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Abstract 

Background:  More and more evidences from network biology indicate that most cellular components exert their 
functions through interactions with other cellular components, such as proteins, DNAs, RNAs and small molecules. 
The rapidly increasing amount of publicly available data in biology and chemistry enables researchers to revisit 
interaction problems by systematic integration and analysis of heterogeneous data. Currently, some tools have been 
developed to represent these components. However, they have some limitations and only focus on the analysis of 
either small molecules or proteins or DNAs/RNAs. To the best of our knowledge, there is still a lack of freely-available, 
easy-to-use and integrated platforms for generating molecular descriptors of DNAs/RNAs, proteins, small molecules 
and their interactions.

Results:  Herein, we developed a comprehensive molecular representation platform, called BioTriangle, to emphasize 
the integration of cheminformatics and bioinformatics into a molecular informatics platform for computational biol‑
ogy study. It contains a feature-rich toolkit used for the characterization of various biological molecules and complex 
interaction samples including chemicals, proteins, DNAs/RNAs and even their interactions. By using BioTriangle, users 
are able to start a full pipelining from getting molecular data, molecular representation to constructing machine 
learning models conveniently.

Conclusion:  BioTriangle provides a user-friendly interface to calculate various features of biological molecules 
and complex interaction samples conveniently. The computing tasks can be submitted and performed simply in a 
browser without any sophisticated installation and configuration process. BioTriangle is freely available at http://biotri‑
angle.scbdd.com.
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Background
Despite the indisputable success of the reductionism 
approaches in advancing our knowledge and under-
standing of individual molecules and their functions, it  

has been increasingly recognized that a single biologi-
cal process often involves complex interactions among 
a variety of molecules, especially DNA, RNA, proteins 
and small molecules [1, 2]. Systematic investigation 
and understanding of human interactome (i.e., complex 
networks resulted from numerous interactions among 
nucleotides, proteins, metabolites etc.) is thus becoming 
a key research area, which could fundamentally renovate 
our thinking on how to develop novel and more efficient 
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therapeutic or preventive interventions (e.g., the network 
medicine concept) [1, 3].

In previous studies, particular attention has been paid 
to a variety of molecular interaction networks and their 
potential roles in disease mechanism and drug develop-
ment [1, 4–7], including transcriptional and post-tran-
scriptional regulatory networks [8–10], functional RNA 
networks [11–13], protein–protein interaction networks 
[14, 15], and metabolic networks [16, 17]. Consequently, 
public databases for human-specific molecular interac-
tion data have been undergoing a rapid growth within the 
past decade, such as BIND [18], DIP [19], STITCH [20], 
HPRD [21], TTD [22], DrugBank [23], ChEMBL [24], 
KEGG [25], BindingDB [26], SuperTarget and Matador 
[27], to name a few. However, the heterogeneity of data 
in such databases poses a significant challenge to their 
integration and analysis in practice. In particular, the bio-
informatics and the cheminformatics communities have 
evolved more or less independently, e.g., with an empha-
sis on macro biomolecules and chemical compounds, 
respectively. However, to investigate complex molecular 
interactions, both biological and chemical knowledge on 
structures and functions of all the involved molecules 
are required, especially in the scenarios of identifying 
new drug targets and their potential ligands or discover-
ing potential biomarkers for complex diseases [28–30]. 
Therefore, it is necessary and useful to build informat-
ics platforms for unified data or knowledge represen-
tation that can integrate the existing efforts from both 
communities.

Molecular descriptors are one of the most powerful 
approaches to characterize the biological, physical, and 
chemical properties of molecules and have long been 
used in various studies for understanding molecular 
interactions or drug development [31–34]. In the bio-
informatics and cheminformatics fields, sequence- and 
structure-based constitutional, physicochemical, and 
topological features have been widely used in the devel-
opment of computing algorithms for predicting protein 
structural and functional classes [29], protein–protein 
interactions [35], subcellular locations and peptides of 
specific properties [36], drug-target pairs and associa-
tions [37, 38], meiotic recombination hot spots [39], and 
nucleosome positioning in genomes [40], etc. Besides its 
capability of describing and distinguishing nucleotides, 
proteins and small molecules of different structural, 
functional and interaction profiles, we further stress that 
molecular descriptor provides a convenient and consist-
ent way of molecular or interaction representation, and is 
thus a suitable choice to meet the needs mentioned in the 
previous paragraph.

