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Abstract
Background: Assessing the effect of alcohol consumption on biological age is essen-
tial for understanding alcohol use- related comorbidities and mortality. Previously de-
veloped epigenetic clocks are mainly based on DNA methylation in heterogeneous 
cell types, which provide limited knowledge on the impacts of alcohol consumption 
at the individual cellular level. Evidence shows that monocytes play an important role 
in both alcohol- induced pathophysiology and the aging process. In this study, we de-
veloped a novel monocyte- based DNA methylation clock (MonoDNAmAge) to assess 
the impact of alcohol consumption on monocyte age.
Methods: A machine learning method was applied to select a set of chronologi-
cal age- associated DNA methylation CpG sites from 1202 monocyte methylomes. 
Pearson correlation was tested between MonoDNAmAge and chronological age in 
three independent cohorts (Ntotal = 2242). Using the MonoDNAmAge clock and four 
established clocks (i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, 
GrimDNAmAge), we then evaluated the effect of alcohol consumption on epigenetic 
aging in the three cohorts [i.e., Yale Stress Center Community Study (YSCCS), Veteran 
Aging Cohort Study (VACS), Women's Interagency HIV Study (WIHS)] using linear and 
quadratic models.
Results: The MonoDNAmAge, comprised of 186 CpG sites, was moderately to strongly 
correlated with chronological age in the three cohorts (r = 0.90, p = 3.12E−181 in 
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INTRODUC TION

Alcohol consumption exerts significant adverse effects on health 
and contributes to increased morbidity and mortality (Collaborators 
GBDA, 2018). Biological aging has been proposed as an indica-
tor of the adverse effects of alcohol on health and frailty (Shin & 
Baik, 2016; Strandberg et al., 2012). Recently developed epigenetic 
“clocks” employ cellular DNA methylation (DNAm) as a measure of 
the aging process. DNAm- based epigenetic clocks were shown to 
be more sensitive and precise measures of cellular age than other 
genomic measures (e.g., transcriptome and telomere length; Lopez- 
Otin et al., 2013). It is well- established that alcohol consumption 
alters DNAm in whole blood (Liang et al., 2021; Liu et al., 2018). 

However, the relationship between alcohol consumption and epi-
genetic age remains unclear.

To date, more than a dozen DNAm- based epigenetic clocks 
have been reported, including four well- established DNAm- based 
age estimators. The Horvath clock (HorvathDNAmAge) is based 
on 353 CpG sites that capture estimated multi- tissue biological age 
(Horvath, 2013). The Hannum clock (HannumDNAmAge) is derived 
from 71 CpGs in leukocytes (Hannum et al., 2013). The Levine clock 
(PhenoDNAmAge) employs 513 CpGs to predict lifespan (Levine et al., 
2018). Lu's GrimAge clock (GrimDNAmAge) is a linear combination of 
chronological age, sex, and 1030 CpG sites modeled as surrogate bio-
markers for seven plasma proteins and smoking pack- years, predict-
ing age at death (Lu et al., 2019). These clocks have been applied as 
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YSCCS; r = 0.54, p = 1.75E−96 in VACS; r = 0.66, p = 1.50E−60 in WIHS). More 
importantly, we found a nonlinear association between MonoDNAmAge and alco-
hol consumption (pmodel = 4.55E−08, px2 = 7.80E−08 in YSCCS; pmodel = 1.85E−02, 
px2 = 3.46E−02 in VACS). Heavy alcohol consumption increased EAAMonoDNAmAge 
up to 1.60 years while light alcohol consumption decreased EAAMonoDNAmAge up to 
2.66 years. These results were corroborated by the four established epigenetic clocks 
(i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge).
Conclusions: The results suggest a nonlinear relationship between alcohol con-
sumption and its effects on epigenetic age. Considering adverse effects of alcohol 
consumption on health, nonlinear effects of alcohol use should be interpreted with 
caution. The findings, for the first time, highlight the complex effects of alcohol con-
sumption on biological aging.
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biomarkers of the aging process to understand how numerous medi-
cal or psychiatric conditions affect biological age. For example, biolog-
ical age was significantly greater than chronological age by a mean of 
5 to 10 years in HIV- positive (HIV+) compared to HIV- negative (HIV−) 
individuals (Boulias et al., 2016; Horvath & Levine, 2015).

Epigenetic age acceleration (EAA) is defined as the residuals of 
regressing DNAm age on chronological age (Kresovich et al., 2021; 
Stephenson et al., 2021). The established “clocks” have been recently 
applied to examine whether alcohol use increases or decreases 
EAA and reported inconsistent findings. Alcohol consumption was 
found significantly associated with EAA that was estimated using 
GrimDNAmAge (Kresovich et al., 2021; Stephenson et al., 2021). 
An increased EAA has been reported in individuals with heavy alco-
hol use and in children with fetal alcohol spectrum disorder (Fiorito 
et al., 2019; Okazaki et al., 2021). Compared to healthy individu-
als, persons with alcohol use disorder (AUD) show a trend toward 
higher EAA in liver tissue (Rosen et al., 2018) and a 2.22- year age 
increase in blood (Luo et al., 2020). On the other hand, light to mod-
erate alcohol use appears to have no effect on or even slows ex-
trinsic EAA (Quach et al., 2017; Robinson et al., 2020). Interestingly, 
using HannumDNAmAge, Beach et al. first observed a U- shaped 
relationship between alcohol consumption and EAA. Their results 
demonstrate that light and heavy levels of alcohol consumption in-
creases EAA while intermediate levels of alcohol consumption de-
crease EAA (Beach et al., 2015). These observations suggest that 
the effect of alcohol consumption on the biological aging process 
may differ by the quantity of use and tissue type.

