or bone marrow aspirates are stained and ex-
amined for the morphology of cancer cells. Karyotyping

provides information on chromosomal translocations. Re-
cently, genetic analysis either through microarrays or se-
quencing provides detailed insight into the molecular
characterizations of cell populations. [23] Flow cytometry is
another mainstay of blood cancer diagnosis whereby a laser
examines the emission properties of cells labeled with
fluorochrome-conjugated antibodies in a suspension. These
antibodies are specific for cell markers of interest and are
commercially available as a product that contains an at-
tached fluorochrome. The flow cytometer is capable of
assessing the expression of markers, which are typically sur-
face proteins, on millions of cells in real-time. [24] The out-
put of this process is referred to as the immunophenotype
of a cell. Each antibody-fluorochrome conjugate can emit a
different range of light wavelengths allowing for simultan-
eous assessment of multiple markers. Laboratories apply
antibody panels to patient specimens to typically examine
four to eight different markers at a time although the use of
larger panels is increasingly possible as technology improves.
The definition of positivity for markers has changed over
time as technical sensitivity has improved. In the past, a
simple cutoff of 20% of the population bearing a marker
was labeled as positive. Increasingly, this method has been
superseded by comparing the fluorescence shift and distri-
bution pattern of cancer cell populations to appropriate
controls. [25]
In the current work, we have created an ontology, the

Cancer Cell Ontology (CCL), that represents cancer cell
types in the domain of hematologic malignancies, namely
acute lymphoblastic leukemia, acute myeloid leukemia and
multiple myeloma, using immunophenotypes as differentia.

Methods
The CCL was created with the latest version of Protégé
(5.2.0) developed by the Stanford Center for Biomedical
Informatics Research. [26] Our ontology imports the en-
tirety of the CL, which indirectly imports modules from
the Protein Ontology (PRO), the Chemical Entities of
Biological Interest ontology (CHEBI), the Phenotypic
Quality Ontology (PATO), the Cell Line Ontology
(CLO), the Relation Ontology (RO), the National Center
for Biotechnology Information taxonomy (NCIT), the
Uber Anatomy Ontology (UBERON) and the GO. The
CCL also directly imports small OWL modules from
PRO and CHEBI. [9, 27–33] The total size of the CCL
as viewed in Protégé is 6900 classes. 6600 of these clas-
ses have been imported from the CL and 300 new terms
have been added. Roughly three dozen terms were
reused from the CL and primarily consist of PRO terms.
The ELK 0.4.3 reasoner was used for inferential reason-
ing. [34] All terms added by the CCL have been manu-
ally reviewed for errors of inconsistency. Additionally,
Protégé’s built-in debugging tool found no errors. A
GitHub page with the latest version of the ontology is
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available at: https://github.com/LucasSerra1/CCL.git
for viewing.

Results
Classification systems
The CCL was constructed according to published guide-
lines of best practices in ontology development and ad-
heres to the principles put forth by the OBO foundry
such as openness, a common format, textual definitions,
well-defined relations, etc. [2, 8] A genus-differentia ap-
proach was taken to construct the new classes by using
surface marker expression as the main axis. There exist
many schemas for classifying leukemia with systems
such as WHO classification, the French–American–Brit-
ish classification system, St. Jude’s system and the Euro-
pean Group for Immunophenotyping Leukemia (EGIL)
system. [35–37] The EGIL system was selected as the
backbone hierarchy for the ontology due to a few com-
pelling factors. EGIL does not represent simply a single
institution’s idea of leukemia. The EGIL system is the
continuously developing result of years of discussion and
consensus from what is now known as the Euroflow
Consortium, a group composed of more than forty re-
searchers spanning eight nations that began in 2006.
[38] As a consequence, this system has seen widespread
use in laboratories and initial proposals have seen exor-
bitant numbers of citations. [39] Additionally, this
leukemia classification system relies exclusively on the
immunophenotypes of leukemic cells, which is precisely
the information we wish to capture in our ontology.
Table 1 is a diagram of the overarching structure of the
EGIL system.
Unfortunately, there exists no such unified classifica-

tion system for other blood cancers like multiple mye-
loma. Instead, we pooled several antibody panels geared
towards the diagnosis of multiple myeloma that had
been examined in recent literature. The consensus of
four separate studies, which included review articles,
was used to create the classes of multiple myeloma
within our ontology. [40–43]

Definitions, relations, and structure
The CCL exists as an extension of the CL. The root term
of the CCL ‘hematologic malignant cell’ resides under
the CL parent term ‘malignant cell’, which exists under
the terms ‘neoplastic cell’ and ‘abnormal cell’. Our ontol-
ogy contains human and machine-readable definitions
for every added class. Many of these definitions follow a
similar format to definitions found in the CL by linking
necessary surface markers to the corresponding ele-
ments in the Protein Ontology. The textual definitions
of the CCL upper level terms are defined according to
the cell lineage the aberrant cell is derived from. For in-
stance, ‘acute lymphoblastic leukemic cell’ is defined as a