Several bioinformatics packages for computing struc-
tural and physicochemical features of proteins or DNAs/

RNAs have been previously developed, including PRO-
FEAT [41], BioJava [42], PseAAC, propy [43], repDNA 
[44], repRNA [45], protr [46] etc. In the cheminformat-
ics field, several open sources or commercial software 
for drug discovery (e.g., QSAR/SAR [47], virtual screen-
ing [48], database search [49], drug ADME/T prediction 
[50, 51]) have been implemented for computing molec-
ular descriptors of small molecules, including Dragon, 
CODESSA, Chemistry Development Kit (CDK) [52], 
chemopy [53], Molconn-Z, OpenBabel [54], Cinfony [55], 
Rcpi [56], Indigo, JOELib, Avogadro and RDKit. How-
ever, all the tools mentioned above only support a limited 
number of molecular types or descriptors, and they may 
not be freely available or easily accessible. To the best of 
our knowledge, there is still a lack of freely-available and 
integrated platforms for generating molecular descrip-
tors of DNA/RNA, proteins, small molecules and their 
interactions [57].

In this study, we develop a comprehensive molecular 
representation tool, called BioTriangle, for characteriz-
ing various complex biological molecules and pairwise 
interactions. More specifically, BioTriangle can calcu-
late a large number of molecular descriptors of chemi-
cals from their topology, structural and physicochemical 
features of proteins and peptides from their amino acid 
sequences, and composition and physicochemical fea-
tures of DNAs/RNAs from their primary sequences. 
Furthermore, BioTriangle can calculate the interaction 
descriptors between two individual molecules. To ease 
the use of the BioTriangle utilities and functionalities, 
we also provide users a friendly and uniform web inter-
face. For illustration purpose, we use five datasets from 
different applications as representative examples to show 
how BioTriangle can be used in an analytical pipeline. We 
thus recommend BioTriangle when molecular or interac-
tion representation is need for exploring questions con-
cerning structures, functions and interactions of various 
molecular data in the context of biomedical studies.

Implementation and user interface
BioTriangle is designed as a web application imple-
mented in an open source Python framework (Django) 
for the Graphical User Interface (GUI) and MySQL for 
data retrieval. The Nginx + uWSGI architecture is used 
to enable an efficient data exchange between dynamic 
data from the server-side and static contents form client-
side. By employing this architecture, the balance between 
system resource occupation and computational efficiency 
is maintained; the good independence and safety of a 
long time data operation and file access from different 
requests are also guaranteed. The JavaScript and jQuery 
were employed to help accomplish some complex inter-
action processes, result visualization and download at 
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front-side. Pybel, a Python wrapper of the OpenBabel 
[54] toolkit, was used in backend for chemical structure 
parsing and converting. CSB.bio [58], a Python package 
which provides plenty of APIs for bioinformatics was 
used in backend for protein and DNAs/RNAs sequence 
parsing. The main calculation procedures and transaction 
processing procedures are written in Python language.

To provide an online computing service based on web, 
the user interface should be convenient and easy-to-use 
for users. In the following paragraph, we briefly describe 
the user interface of the BioTriangle. The user interface 
of BioTriangle consists of six main modules: “Home”, 
“Webserver”, “Documentation”, “Tools”, “Tutorials” and 
“FAQ”. In the “Home” module, a summary of the plat-
form and the quick-start entrance of each tool are pro-
vided to users. This gives users a clear understanding 
of the platform and a better selection of the tools. The 
“Webserver” module is the main entrance for users to 
choose different tools to perform their calculation. The 
“Documentation” module provides detailed definitions 
and references of the descriptors form each tool, so that 
users can look for the detailed information of certain 
descriptors conveniently. Besides, it also provides the 
usages of all the tools that users can use them quickly 
and easily. In the “Tools” module, several Python scripts 
for specific functionalities are available for better use 
of the platform. In the “Tutorials” module, five typical 
applications by using BioTriangle are listed there and all 
the related data are available for download. The “FAQ” 
module provides some frequently asked questions and 
the solutions are also listed there.

Methods and results
BioTriangle overview
As its name denoted, BioTrianlge constructs the interac-
tion between any two molecular objects in terms of the 
features from three main molecular types (see Fig.  1). 
Nine individual tools in BioTriangle correspond to 
the calculation of nine types of molecular features. Of 
these, BioChem, BioProt, and BioDNA are correspond-
ing to the calculation of chemicals, proteins and DNAs/
RNAs, respectively. BioCCI, BioPPI, and BioDDI are 
corresponding to the calculation of chemical–chemical 
interaction, protein–protein interaction, and DNA/RNA-
DNA/RNA interaction, respectively. Likewise, BioCPI, 
BioDPI, and BioCDI are corresponding to the calcula-
tion of chemical–protein interaction, DNA/RNA–pro-
tein interaction, and chemical–DNA/RNA interaction, 
respectively. The detailed instructions for molecular 
features and how to use these tools are provided in the 
documentation section of the platform. The users can 
select the corresponding tools to calculate the features as 
needed.