One limitation of prior studies using available epigenetic clocks 
is their lack of tissue and cell- type specificity; thus, they may provide 
limited insight into the mechanisms of tissue- specific cellular aging 
affected by alcohol. Alcohol consumption changes immunity and in-
flammatory functions that may result from alterations in immune cell 
functions (Sureshchandra et al., 2019). Moderate or heavy alcohol 
use has been shown to change monocyte function (Badia et al., 2004; 
Donnadieu- Rigole et al., 2016; Szabo, 1998). Szabo et al. (Szabo, 1998) 
reported that alcohol consumption exerts a biphasic effect on inter-
feron inducibility and potentially affects monocyte- derived inflam-
matory cytokine production, which changes the course of the aging 
process. In addition, monocytes show aging- related gene dysfunction 
in metabolism, immune function, and inflammation (Saare et al., 2020; 
Viel et al., 2012), as well as DNAm and transcriptomic alterations 
(Metcalf et al., 2017; Reynolds et al., 2014). Therefore, we hypothesize 
that a set of CpG sites selected from monocytes can serve as an indica-
tor of the effect of alcohol consumption on biological age and provide 
insights into its underlying mechanisms. A monocyte- based epigenetic 
clock may serve as a surrogate of peripheral immune function among 
persons consuming alcohol.

In this study, we aimed to characterize the effect of a range of 
alcohol consumption levels on monocyte epigenetic age. We devel-
oped a novel “clock” derived from the human monocyte DNA methy-
lome (termed “MonoDNAmAge”) using the Elastic Net Regularization 
(ENR). We evaluated the performance of MonoDNAmAge in esti-
mating HIV- associated age acceleration as a benchmark. Finally, 
using data- driven modeling approach, we assessed the effect of 

alcohol consumption on MonoDNAmAge, EAA, and apparent 
methylation age rate (AMAR) in three distinct cohorts: the Yale 
Stress Center Community Study (YSCCS; Blaine et al., 2019); the 
Veteran Aging Cohort Study (VACS; Justice et al., 2006); and the 
Women's Interagency HIV Study (WIHS; Adimora et al., 2018; Bacon 
et al., 2005). Four well- established clocks (i.e., HorvathDNAmAge, 
HannumDNAmAge, PhenoDNAmAge, and GrimDNAmAge) were 
also used to assess the effect of alcohol consumption on measures 
of biological age. MonoDNAmAge development and analytic strat-
egy are shown in Figure 1.

MATERIAL S AND METHODS

Study cohorts and phenotype assessments

Multi- ethnic study of atherosclerosis (MESA; 
N = 1202)

The MESA cohort is a multi- site, longitudinal study designed to in-
vestigate the prevalence, correlates, and progression of subclinical 
cardiovascular disease (CVD) in a population cohort of 6814 partici-
pants (Bild et al., 2002; Liu et al., 2017; Reynolds et al., 2014). The 
MESA Epigenomics and Transcriptomics Study has been launched to 
investigate potential gene expression regulatory methylation sites 
in humans by examining the association between CpG methylation 
and gene expression in purified human monocytes from the large 
study population. The DNA samples were obtained from CD14+ 
monocyte samples collected from 1202 relatively healthy individu-
als with ages ranging from 44 to 83 years. Among 1202 participants, 
51.4% were female. In this cohort, 21.5% were African American, 
32.6% were Hispanic, and 45.9% were European descents. Only 
5.3% had prevalent CVD. In this study, DNAm data from the MESA 
Epigenomics and Transcriptomics Study (GSE56046) was used to 
construct the MonoDNAmAge clock.

The following three cohorts were used to assess the effects of 
alcohol on DNAm aging. Demographic and clinical characteristics 
and alcohol assessment for each cohort are described below and 
presented in Table 1 and Supplementary Information.

Yale stress center cohort study (YSCCS; N = 502)

The cohort served as a community- based sample to examine the 
effect of alcohol consumption on DNAm age among healthy par-
ticipants (Blaine et al., 2019). The 10- item Alcohol Use Diagnosis 
Identification Test (AUDIT) was used to assess alcohol use. Heavy 
alcohol drinking (HAD) was defined as an AUDIT score ≥8 for men 
and an AUDIT score ≥7 for women (N = 148), moderate alcohol 
drinking (MAD) was defined as an AUDIT score <8 for men, and an 
AUDIT score <7 for women (N = 354; Lee et al., 2018). The aver-
age AUDIT score was 5.69 among all participants in the cohort. The 
self- reported AUDIT- Consumption (AUDIT- C, the first three items 
of AUDIT) score was also used for the analysis.
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Veterans aging cohort study (VACS; N = 1259)