“hematologic malignant cell whose precursor is of
lymphoid lineage”. Lower level child terms are instead
textually defined according to marker expression as seen
in the definition of ‘pre-B CD19-positive, CD22-positive
acute lymphoblastic leukemic cell’, which states that this
entity is a “B lineage CD19-positive, CD22-positive acute
lymphoblastic leukemic cell that is cytoplasmic Ig mu
positive”. The axiomatic definitions follow the same
structure and use relations such as has_plasma_mem-
brane_part, has_cytoplasm_part and lacks_part to de-
note marker positivity status (Fig. 1). The CCL also
includes two new relations, has_cytoplasm_part and
lacks_cytoplasm_part. These relations are absent from
the imported ontologies and were needed to represent
the handful of cases that use cytoplasmic markers to dis-
tinguish classes. The definitions of these relations mirror
their plasma membrane counterparts from the CL as
has_cytoplasm_part is defined as holding “between a cell c
and a protein complex or protein p if and only if that cell
has as part a cytoplasm, and that cytoplasm has p as part,”
which means that if a protein is found in the cytoplasm of
a cell then that cell has the protein as a cytoplasmic part.
The CCL contains over 300 classes representing can-

cer cell types found in acute lymphoblastic leukemia,
acute myeloid leukemia and multiple myeloma, which
are based upon widely used classification systems and
pooled studies. Each class is differentiated based upon

Table 1 EGIL classification scheme

EGIL classification system

Immunologic subgroup Immunophenotypic profile

B-lineage ALL CD19+ and/or CD79a + and/or CD22+

B-I (pro-B) No B-cell differentiation antigens

B-II (common B) CD10+

B-III (pre-B) cyIgμ+

B-IV (mature B) cylg or sIg λ + or κ+

T-lineage ALL Cytoplasmic/surface CD3+

T-I (pro-T) CD7+

T-II (pre-T) CD2+ and/or CD5+ and/or CDS+

T-III (cortical T) CD1a+

T-IV (mature T) Surface CD3+, CD la-

α/β (group a) TCR α/β+

γ/δ (group b) TCR γ/δ+

Early myeloid (AML-MO) MPO ± but enzymatic MPO−/CD13+/CD33+/
CD65+/and-or CD 117+

Myelo/monocytic
lineage

MPO+/CD13+/CD33+/CD65+/and-or CD117+

Megakaryocytic lineage CD41+ and/or CD61+ (surface or
cytoplasmic)

Erythroid lineage Early/immature: unclassified by markers
Late/mature: GPA+

Undifferentiated Often CD34+/HLA-DR+/CD38+/CD7+
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surface marker expression and has human and machine-
readable definitions that are composed of necessary and
sufficient conditions. We have also created test instances
of patient data with a series of positive or negative marker
expression. After running the reasoner, the test data was
sorted into matching CCL classes, which demonstrates
the utility of our ontology towards automatically sorting
patient cell data into relevant diagnostic groups.

Discussion
The CCL is a natural evolution of the work started on
hematopoietic cells in the CL and is the first ontology to
represent the cell types of hematologic malignancies.
This ontology contributes to the process of cancer re-
search in a number of ways. This is new work that can
complement work that already exists in the NCIT and
DO. Our ontology enables sophisticated queries on pa-
tient data and allows researchers to efficiently examine
surface marker expression. This approach could allow
for easier stratification of novel subgroups of patients.

The CCL also enables easier integration of disparate data
sources by providing a structured semantic representa-
tion and explicit, well-crafted definitions that are human
and computer readable. With respect to the antibody
panels themselves, our ontology lends itself to the cre-
ation of a separate antibody panel ontology that could
allow researchers to determine whether there exists
agreement across laboratories in regards to antibody
panel composition and the definition of cancer cell types
based on reactivity to the panels. We realize our focus
on immunophenotypes paints an incomplete picture of
blood cancer cells and omits important diagnostic and
prognostic information regarding these malignancies. It
is our plan that future development of the CCL includes
integration of cytogenetic and morphological logical
definitions and allows for utilization of patient-specific
information. This would, in turn, allow for a more hol-
istic description of blood cancer cells and enable more
accurate classifications of malignancies to further sub-
type patients.

Fig. 1 Machine-readable definition from the CCL
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The sheer number and diversity of surface markers also
presents an issue to future development of the CCL. As
each individual class is defined as some combination of sur-
face marker status, adding new surface markers increases
the work of adding new classes exponentially. Luckily,
current panels at most use eight antibody-conjugates, but
with additional markers we see a combinatorial explosion
in terms of class definitions. In the same vein, every cancer
patient is unique and each disease phenotype is unique.
However, there appear to be common patterns of marker
expression for the various cancer types, and deep pheno-
typing may reveal important subgroups that relate to speed
of disease progression and responsiveness to treatments.
Perhaps most importantly, we have shown a proof of

concept for leveraging the built-in logical axioms of the
ontology in order to classify patient surface marker data
into appropriate diagnostic categories. The current work
will eventually be part of a larger framework involving a
combination of FLOCK clustering analysis of the raw
flow cytometry data in combination with the flowCL
tool, which will be modified to match cell types to corre-
sponding entities in the CL and CCL. [44, 45] By incorp-
oration CCL into this software system we hope to
facilitate the automated diagnosis of blood cancers. Future
iterations of the CCL will incorporate additional classifica-
tion systems and represent a broader range of blood can-
cers. We also plan to relate each cancer cell type to its
immediate normal precursor in the style of the CL.

Conclusion
The CCL is the first ontology to represent hematologic ma-
lignancies solely via their immunophenotypes and succeeds
as a first step towards increased automation in the diagno-
sis of blood cancers. We plan to integrate our ontology into
existing tools for flow cytometry data analysis to facilitate
the automated diagnosis of hematologic malignancies.
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