In addition to main functionalities mentioned above, 
BioTriangle can also provide a number of supplementary 
functionalities to facilitate the computation of molecular 
features. To obtain different biological molecules eas-
ily, BioTriangle provides four Python scripts in the tool 
section, with which the user could easily get molecular 
structures or sequences from the related websites by pro-
viding IDs or a file containing IDs. This greatly facilitates 
the acquisition of different molecules for users. Moreo-
ver, BioTriangle also provides a BioModel script to con-
struct the prediction models based on the data matrix 
generated by BioTriangle. The users could select different 
machine learning methods to construct their models as 
needed.

Molecular descriptors from chemical structures
Nine groups of molecular descriptors are calculated to 
represent small molecules in BioChem. A detailed list 
of small molecular descriptors covered by BioChem is 
summarized in Table  1. These descriptors capture and 
magnify distinct aspects of chemical structures. The use-
fulness of molecular descriptors in the representation of 
molecular information is reflected in their widespread 
adoption and use across a broad range of applications 
and methodologies, as reported in a large number of 
published articles. The users could select one or more 
groups to represent the chemicals under investigation 
(see Fig. 2).

Constitutional descriptors consist of 30 descriptor val-
ues, which are mainly used for characterizing the com-
position of chemical element type and chemical bond 
type, path length, hydrogen bond acceptor, and donator 
in the constitution module. Topology descriptors are 
those invariants calculated from molecular topological 
structure, which have been successfully used for pre-
dicting molecular physicochemical properties, such as 
boiling point and retention index etc. In the topology 
group, 35 commonly used topological descriptors like 
Weiner index, Balaban index, Harary index, and Schultz 
index are computed. Molecular connectivity indices con-
sist of 44 descriptor values that reflect simple molecu-
lar connectivity and valence connectivity for different 
path orders, cycle, or cluster size. They are among the 
most popular indices and are calculated from the vertex 
degree of the atoms in the H-depleted molecular graph. 
The connectivity group is responsible for the calculation 
of all connectivity descriptors. Kappa shape indices are 
computed through the kappa group, each of which rep-
resents a particular shape attribute of the molecule, such 
as molecular flexibility, molecular steric effect, molecular 
symmetry etc. Seventy-nine atom-type E-state indices 
were proposed in the estate group as molecular descrip-
tors encoding topological and electronic information 



Page 4 of 13Dong et al. J Cheminform  (2016) 8:34 

related to particular atom types in the molecule. E-state 
indices are especially useful in the prediction of drug 
ADME/T. In addition, the maximum and minimum of 
E-state values of 79 atom types are also calculated as 
molecular descriptors in BioChem. Six commonly used 
molecular properties are directly used in the molecular 
property group for representing the molecule, including 
molar refractivity, LogP based on Crippen method and 
its square, topological polarity surface area, unsaturation 
index, and hydrophilic index. Twenty-five charge descrip-
tors are computed based on Gasteiger–Marseli partial 
charges in the charge group, which describe electronic 
aspects both of the whole molecule and of particular 
regions, such as atoms, bonds, and molecular fragments. 
Electrical charges in the molecule are the driving force of 
electrostatic interactions and it is well known that local 
electron densities or charges play a fundamental role in 
many chemical reactions, physicochemical properties, 
and receptor-ligand binding. Three types of autocorrela-
tion descriptors (i.e., Moreau-Broto, Moran, Geary) are 
computed in the three individual group, respectively. 
Four carbon-scaled atomic properties are used to calcu-
late these descriptors, including atomic mass, atomic Van 
der Waals volume, atomic Sanderson electronegativity, 

Fig. 1  The overview of BioTriangle web server. BioTriangle could calculate various molecular descriptors from chemicals, proteins, DNAs/RNAs and 
their interactions

Table 1  List of  BioChem computed features for  chemical 
molecules

Feature group Features Number of  
descriptors

Constitution Molecular constitutional  
descriptors

30

Topology Topological descriptors 35

Connectivity Molecular connectivity indices 44

E-state E-state descriptors 237

Kappa Kappa shape descriptors 7

Autocorrelation Moreau-Broto autocorrelation 32

Moran autocorrelation 32

Geary autocorrelation 32

Charge Charge descriptors 25

Property Molecular property 6

MOE-type MOE-type descriptors 60

Fingerprints Topological fingerprints 2048

MACCS keys 166

FP4 keys 307

E-state fingerprints 79

Atom pairs fingerprints –

Topological torsions –

Morgan fingerprints –
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and atomic polarizability. Sixty MOE-type descriptors 
can be computed from connection table information 
based on atomic contributions to Van der Waals surface 
area, LogP, molar refractivity, partial charge, and E-state 
value. These descriptors have been frequently applied to 
the construction of QSAR models for boiling point, vapor 
pressure, thrombin/factor Xa activity, blood–brain bar-
rier permeability, and compound classification. All func-
tionalities used for computing MOE-type descriptors are 
included in the MOE-type descriptor group. The detailed 
definition and description of each molecular descriptor 
could be found in the documentation section of the web-
site (see Additional file 1).