The cohort served as a clinic- based sample to benchmark the ef-
fect of HIV infection on MonoDNAmAge and to examine the effect 
of alcohol consumption on DNAm age (Justice et al., 2006). The 
participants included both HIV+ (N = 1151) and HIV− (N = 104) 
individuals. A majority of HIV+ participants were on antiretroviral 
therapy and were virally suppressed (63.66%). Alcohol consump-
tion was assessed by measuring phosphatidylethanol (PEth) lev-
els, a biomarker for alcohol use (Viel et al., 2012) that is positively 
correlated with AUDIT scores (Liang et al., 2021; Piano et al., 
2015). HAD was defined as PEth levels ≥20 ng/ml (N = 299) and 
MAD was defined as PEth levels <20 ng/ml (N = 738) according 
to a previous study (Stewart et al., 2009). The average PEth level 
was 41.7 ng/ml. The AUDIT- C score was also collected for each 
participant.

Women's interagency HIV study (WIHS; N = 481)

The cohort served as a clinic-  and community- based sample to exam-
ine the effects of HIV infection and alcohol consumption on DNAm 
age (Adimora et al., 2018; Bacon et al., 2005). This study included 
HIV+ (N = 272, 90.44% virally suppressed) and HIV− (N = 209) par-
ticipants. The cohort predominantly reported light alcohol use with 
an average number of drinks per week (NDRNKWK) of 0.7. Light 
alcohol drinking (LAD) was defined as 0 < NDRNKWK ≤ 7 (N = 196), 
and non- alcohol drinking (NAD) was defined as NDRNKWK = 0 
(N = 255; Adams et al., 1996).

DNA methylation in the three cohorts

Epigenome- wide CpG methylation was profiled using either the 
Illumina HumanMethylation450 BeadChip (450K) in the MESA (mono-
cyte), YSCCS (blood), and VACS (blood; 57.2% of the sample) cohorts 
or Illumina HumanMethylation EPIC BeadChip (EPIC) in 42.8% of the 
VACS samples and the WIHS (peripheral blood mononuclear cells) 
samples. All samples in the three study cohorts (YSCCS, VACS, and 
WIHS) were processed at the Yale Center for Genomic Analysis (Zhang 
et al., 2017). We applied the method described by Houseman et al. 
(2012; Jaffe & Irizarry, 2014) to estimate the proportions of CD4+ T 
cells, CD8+ T cells, NK T cells, B cells, monocytes, and granulocytes 
in each cohort. Quality control of methylation data for each cohort is 
presented in Supplementary Information.

MonoDNAmAge clock development in the 
MESA cohort

Preselection features in the entire MESA cohort

We first performed an epigenome- wide association study (EWAS) 
on chronological age in the MESA cohort. Linear regression was ap-
plied in which DNAm β value was the dependent variable and chron-
ological age was the independent variable. The significance of EWAS 
was set at nominal p < 1.47E−07 (corresponding to Bonferroni cor-
rection p < 0.05).

We then selected the top 1000 significant CpG features from 
EWAS for feature selection. The number of 1000 was selected 

F I G U R E  1  The workflow for establishing a monocyte epigenetic clock using a feature selection method. YSCCS: Yale Stress Center 
Cohort Study; VACS: Veterans Aging Cohort Study; WIHS: Women's Interagency HIV Study; EWAS: Epigenome- Wide Association Studies; 
ENR: Elastic Net Regularization; EAA: Epigenetic Age Acceleration, the residuals of regressing DNA methylation age on chronological age; 
MDEAA: The mean difference in EAA between different groups for phenotypes of interest; AMAR: Apparent Methylation Age Rate, the ratio 
of DNA methylated age to chronological age; MDAMAR: The mean difference in AMAR between different groups for phenotypes of interest
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because it approached the sample size of 1202 in the MESA cohort. 
A sensitivity test was performed later to validate the preselection 
number of CpG sites.

To build a predictive model for estimating the monocyte 
age, samples in the MESA cohort were divided into a training set 
(N = 721) and a testing set (N = 481).

Importance ranking of CpGs in the training set

We randomly selected 80% of subjects in the training set without 
replacement 200 times and constructed a model for each replicate. 
Only the CpGs present in more than 95% of replicates was consid-
ered for inclusion in the final model and ranked based on the coeffi-
cients of all replicates. In each replicate, there are two parameters (α 
and λ) to tune in ENR using the “glmnet” R package (Friedman et al., 
2010). We performed a grid search for α values from 0 (ridge re-
gression) to 1 (lasso regression) increasing by 0.05. For each value 
of α, the 10- fold cross- validation procedure was performed to get 
the tuning parameter λ and the corresponding mean cross- validated 
error. We selected the α and λ that have the minimum mean cross- 
validated error as the estimations of ENR tuning parameters. We 
extracted the coefficients for the model with the α and λ values cor-
responding to the minimum mean cross- validated error. The CpG 

importance ranking was based on the sum of the absolute value of 
the coefficients of all replicates.

MonoDNAmAge construction using ENR in the 
testing set

Based on the importance ranking, we evaluated the performance 
of different sets of CpG sites in the testing samples by adding one 
CpG at a time. The performance was assessed using the Pearson 
correlation coefficient (Pearson's r) between predicted DNAm age 
and chronological age. The correlation coefficient was calculated for 
each set of CpG sites. We selected a set of CpG with the correlation 
coefficient at the inflection point of the performance curve as the 
best set of predictive clocks, MonoDNAmAge (Figure 2A).

