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G
lucagon-like peptide-1 (GLP-1) and GLP-2 are
peptide hormones encoded by the proglucagon
gene that are cosecreted in equimolar amounts
from enteroendocrine L-cells of the intestine in

response to nutrients, primarily carbohydrates and fats (1).
Most is known about GLP-1, which stimulates the pan-
creatic secretion of insulin in a glucose-dependent manner
while inhibiting the secretion of glucagon, gastric emptying,
and satiety. This tonic effect maintains glucose homeostasis
and is chiefly controlled by the enzymatic degradation of
the peptide in the circulation by dipeptidyl peptidase-4
(DPP-4) (2). This has led to the development of new ther-
apies for diabetes, including GLP-1 receptor analogs and
inhibitors of DPP-4 (3).

By contrast to GLP-1, the physiological and therapeutic
roles of GLP-2 are less clear. GLP-2 inhibits postprandial
gastric motility/secretion and intestinal hexose transport
and has a trophic effect on intestinal epithelium that
implies a specific role in intestinal repair processes (4).
GLP-2 may antagonize the effects of GLP-1 on glucose
homeostasis by enhancing the pancreatic release of glu-
cagon but could also have a cooperative, short-term effect
on satiety. Its biological actions are mediated by a specific
G-protein–coupled receptor.

Recent studies have also suggested that GLP-1 and
possibly GLP-2 may be involved in regulating fat absorp-
tion and chylomicron biogenesis (5–8), pointing to a regu-
latory role in postprandial lipid metabolism. This has
implications for atherogenesis and vascular disease in
diabetes and insulin-resistant states. GLP-1 may improve
while GLP-2 may aggravate postprandial lipemia, but ex-
actly how these biological actions are intertwined in health
and disease remains unclear.

In this issue of Diabetes, Adeli and colleagues (9) report
a well-designed set of experiments investigating the time-
dependent effects of GLP-1, GLP-2, and the coinfusions of
both gut peptides on postprandial chylomicron metabo-
lism in chow-fed and fructose-fed male Syrian golden
hamsters. An olive oil load was administered via oral gavage
and intravenous dosing regimens were used that achieved
physiological concentrations of the peptides. Poloxamer was
administered to protect newly formed chylomicrons from

catabolism and enable estimation of their secretion. The
short-term (30 min) intravenous infusion of GLP-1 reduced
whereas GLP-2 increased postprandial apolipoprotein (apo)
B48 and triglyceride concentrations and chylomicron par-
ticle secretion in the chow-fed hamsters. The acute coin-
fusion of both peptides resulted in a net increase in these
indices of postprandial lipemia, but this was reversed to
a dominant effect of GLP-1 in experiments that sampled
over 2 and 6 h and after administration of a DPP-4 inhibitor.
With the more prolonged infusions, GLP-1 had a dominant
effect over GLP-2 in decreasing chylomicron particle se-
cretion. The acute inhibitory effects of GLP-1 on chylomi-
cron secretion were augmented by including glucose in the
oral fat load. In the fructose-fed hamsters, postprandial
lipemia was enhanced compared with the chow model, with
a more pronounced response to GLP-2 and impaired re-
sponse to GLP-1.

How valid are these studies? The Syrian golden hamster
is an accepted model for studying glucose and lipid me-
tabolism because the fructose-fed state reflects diet-induced
insulin resistance and dyslipidemia (10); however, only male
animals were studied. The experiments were designed to
simulate the acute and prolonged physiological responses of
the GLPs to a fat load. However, the oral challenge of fat
alone does not represent a mixed meal, noting that glucose
has a major modulating effect on the release of both GLPs
and insulin. Measurement of chylomicron particle turnover
was based on an indirect method in which particle catabo-
lism was artificially blocked and secretion estimated using
noncompartmental analysis. Chylomicron biogenesis inte-
grates a complex series of processes and is most appropri-
ately studied using endogenous labeling with tracers and
multicompartmental modeling (11). The effects of the GLPs
on the catabolism of postprandial chylomicrons cannot be
strictly excluded in this experimental model.

The findings are physiologically significant, however.
After initial luminal hydrolysis of dietary triglycerides,
chylomicron biogenesis by the enterocyte involves the
reesterification of fatty acids and sn-2-monoacylglycerol by
diglyceride acyltransferase followed by stepwise lipidation
of apoB48 by microsomal triglyceride transfer protein to
form the mature chylomicron particle (12). Under physio-
logical conditions, insulin partially inhibits these processes
by reducing lipogenesis in the enterocyte, enhancing deg-
radation of intracellular apoB48, and decreasing the ex-
pression of microsomal triglyceride transfer protein (13,14).
GLP-1 augments these effects via its incretin response, but
GLP-2 appears to antagonize them by increasing lipid ab-
sorption via CD36/fatty acid translocase (7). The current
study proffers a temporal dimension to these events: re-
lease of GLP-1 initially slows chylomicron biogenesis, but
its duration of action is curtailed by more rapid catabo-
lism by DPP-4 relative to GLP-2, which in turns facilitates
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biogenesis over a longer period. The physiological co-
ordination of these actions may be most relevant to the
so called “ileal brake” phenomenon (15), whereby GLP-1
increases the delivery of fat to the ileum thereby activating
a satiety signal and GLP-2 acts to complete the absorption
of fat in the proximal intestine. Whether increased absorp-
tion of fat by GLP-2 also mediates satiety remains unclear.
Insulin modulates the impact of GLPs on chylomicron se-
cretion but critically also accelerates the turnover of chy-
lomicron particles by stimulating their catabolism by
lipoprotein lipase and hepatic receptors (12,16). The rela-
tive effects of GLP-1 and GLP-2 on gastric emptying, in-
testinal motility, and lymphatic and splanchnic blood flow
as well VLDL and apoC3 metabolism and their conse-
quence for postprandial chylomicron metabolism remain
to be investigated.

The pathophysiological significance of this study relates
to the mechanism of increased production of chylomicrons
in insulin resistance and type 2 diabetes (12,16,17). The
roles of impaired insulin signaling, inflammation, increased
availability of fatty acids, and enhanced lipogenesis in
accelerating chylomicron secretion by enterocytes have
been well emphasized. Enterocytic resistance to the direct
effects of GLP-1, as well as increased sensitivity to GLP-2,
may augment postprandial lipemia in insulin resistance by
increasing chylomicron biogenesis. Figure 1 summarizes
the potential role of GLP-1, GLP-2, insulin, and glucagon in
regulating the postprandial metabolism of chylomicron
and VLDL particles (FIG. 1).

These findings also further explain the mechanism of
action of DPP-4 inhibitors in improving dyslipidemia
by sustaining the action of GLP-1 relative to GLP-2 (3).
Whether specific inhibition of GLP-2 can mitigate postprandial
dyslipidemia remains untested. Activation of GLP-2 may
conversely be useful in treating injury or dysfunction of
intestinal mucosal epithelium, including ischemic damage
and short bowel syndromes (18). Specific regulation of
GLP-mediated mechanisms may have less potential for
managing of diabetic dyslipidemia than improvement in
glycemic control with more rigorous lifestyle interventions
and use of statins and triglyceride regulating agents, in-
cluding fibrates, n-3 fatty acids, and niacin (19).

Beyond beneficial effects atherogenic dyslipidemia, GLP-1
may directly mitigate the risk of vascular disease in diabetes
by improving endothelial function and blood pressure and
decreasing inflammation (20). Whether GLP-2 augments or
antagonizes these effects also warrants further investigation.
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