Another striking feature in BioChem is the computa-
tion of a number of molecular fingerprints. Molecular 
fingerprints are string representations of chemical struc-
tures, which consist of bins, each bin being a substructure 
descriptor associated with a specific molecular feature. 
Seven types of molecular fingerprints are provided in 
BioChem, including topological fingerprints, E-state 
fingerprints, MACCS keys, FP4 keys, atom pairs finger-
prints, topological torsion fingerprints, and Morgan/
circular fingerprints. The usefulness of these molecular 
fingerprints covered by BioChem have been sufficiently 

demonstrated by a number of published studies of the 
development of machine learning classification systems 
in QSAR/SAR, drug ADME/T prediction, similarity 
searching, clustering, ranking and classification.

Protein or peptide descriptors from amino acid sequences
A list of features for proteins and peptides covered by 
BioProt is summarized in Table 2. These features can be 
divided into six groups, each of which has been indepen-
dently used for predicting protein- and peptide-related 
problems by using machine learning methods (see Fig. 2). 
More detailed description and references can be found in 
the documentation section from BioTriangle (see Addi-
tional file 2).

The first group includes three features: amino acid 
composition, dipeptide composition and tripeptide com-
position, with 3 descriptors and 8420 descriptor values. 
These descriptors represent the fraction of each amino 
acid type, dipeptide type and tripeptide type in a pro-
tein sequence. These simplistic descriptors can be used 
to predict protein fold and structural classes, functional 
classes, and subcellular locations.

The second group consists of three different auto-
correlation features: normalized Moreau–Broto 

Fig. 2  The schematic diagram of single molecular descriptor calculation. Molecular features from chemicals, proteins, and DNAs/RNAs could be 
easily calculated through BioChem tool, BioProt tool and BioDNA tool, respectively
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autocorrelation, Moran autocorrelation, and Geary 
autocorrelation. The autocorrelation features describe 
the level of correlation between two protein or pep-
tide sequences in terms of their specific structural or 
physicochemical property. In the default settings, there 
are eight amino acid properties used for deriving these 
autocorrelation descriptors. Thus, three autocorrelation 
features are computed, each having 8 descriptors and 
8 × 30 = 240 descriptor values. Autocorrelation descrip-
tors can be used for predicting transmembrane protein 
types, protein helix contents, and protein secondary 
structural contents.

The third group contains three feature sets: composi-
tion (C), transition (T), and distribution (D), with a total 
of 3(C) +  3(T) +  5 ×  3(D) =  21 descriptors, and 147 
descriptor values. They represent the amino acid distri-
bution pattern of a specific structural or physicochemi-
cal property along a protein or peptide sequence. Seven 
types of physicochemical properties have been used for 
calculating these features, including hydrophobicity, 
polarity, charge, polarizibility, normalized Van der Waals 
volume, secondary structures, and solvent accessibility. 
C is the number of amino acids of a particular property 

(e.g., hydrophobicity) divided by the total number of 
amino acids in a protein sequence. T characterizes the 
percent frequency with which amino acids of a particular 
property is followed by amino acids of a different prop-
erty. D measures the chain length within which the first, 
25, 50, 75, and 100 % of the amino acids of a particular 
property are located, respectively. These CTD features 
have been widely used for predicting protein folds [59], 
protein–protein interactions [60], and protein func-
tional families [61] at accuracy levels of 74–100, 77–81, 
67–99 %, respectively.

The fourth group, conjoint triad descriptors, proposed 
by Shen et  al. [35], was originally designed to repre-
sent protein–protein interactions. These conjoint triad 
features abstract the features of protein pairs based on 
the classification of amino acids. Twenty amino acids 
were clustered into several classes according to their 
dipoles and volumes of side chains. Herein, the dipoles 
and volumes of side chains of amino acids, reflecting 
electrostatic and hydrophobic interactions, were cal-
culated, respectively, by using the density-functional 
theory method B3LYP/6-31G* and molecular modeling 
approach. The reason for dividing amino acids into 
seven groups is that amino acids within the same class 
likely involve synonymous mutations because of their 
similar characteristics. The conjoint triad features con-
sider the properties of one amino acid and its neighbor-
ing ones and regard any three continuous amino acids 
as a unit. Thus, the triads can be differentiated accord-
ing to the classes of amino acids, i.e., triads composed 
by three amino acids belonging to the same classes could 
be treated identically. For amino acids that have been 
catalogued into seven classes, we can finally construct 
a 7 × 7 × 7 = 343-dimensional vector, each dimension 
of which records the frequency of each triad appearing 
in the protein sequence. For detailed information on 
how to calculate these features, please refer to the docu-
mentation section of the website. Applying the conjoint 
triad features to the prediction of protein–protein inter-
actions, the support vector machine based on S-kernel 
function obtained an average prediction accuracy of 
83.90 % on test sets [35].