Further evaluation of MonoDNAmAge performance 
in the three study cohorts

Performance of the above CpG features selected from the test-
ing set in MESA was evaluated in three independent validation 
cohorts (YSCCS, VACS, and WIHS) using the four measures: EAA, 
Mean Difference of EAA (MDEAA), Apparent Methylation Age Rate 

F I G U R E  2  MonoDNAmAge development and performance. (A) Feature selection using Elastic Net Regularization (ENR) for estimating 
MonoDNAmAge. The figure shows the Pearson correlation coefficients of predicted age and chronological age in the training and testing 
datasets from the Multi- Ethnic Study of Atherosclerosis (MESA) cohort. (B) Correlation between MonoDNAmAge and chronological age in 
three independent cohorts: YSCCS, VACS, and WIHS. (C) Trait enrichment of the selected 186 CpGs in MonoDNAmAge. (D) Overlapping 
CpG sites among four epigenetic clocks (i.e., MonoDNAmAge, HorvathDNAmAge, HannumDNAmAge, and PhenoDNAmAge)
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(AMAR), and Mean Difference of AMAR and (MDAMAR; see the sta-
tistical analysis section).

Sensitivity test for preselection CpG features

Different sets of CpGs with p- value < 1E−30, <6.15E−20, and 
<1E−10 from EWAS on chronological age were selected for feature 
selection in the training sample and model evaluation in the test-
ing sample (Figure S1). The performance of each CpG set was evalu-
ated based on the correlation coefficient between MonoDNAmAge 
predicted age and chronological age. The set of CpG with the best 
performance was determined in the final model.

Statistical analysis

Epigenetic clocks and assessments

Pearson's r between DNAm age and chronological age was esti-
mated in each cohort. EAA was defined as the residuals of regress-
ing DNAm age on chronological age (Horvath, 2013; Horvath & Raj, 
2018). We calculated the mean difference in EAA between heavy 
users and nonheavy users, between HIV+ and HIV−, and denoted 
it as MDEAA. The AMAR was defined as the ratio of DNAm age to 
chronological age (Hannum et al., 2013), an AMAR > 1 represents 
DNAm age acceleration, and an AMAR < 1 represents DNAm age 
deceleration. We also calculated the mean difference in AMAR be-
tween heavy and nonheavy users, between HIV+ and HIV−, which 
were denoted as MDAMAR.

Benchmarking the MonoDNAmAge clock using 
HIV infection

We evaluated whether MonoDNAmAge was able to predict changes 
in DNAm age for individuals with HIV infection in the two cohorts 
(VACS and WIHS) using a linear model, with EAA or AMAR as the de-
pendent variable and HIV infection as the independent variable. We 
adjusted for potential confounding factors, including adherence to 
antiretroviral therapy (ART adherence), alcohol- related phenotype, 
tobacco use, self- reported ethnicity, and body mass index (BMI) in 
the model.

Association between alcohol consumption and DNAm- 
based biological age

Instead of assuming a linear relationship between alcohol con-
sumption and epigenetic age, we examined both linear and nonlin-
ear relationships using linear and quadratic models, respectively. 
In the quadratic model, DNAmAge = �2x2 + �1x + �0, where �2 ≠ 0 
and x represents the continuous variable of each assessment for 

alcohol consumption. T- tests were used to test the regression co-
efficients obtained in both quadratic and linear regression. That is, 
for the quadratic model, we tested H0: � j = 0 versus � j ≠ 0 using t- 

test Tquadratic =
�̂ j

SE
(

�̂ j

) ∼ t(n − 3), where n is the sample size. We also 

tested the regression model H0: the regression model was not sig-
nificant versus Ha: the regression model was significant by per-
forming F test, Fmodel =

MSR

MSE
=

SSR∕2

SSE∕(n− 3)
∼ F(2, n − 3) based on 

ANOVA test, where MSR was the regression mean square and 
MSE was the error mean square, 

SSR =
∑n

i=1
n
�

̂DNAmAgei−DNAmAge
�2

 was the corrected sum of 

squares for the regression model and 

SSE =
∑n

i=1
n
�

DNAmAgei−
̂DNAmAgei

�2

 was the sum of squares 

for error.

We also examined EAA and AMAR between different groups of 
alcohol consumption in each cohort. Dichotomized alcohol assess-
ments were used to assess the different effects of heavy and light 
alcohol consumption. The model adjusted potential confounding 
factors including HIV infection, ART adherence, tobacco use, self- 
reported ethnicity, and BMI. Because the VACS cohort included 
only men and the WIHS cohort included only women, sex was ad-
justed only in the YSCCS cohort that included both men and women.

Correlation between DNAm age and cell types in 
different alcohol consumption groups

Pearson's r between DNAm- based estimates of biological age and 
the proportions of six cell types were estimated in each cohort to 
address potential confounding effects of the cell types.

RESULTS

A new monocyte- based epigenetic clock, 
MonoDNAmAge, validations, and biological 
interpretations

MonoDNAmAge was derived from the CD14+ monocyte methy-
lome in MESA (N = 1202; GSE56046; Bild et al., 2002; Reynolds 
et al., 2014). ENR selected a set of 186 age- associated CpGs as 
MonoDNAmAge (Table S1). All 186 CpGs were on the 450K array. 
The majority of the 186 CpGs were also included on the EPIC array ex-
cept nine CpGs [cg09499629 (KLF14), cg04434593 (LOC100130987; 
CLCF1), cg12422450 (CHGA), cg26062560 (C3orf21), cg26864395 
(RUNX3), cg21922223, cg16567172 (HSPB1), cg14564815 (SLC4A9), 
cg15428620 (SFXN3)], which were unique to the 450K array. The 
correlation between DNAm age and chronological age was 0.96 
(p < 2.20E−16) in the training set and was 0.86 (p = 1.55E−141) in 
the testing set (Figure 2A).

MonoDNAmAge was significantly correlated with chrono-
logical age in all three cohorts (YSCCS: r = 0.90, p = 3.12E−181; 



    |  743ALCOHOL EFFECT ON BIOLOGICAL AGING

VACS: r = 0.54, p = 1.75E−96; WIHS: r = 0.66, p = 1.50E−60; 
Figure 2B). We also estimated the correlations of four established 
clocks with chronological age and correlation between each pair 
among the five epigenetic clocks in these three cohorts. As ex-
pected, all clocks showed significant correlations with chronologi-
cal age in each cohort (YSCCS: p = 8.42E−215~4.69E−168; VACS: 
p = 6.82E−205~3.94E−135; WIHS: p = 2.25E−175~1.75E−91) and all 
clocks were highly correlated with each other (Figure S2).

These 186 CpG sites mapped to 135 genes, including well- 
established genes associated with age (e.g., KLF14), transcription 
factors (e.g., RUNX3), and inflammatory function (e.g., IL17RC). 
Interestingly, the 186 CpG sites were enriched for 25 complex traits 
with p < 5.00E−03 in the EWAS Atlas database (Li et al., 2019; 
Figure 2C). The top significant traits included aging (p = 2.57E−159), 
smoking (p = 2.39E−38), breast cancer (p = 2.71E−09), and alcohol 
consumption (p = 8.95E−05). As a comparison, we assessed the 
CpG enrichments for three established clocks (HorvathDNAmAge, 
HannumDNAmAge, and PhenoDNAmAge; Figure S3). Identifiers of 
CpG sites for GrimDNAmAge were not publicly available for compar-
ison. Consistent with the MonoDNAmAge clock, three clocks were 
enriched for multiple traits including age and smoking. However, 
only CpGs on HorvathDNAmAge were enriched in alcohol consump-
tion (p = 2.45E−03), while the other two clocks were not significant. 
Among MonoDNAmAge and three established clocks, one CpG site, 
SCGN cg06493394, was shared across the four clocks (Figure 2D). 
The 135 genes harboring the 186 CpG sites were enriched in biologi-
cal pathways relevant to aging (e.g., regulation of multicellular organ-
ismal process) by performing Database for Annotation, Visualization 
and Integrated Discovery pathway enrichment analysis (Figure S4; 
Huang et al., 2007).

We evaluated the performance of MonoDNAmAge in estimat-
ing HIV- associated epigenetic age alteration as a benchmark. A de-
tailed description of the approach is included in the Supplementary 
Information. Briefly, the EAA showed an average of a 10.14- year 
increase in HIV+participants compared to HIV− participants in the 
VACS cohort (pvacs = 1.01E−26) and a 12.17- year increase in the 
WIHS cohort (pWIHS = 3.34E−13; Table S2 and Figures S5, S6, S7). 
The results further confirm the effectiveness of MonoDNAmAge in 
estimating biological age.

Nonlinear effects of alcohol consumption on DNA 
methylation age

Instead of just assuming a linear relationship between alcohol con-
sumption and DNAm age, we first compared the linear model (re-
duced model) with the quadratic model (full model) for modeling the 
relationship between DNAm age and alcohol consumption [AUDIT 
score in the YSCCS cohort, the natural logarithm of PEth level 
(ln(PEth)) in the VACS cohort, and NDRNKWK in the WIHS cohort] 
using the Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) values (Table S3).

Both the AIC and BIC correct the maximum likelihood estimate 
by introducing a penalty term for the number of parameters in the 
model to discourage overfitting, and the penalty term is larger in 
BIC than in AIC (Vrieze, 2012). Given a set of candidate models for 
the data, the model with the lowest AIC and BIC is preferred. The 
resulting AIC and BIC showed that the quadratic model fits the 
data better than the linear model for all five clocks in the YSCCS 
cohort (ΔAIC = AIClinear − AICquadratic; ΔBIC = BIClinear − BICquadratic; 
ΔAIC = 20.39~31.99; ΔBIC = 16.17~27.77). In the VACS cohort, com-
pared to the linear model, the quadratic model had smaller AIC for all 
five clocks (ΔAIC = 2.27~9.21), smaller BIC for HannumDNAmAge 
(ΔBIC = 4.26), and PhenoDNAmAge (ΔBIC = 4.20). However, 
both the AIC and BIC of the linear model were smaller than 
the quadratic model in the WIHS cohort (ΔAIC = −1.39~−0.65; 
ΔBIC = −5.50~−4.76). Therefore, the values of AIC and BIC showed 
that the quadratic model fits the data better than the linear model 
for all five clocks in the YSCCS cohort and most clocks in the VACS 
cohort but not in the WIHS cohort. Therefore, the quadratic regres-
sion was applied to the YSCCS (Figure 3A) and VACS (Figure 3B) 
cohorts.