The fifth group includes two sequence-order fea-
ture sets, one is sequence-order-coupling number with 
2 descriptors and 60 descriptor values, and the other 
is quasi-sequence-order with 2 descriptors and 100 
descriptor values. These features are derived from both 
Schneider–Wrede physicochemical distance matrix and 
Grantham chemical distance matrix. The sequence-order 
features can be used for representing amino acid distri-
bution patterns of a specific physicochemical property 
along a protein or peptide sequence, which have been 
used for predicting protein subcellular locations.

Table 2  List of  BioProt computed features for  protein 
sequences

a  The number depends on the choice of the number of properties of amino acid 
and the choice of the maximum values of the lag. The default is eight types of 
properties and lag = 30
b  The number depends on the choice of the number of the set of amino acid 
properties and the choice of the λ value. The default is three types of properties 
proposed by Chou et al. and λ = 30
c  The number depends on the choice of the λ value. The default is that λ = 15

Feature group Features Number of  
descriptors

Amino acid composition Amino acid composition 20

Dipeptide composition 400

Tripeptide composition 8000

Autocorrelation Normalized Moreau–Broto 
autocorrelation

240a

Moran autocorrelation 240a

Geary autocorrelation 240a

CTD Composition 21

Transition 21

Distribution 105

Conjoint triad Conjoint triad features 343

Quasi-sequence order Sequence order coupling 
number

60

Quasi-sequence order 
descriptors

100

Pseudo amino acid com‑
position

Pseudo amino acid com‑
position

50b

Amphiphilic pseudo amino 
acid composition

50c
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The sixth group contains two types of pseudo-amino 
acid compositions (PseAAC): type I PseAAC with 50 
descriptor values and type II PseAAC (i.e., amphiphilic 
PseAAC) with 50 descriptor values. In simple amino acid 
composition, all the sequence-order effects are missing. 
To avoid losing the sequence-order information com-
pletely, the concept of PseAAC, developed by K.C. Chou, 
was mainly used to reflect the composition of amino 
acids and the sequence-order information (at least par-
tially) through a set of correlation factors. PseAAC has 
been frequently used in improving the prediction qual-
ity for subcellular location of proteins and their other 
attributes.

DNA/RNA descriptors from nucleotide sequences
Generally, three groups of features from nucleotide 
sequences are calculated to represent DNA/RNA in Bio-
DNA (see Fig. 2). A detailed list of descriptors for DNA/
RNA covered by BioDNA is summarized in Table 3. The 
usefulness of these features covered by BioDNA for rep-
resenting DNA/RNA sequence information have been 
sufficiently demonstrated by a number of published 
studies of the development of machine learning classifi-
cation systems in computational genomics and genome 
sequence analysis. More detailed description and refer-
ences can be found in the documentation section of the 
website (see Additional file 3).

The first group includes two features: basic kmer and 
reverse compliment kmer. Basic kmer is the simplest 
approach to represent the DNAs, in which the DNA 
sequences are represented as the occurrence frequencies 
of k neighboring nucleicacids. The reverse compliment 
kmer is a variant of the basic kmer, in which the kmers 
are not expected to be strand-specific, so reverse com-
plements are collapsed into a single feature. For more 
information of this approach, please refer to Gupta et al. 
[62] and Noble et  al. [63]. These simplistic descriptors 
have been successfully applied to human gene regulatory 
sequence prediction, enhancer identification, etc.

The second group consists of six different autocorrela-
tion features. Autocorrelation, as one of the multivariate 
modeling tools, can transform the DNA sequences of 
different lengths into fixed-length vectors by measuring 
the correlation between any two properties. Autocorre-
lation results in two kinds of variables: autocorrelation 
(AC) between the same property, and cross-covariance 
(CC) between two different properties. Herein, BioDNA 
allows users to calculate various kinds of autocorrela-
tion feature vectors for given DNA sequences or FASTA 
files by selecting different methods and parameters. Bio-
DNA aims at computing six types of autocorrelation, 
including dinucleotide-based auto covariance (DAC), 

dinucleotide-based cross covariance (DCC), dinucleo-
tide-based auto-cross covariance (DACC), trinucleotide-
based auto covariance (TAC), trinucleotide-based cross 
covariance (TCC), and trinucleotide-based auto-cross 
covariance (TACC). Autocorrelation features exhibit 
good prediction performance in the mammalian enhanc-
ers, human transcription start site, splice site, and so on.