In the YSCCS cohort, we observed a nonlinear relationship be-
tween MonoDNAmAge and the AUDIT score (pmodel = 4.55E−08, 
px2 = 7.80E−08; Figure 3A). The other four DNAm clocks also 
showed nonlinear associations between DNAm age and the AUDIT 
score (HorvathDNAmAge: pmodel = 2.82E−07, px2 = 2.37E−07; 
HannumDNAmAge: pmodel = 5.54E−06, px2 = 2.41E−06; 
PhenoDNAmAge: pmodel = 4.08E−10, px2 = 6.27E−09; GrimDNAmAge: 
pmodel = 1.80E−07, px2 = 6.12E−08).

We then investigated the relationship between MonoDNAmAge 
and different levels of alcohol consumption by performing two 
linear regression analyses at the inflection point of the nonlinear 
distribution at the AUDIT score of 13 in the YSCCS cohort (Figure 
S8). We found that MonoDNAmAge was negatively correlated with 
alcohol consumption at an AUDIT score <13 (p = 5.36E−06) and 
positively correlated with heavy drinking at an AUDIT score >13 
(p = 3.70E−03). Each unit change in the AUDIT score <13 was asso-
ciated with a 1.20- year decrease in MonoDNAmAge in the nonHAD 
group, and every unit change in the AUDIT score >13 was associated 
with a 0.36- year increase in MonoDNAmAge in the HAD group.

We also observed a significant nonlinear relationship between 
MonoDNAmAge and the AUDIT- C score (pmodel = 2.38E−11, 
px2 = 3.56E−08) in YSCCS (Figure S9). The other four DNAm 
clocks also showed nonlinear associations between DNAm age 
and the AUDIT- C score (HorvathDNAmAge: pmodel = 7.11E−09, 
px2 = 2.53E−06; HannumDNAmAge: pmodel = 1.65E−08, 
px2 = 8.45E−07; PhenoDNAmAge: pmodel = 1.08E−13, px2 = 1.38E−08; 
GrimDNAmAge: pmodel = 1.49E−12, px2 = 7.87E−10). The nonlinear 
associations of each epigenetic clock with alcohol consumption re-
mained significant even with the conservative Bonferroni correction.

In the VACS cohort, the quadratic regression analysis also showed 
a significant association of MonoDNAmAge with alcohol con-
sumption measured by In(PEth; pmodel = 1.85E−02, px2 = 3.46E−02; 
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Figure 3B). The results from the three established clocks provided 
estimates consistent with MonoDNAmAge: HannumDNAmAge 
(pmodel = 3.74E−03, px2 = 8.32E−04), PhenoDNAmAge 
(pmodel = 4.97E−04, px2 = 8.60E−04), GrimDNAmAge 
(pmodel = 3.40E−02, px2 = 2.21E−02). Here, the inflection point for 
the curve of PEth levels was close to the PEth cut- off used for de-
fining HAD. We found that the slope below the PEth inflection point 
(nonHAD: PEth < 20, that is ln(PEth) < 2.996) was not significantly 
associated with MonoDNAmAge, while the slope above the PEth 

inflection point (HAD: PEth ≥ 20, that is In(PEth) ≥ 2.996) showed a 
significant positive association with MonoDNAmAge (p = 4.39E−02; 
Figure S8). Every unit change in In(PEth) above the inflection point 
was associated with a 1.31- year increase in DNAm age. However, 
DNAm age was not significantly associated with the AUDIT- C score 
for all five clocks (pmodel = 1.79E−01~9.01E−01) in the VACS cohort 
(Figure S9).

In the WIHS cohort, MonoDNAmAge was linearly associated 
with light alcohol consumption measured by NDRNKWK (β = −2.63, 

F I G U R E  3  Relationships between DNA methylation age (DNAmAge) and alcohol consumption. The three rows correspond to YSCCS, 
VACS, and WIHS, respectively. (A) The parabola shows the relationship between DNAmAge and the Alcohol Use Disorders Identification 
Test (AUDIT) score in the YSCCS cohort. (B) The parabola shows the relationship between DNAmAge and the natural logarithm of 
phosphatidylethanol levels (ln(PEth)) in the VACS cohort. (C) The linear regression line shows the negative relationship between DNAmAge 
and the number of drinks per week (NDRNKWK) in the WIHS cohort. (D– F) Violin plots for Epigenetic Age Acceleration (EAA; the residuals 
of regressing DNA methylation age on chronological age) for different groups of alcohol consumption in the three cohorts. The p- values 
were obtained from the linear model to test the association between EAA and continuous measure of alcohol consumption with adjusting 
the confounding variables. Bold values denote statistical significance at the p < 0.05 level. (D) Comparison of EAA between heavy alcohol 
drinking (HAD; AUDIT score ≥7 for men and AUDIT score ≥8 for women) and moderate alcohol drinking (MAD; AUDIT score <7 for men 
and AUDIT score <8 for women) in the YSCCS cohort. (E) Comparison of EAA between HAD (PEth level ≥20) and MAD (PEth level <20) 
in the VACS cohort. (F) Comparison of EAA between light alcohol drinking (LAD; 0 < NDRNKWK < 7) and non- alcohol drinking (NAD; 
NDRNKWK = 0) in the WIHS cohort
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pmodel = 2.82E−06, px = 2.82E−06; Figure 3C). A negative linear re-
lationship between DNAm age and light alcohol consumption was 
also observed with the four established clocks (HorvathDNAmAge: 
β = −1.41, pmodel = 1.33E−05, px = 1.33E−05; HannumDNAmAge: 
β = −1.38, pmodel = 4.99E−05, px = 4.99E−05; PhenoDNAmAge: 
β = −1.70, pmodel = 7.74E−05, px = 7.74E−05; GrimDNAmAge: 
β = −1.03, pmodel = 1.23E−03, px = 1.23E−03).

Alcohol consumption alters epigenetic age 
acceleration

In the YSCCS cohort, alcohol consumption was not associated with the 
EAA estimated using MonoDNAmAge or the four established clocks 
(Figure 3D; Table S4). However, the AMAR of HorvathDNAmAge, 
HannumDNAmAge, and GrimDNAmAge showed a greater DNAm 
age than chronological age and were associated with alcohol con-
sumption (β = 0.003~0.005, p = 3.31E−05~7.29E−03).

In the VACS cohort, the EAA analysis showed that alcohol con-
sumption significantly increased MonoDNAmAge by 1.60 years 
(β = 0.433, p = 7.02E−03; Figure 3E; Table S4). The EAA esti-
mated using PhenoDNAmAge also showed significant acceler-
ation (β = 0.363, p = 5.60E−03). The AMAR estimated based 
on MonoDNAmAge was associated with alcohol consumption 
(β = 0.012, p = 3.55E−04). PhenoDNAmAge showed a similar as-
sociation (β = 0.011, p = 9.16E−05). Similarly, GrimDNAmAge was 
also significantly positively correlated with alcohol consumption 
(β = 0.010, p = 4.89E−04).

In the WIHS cohort, EAA of MonoDNAmAge negatively cor-
related with alcohol consumption (β = −1.074, p = 5.61E−03, 
MDEAA = −2.656; Figure 3F; Table S4). All five clocks showed a de-
crease in DNAm age with an average MDEAA of −1.24 years. AMAR 
of MonoDNAmAge was negatively correlated with alcohol con-
sumption (MonoDNAmAge: β = −0.046, p = 2.54E−05). Similarly, 
each AMAR of HorvathDNAmAge and PhenoDNAmAge was signifi-
cantly negatively correlated with alcohol consumption.

We evaluated whether the impacts of alcohol consumption on 
epigenetic age were due to heterogeneous cell proportions. We 
found that DNAm- based age estimated using MonoDNAmAge and 
four other clocks were significantly correlated with each of the six 
cell types in all samples regardless of alcohol consumption status 
across three cohorts (r = 0.54~0.93, p = 8.42E−215~1.50E−60; 
Figure S10). We then examined the correlations for each of the 
five clocks with six estimated cell types in the HAD and MAD 
groups separately in the YSCCS and VACS cohorts, and LAD and 
NAD in the WIHS cohort. We found that the correlation patterns 
were similar between the alcohol use groups (HAD and MAD; LAD 
and NAD) across the three cohorts, suggesting the effect of cell- 
type composition on the performance of the five biological age 
estimators did not differ significantly between HAD and MAD, or 
between LAD and NAD groups. Thus, cell type proportion is not 
considered as a confounding factor for alcohol consumption status 
on epigenetic age.

DISCUSSION

Our results reveal that a set of DNAm CpG sites in monocytes pre-
dict biological age, enabling the detection of the effect of alcohol 
consumption on DNAm age validated in three distinct cohorts. The 
MonoDNAmAge clock, benchmarked against HIV infection, showed 
an approximate 10- year acceleration in HIV+ participants. More 
importantly, this novel MonoDNAmAge clock detected a nonlinear 
relationship between DNAm- based biological age and alcohol con-
sumption in both a healthy community cohort (YSCCS) and a clinic- 
based cohort (VACS) that included heavy alcohol drinkers (~33%). 
The effect of alcohol consumption on MonoDNAmAge was corrob-
orated using four established epigenetic clocks. Thus, employing a 
comprehensive approach (i.e., one novel and four established epige-
netic clocks, three independent cohorts, and differing but commonly 
employed measures of self- reported alcohol exposure, and an objec-
tive biological measure), we identified for the first time that alcohol 
consumption appears to have a complex, nonlinear relationship with 
DNAm- based estimates of biological age.