The third group is the pseudo nucleic acid composi-
tion (PseNAC) features. PseNAC represents the DNA 
sequences considering both DNA local sequence-order 
information and long range or global sequence-order 
effects. Herein, BioDNA aims at computing six types 
of pseudo nucleic acid composition: pseudo dinucleo-
tide composition (PseDNC), pseudo k-tuplenucleotide 

Table 3  List of  BioDNA computed features for  DNA/RNA 
sequences

a  The number depends on the choice of the values of the parameters in the 
formula. Here, the number of each type of descriptors is based on the default 
parameter value. For detailed information, please refer to the documentation 
section in the BioTriangle website

Feature group Features Number of descrip-
torsa

Nucleic acid composi‑
tion

Basic kmer 16

Reverse compliment 
kmer

10

Autocorrelation Dinucleotide-based 
auto covariance

74

Dinucleotide-based 
cross covariance

2664

Dinucleotide-based 
auto-cross covari‑
ance

2738

Trinucleotide-based 
auto covariance

24

Trinucleotide-based 
cross covariance

264

Trinucleotide-based 
auto-cross covari‑
ance

288

Pseudo nucleic acid 
composition

Pseudo dinucleotide 
composition

18

Pseudo k-tuple nucle‑
otide composition

18

Parallel correlation 
pseudo dinucleotide 
composition

18

Parallel correlation 
pseudo trinucleo‑
tide composition

66

Series correlation 
pseudo dinucleotide 
composition

90

Series correlation 
pseudo trinucleo‑
tide composition

88
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composition (PseKNC), parallel correlation pseudo dinu-
cleotidecomposition (PC-PseDNC), parallel correla-
tion pseudo trinucleotide composition (PC-PseTNC), 
series correlation pseudo dinucleotide composition (SC-
PseDNC), and series correlation pseudo trinucleotide com-
position (SC-PseTNC). The users could calculate various 
kinds of PseNAC feature vectors for given DNA sequences 
or FASTA files by selecting different methods and param-
eters. The usefulness of PseDNC related features has been 
well demonstrated in improving the prediction quality for 
nucleosome positioning in genomes, recombination spots, 
human nucleosome occupancy, and so on.

Descriptors from the interaction between two molecules 
with the same type
The descriptor calculation of chemical–chemical 
interaction, protein–protein interaction, and DNA/
RNA-DNA/RNA interaction is similar to each other 
in BioCCI, BioPPI and BioDDI (see Additional file  4). 
We will show how to construct an interaction feature 
by the protein–protein interaction example (see Fig. 3). 
Let Fa =  {Fa(i), i =  1, 2, …, p} and Fb =  {Fb(i), i =  1, 
2, …, p} are the two descriptor vectors for interaction 
protein A and protein B, respectively. There are three 
methods to construct the interaction descriptor vector 
F for A and B:

1.	 Two vectors Fab and Fba with dimension of 2p are 
constructed: Fab = (Fa, Fb) for interaction between 
protein A and protein B and Fba  =  (Fb, Fa) for 
interaction between protein B and protein A.

2.	 One vector F with dimension of 2p is constructed: 
F = {Fa(i) + Fb(i), Fa(i) × Fb(i), i = 1, 2, …,p}.

3.	 One vector F with dimension of p2 is constructed 
by the tensor product: F =  {F(k) = Fa(i) × Fb(j), 
i = 1, 2, …, p, j = 1, 2,…, p, k = (i − 1) × p + j}.

Descriptors from the interaction between two molecules 
with different types
The descriptor calculation of chemical-protein inter-
action, protein-DNA/RNA interaction, and chemi-
cal-DNA/RNA interaction is similar to each other in 
BioCPI, BioDPI and BioCDI (see Additional file  5). 
Likewise, we will show how to construct an interaction 
feature by the chemical-protein interaction example 
(see Fig. 4). There are two methods for construction of 
descriptor vector F for chemical-protein interaction 
from the protein descriptor vector Ft (Ft(i), i = 1, 2, …, 
pt) and chemical descriptor vector Fd (Fd(i), i = 1, 2, …, 
pd):

1.	 One vector V with dimension of pt  +  pd is con-
structed: F =  (Ft, Fd) for interaction between pro-
tein t and chemical d.

2.	 One vector V with dimension of pt  ×  pd 
is constructed by the tensor product: 
F = {F(k) = Ft(i) × Fd(j), i = 1, 2, …, pt, j = 1, 2, …, 
pd, k = (i − 1) × pt + j}.

Input/output
BioTriangle consists of nine tools. Each of them accepts 
a string or a file as uniform input and then collects the 
calculation results to users at the result page. There, an 
HTML table contains results are displayed to users and a 

Fig. 3  The schematic diagram of descriptor calculation from the interaction between two molecules with the same type. The calculation process 
for BioCCI, BioPPI and BioDDI is similar to each other. Firstly, the molecular structures or sequences of the associated chemicals, proteins, and DNAs/
RNAs in the chemical-chemical, protein–protein, and DNA/RNA–DNA/RNA interaction networks are provided to calculate the corresponding molec‑
ular features. Secondly, the adjacency list file and the molecular features in the above step are provided to calculate the final interaction features
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*.CSV file are available for download. Besides, a step-by-
step strategy is applied in BioTriangle during the comput-
ing process, which makes it convenient to get an example 
in each step and save the calculation results in time. The 
Fig.  5 shows a screenshot of the web interface by using 
BioChem tool. BioChem accepts a SMILES string, *.SDF 
file and *.SMI file as the input; the BioProt accepts a sin-
gle protein FASTA sequence string or protein *.FASTA 
file as the input; the BioDNA accepts a DNA/RNA 
FASTA sequence string or DNA/RNA *.FASTA file as 
the input. As for the other six tools, a tab-delimited 
text file (*.TXT) is acceptable as the input. This kind of 
format makes it easy to edit on multiple operating sys-
tem platforms (Windows, Linux and Mac OS platform) 
and by any text editor. The detailed information about 
how to format the *.TXT file for each calculation step is 
described in the FAQ section of the website.

Discussion
Considering the amazing rate at which data are accu-
mulated in chemistry and biology fields, new tools that 
process and interpret large and complex interaction 
data are increasingly important. However, to our knowl-
edge, no open source or freely available tool exists to 
perform these functions above. BioTriangle is a power-
ful web server for the extraction of features of complex 

interaction data. After representation, different statisti-
cal learning tools can be applied for further analysis and 
visualization of the data. Several case studies from wide 
applications show how BioTriangle was used to describe 
various molecular features and establish a model in a 
routing way (see the Tutorials section). The application 
domain of BioTriangle is not limited to the interaction 
data. It can, as Fig. 1 shows, be applied to a broad range 
of scientific fields such as QSAR/SAR, similarity search, 
absorption, distribution, metabolism, elimination and 
toxicity (ADMET) prediction, virtual screening, protein 
function/substructure/family classification, subcellular 
locations, post-translational modification (PTM), DNA 
structure/function/site prediction, and various interac-
tion data analysis. We expect that BioTrianlge will better 
assist chemists, pharmacologists and biologists in char-
acterizing, analyzing, and comparing complex molecular 
objects.

The current version of BioTrianlge has a number of 
strengths that make it useful for a wide variety of applica-
tions in computational biology. The usefulness of the fea-
tures covered by BioTrianlge has been extensively tested 
by a number of published studies of the development of 
statistical learning algorithms for analyzing various bio-
logical, chemical and biomedical problems. Several web-
based servers have been established to perform these 

Fig. 4  The schematic diagram of descriptor calculation from the interaction between two molecules with the different types. The calculation 
process for BioCDI, BioCPI and BioDPI is similar to each other. Firstly, molecular structures or sequences of the associated chemicals, proteins, and 
DNAs/RNAs in the chemical–chemical, protein–protein, and DNA/RNA–DNA/RNA interaction networks are provided to calculate the corresponding 
molecular features. Secondly, the molecular structures or sequences of another molecular object from interaction data are provided to calculate 
the corresponding molecular features. Thirdly, the adjacency list file and the molecular features in the above two steps are provided to calculate the 
final interaction features
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tasks such as SVM-Prot [61], Cell-Ploc [36], iGPCR-Drug 
[64], iRSpot-PseDNC [39], IDrug-Target [65] and iNuc-
PseKNC [66]. The similarity principle is prominent in 
medicinal chemistry, although it is well known as the sim-
ilarity paradox, i.e., those very minor changes in chemical 
structure can result in total loss of activity. Based on dif-
ferent similarities, various molecular fingerprint systems 
were used for identifying novel drug targets. Campillos 
et  al. proposed a novel method to identify new targets 
based on the similarity of side effects by Daylight-type 
topological fingerprints [67]. Twenty of unexpected DTIs 
are tested and thirteen of which are successfully validated 
by in  vitro binding assays. A method to predict protein 
targets based on chemical similarity of their ligands was 
proposed by Keiser et al. using Daylight-type topological 
fingerprints and extended-connectivity fingerprints [68]. 
They confirmed 23 new DTIs and found that 5 ones were 
potent with Ki values <100  nM. A number of studies 
have been performed on the modeling of the interaction 
of GPCR with a diverse set of ligands using a proteoch-
emometrics approach [69–71], which aims at finding an 
empirical relation that describes the interaction activities 

of the biopolymer-molecule pairs as accurately as possi-
ble, based on a unified description of the physicochemi-
cal properties of the primary amino acid sequences of 
proteins, and the description of the physicochemical 
properties of the ligands that may interact with the pro-
teins. The results showed that building accurate, robust, 
and interpretable models for predicting the affinity data 
is totally possible, provided that suitable representations 
for proteins and ligands are used. Moreover, a further 
analysis showed that the model quality greatly depended 
on the sequence homology of proteins, and the model 
was very predictive only for proteins that had similar 
counterparts remaining in the model [72].

The main advantages of our proposed webserver are 
summarized as follows: (1) BioTriangle contains a selec-
tion of molecular features to analyze, classify, and com-
pare complex molecular objects. They facilitate the 
exploitation of machine learning techniques to drive 
hypothesis from complex protein/peptide datasets, 
DNAs/RNAs datasets, small molecule datasets, and inter-
action datasets. (2) BioTriangle provides the detailed 
information about molecular descriptors and how to 

Fig. 5  A screenshot of the web interface by using BioChem tool. To use BioChem, users should firstly go to the index page (marked number 1 in 
the picture). Then, input molecules and choose feature groups (marked number 2, 3, and 4). After submitting, calculation results will be displayed in 
the result page (marked number 5)
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calculate them in the documentation section. This helps 
the researcher to understand the meaning of each descrip-
tor and to interpret the model. (3) BioTriangle provides 
several tutorials and corresponding model scripts for dif-
ferent applications. This helps the researchers to apply 
BioTriangle into their data analysis pipeline for molecular 
representation. (4) BioTriangle provides various python 
scripts to several popular databases such as KEGG, 
PubChem, Drugbank, CAS, Uniprot, PDB, and Gene-
Bank, etc., greatly facilitating the accessibility of molecu-
lar structures and sequences. (5) BioTriangle provides 
users online services, which means the tedious deploy-
ment or programming process of other tools mentioned 
above are no more needed. This would be very helpful for 
some pharmacologists and biological scientists with no 
programming skills. (6) The JavaScript and jQuery instead 
of Java applets are utilized to accomplish some complex 
interaction processes in the front-side of the server, which 
could effectively avoid potential problems of some strict 
runtime environment and security risks of Java.

The BioTriangle implementation of each of these algo-
rithms was extensively tested by using a number of test 
proteins, DNAs/RNAs and small molecules. The com-
puted descriptor values were also compared to the 
known values for these molecules from different soft-
ware tools to ensure that their computation is accu-
rate. For small molecular descriptors, we compared our 
calculated descriptors with those from Dragon, MOE 
(Molecular Operating Environment from Chemical 
Computing Group) or MODEL (Molecular Descriptor 
Lab). If our calculated descriptor is identical to those 
from these tools, we will confirm that this descriptor is 
correctly coded. For protein descriptors, we compared 
our calculated descriptors with those from PROFEAT 
(Protein Feature Server) or PseAAC server (http://www.
csbio.sjtu.edu.cn/bioinf/PseAAC/). Similarly, if our calcu-
lated descriptor is identical to those from PROFEAT and 
PseAAC, we will conform that this protein descriptor is 
correctly calculated. For DNA/RNA descriptors, we com-
pared our calculated descriptors with those from rep-
DNA and repRNA (http://bioinformatics.hitsz.edu.cn/
repRNA/), the identical results from two different tools 
demonstrated the accuracy of our calculated descriptors.

Conclusion
BioTriangle provides a user-friendly interface to calcu-
late various features of biological molecules and complex 
interaction samples conveniently. It makes a step in this 
direction providing a way to fully integrate information 
from chemical space and biology space into an interac-
tion space, which cannot be performed by other exist-
ing web-based tools. It provides not only the detailed 
information about all descriptors and how to calculate 

them but also several tutorials and corresponding model 
scripts for different applications. In addition, the algo-
rithms related in BioTriangle and the stability of the 
platform were extensively tested. We hope that the web 
service will be helpful when exploring questions con-
cerning structures, functions and interactions of various 
molecular data in the context of computational biology. 
In future work, we plan to apply the integrated features 
on various biological research questions, and to extend 
the range of functions with new promising descriptors 
for the coming versions of BioTriangle.
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