In contrast to previous studies, we examined the effect of alco-
hol consumption on epigenetic age by applying a novel cell- type- 
specific epigenetic clock related to the biological mechanism of 
alcohol consumption in the present study. The monocyte methy-
lome plays an important role in epigenetic aging. Recently, differen-
tially methylated regions in CD14+ monocytes between young (24 to 
30 years) and older (57 to 70 years) individuals have been reported 
(Shchukina et al., 2021). These age- associated CpG sites or DNAm 
regions are related to transcriptomic changes with aging (Shchukina 
et al., 2021). Therefore, a CD14+ monocyte epigenetic clock may 
provide a more precise measure of biological age. Genes that com-
pose the MonoDNAmAge clock have functional implications for the 
aging process in monocyte- related phenotypes, such as HIV infec-
tion and alcohol consumption. Our results highlight the importance 
of developing phenotype- relevant cell/tissue- specific epigenetic 
clocks that enable the prediction of organ or tissue functions and 
disease comorbidities.

Indeed, the 186 MonoDNAmAge CpG sites are enriched in in-
dividuals with alcohol consumption and other related traits (e.g., 
smoking and cancer). Interestingly, although MonoDNAmAge and 
the established epigenetic clocks are composed of different sets of 
CpGs with the exception of one site (cg06493394 on SCGN), these 
clocks showed reasonably consistent but not identical performance 
in estimating the effect of alcohol on epigenetic age. We speculate 
that each epigenetic clock estimates different but related facets of 
biological aging, inferred in part by the overlapping traits that show 
enrichment for the CpG sites that comprise each DNAm- based epi-
genetic clock.

The nonlinear association between alcohol consumption and 
biological age is intriguing. Both the beneficial and the harmful ef-
fects of alcohol consumption have been documented extensively in 
the literature (Bagnardi et al., 2013; Chiva- Blanch & Badimon, 2019; 
Costanzo et al., 2010; Di Castelnuovo et al., 2006; Collaborators 
GBDA, 2018). While one epidemiological study has shown that any 
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amount of alcohol is harmful to health (Collaborators GBDA, 2018), 
some studies have shown that alcohol consumption has a U- shaped 
relationship with biomarkers, including HDL, LDL, VLDL, and in-
flammation (Du et al., 2020; Wurtz et al., 2016), underscoring the 
bidirectional effects on cardiovascular and metabolic disease risks. 
Consistent with this evidence, we observed a nonlinear association 
between alcohol consumption and biological age in the two cohorts, 
YSCCS and VACS, in which the numbers of heavy and nonheavy al-
cohol consumers were relatively balanced. In the WIHS cohort, the 
predominance of nondrinkers to light drinkers may explain why a 
negative association with biological aging was similarly observed; 
insufficient observations were available to test the relationship be-
tween alcohol consumption of heavy drinkers and biological aging. 
The results of EAA showed that heavy consumption measured by 
PEth increased the epigenetic age by 1.60 years, consistent with 
a previous report of a 2- year acceleration in individuals with AUD 
(Luo et al., 2020). On the other hand, EAAs were inversely associ-
ated with light to moderate alcohol consumption. Our results further 
support the previously reported nonlinear relationship between epi-
genetic age and alcohol consumption (Beach et al., 2015) and pro-
vide additional insights on alcohol effects on monocyte- specific age.

It is noted that our results indicate the impacts of alcohol con-
sumption on monocyte function and to some extent on peripheral 
immune function. We speculate that the nonlinear relationship be-
tween alcohol consumption and monocyte age is not contradictory 
to epidemiological studies. A possible explanation for the observed 
nonlinear relationship is that individuals with light to moderate al-
cohol use are more likely to follow a healthier lifestyle compared 
to heavy alcohol use. For example, in the YSCCS and VACS co-
horts, individuals not reporting HAD showed a lower smoking rate 
and cannabis use than those with HAD, suggesting that a healthy 
lifestyle may slow or potentially even reverse the epigenetic aging 
process due to alcohol consumption. Another possibility is under-
reported alcohol consumption among participants. For example, 
in the VACS cohort, 17.02% of participants reported an AUDIT- C 
score of 0, but the PEth level among those participants was greater 
than 8 ng/ml (Figure S11), which indicates active alcohol use 
(Eyawo et al., 2018). Inaccurate self- reported alcohol consumption 
may result in biased findings of the slow acceleration of biologi-
cal age in light- to- moderate drinkers. On the other hand, AUDIT 
and AUDIT- C assess drinking over the past year whereas PEth is a 
phospholipid formed in the presence of alcohol that is detectable 
in blood up to 3 weeks after sustained alcohol intake (Bakhireva & 
Savage, 2011; Eyawo et al., 2018). These obstacles require further 
investigation with accurately assessed phenotypes or in longitu-
dinal cohorts. Although the overall harm of alcohol consumption 
outweighs the benefit, causality has remained elusive (Chiva- 
Blanch & Badimon, 2019).

We acknowledge some limitations of this study. A recent study 
suggests that the accuracy of DNAm- based epigenetic clock esti-
mation is affected by sample size (Zhang et al., 2019). Validation of 
the MonoDNAmAge clock in a large independent sample is war-
ranted. DNAm in the three cohorts was measured in DNAm from 

whole blood. We expect that DNAm derived solely from monocytes 
may be a more accurate predictor of the effect of alcohol consump-
tion. We are unable to examine DNAm age in past alcohol users, 
individuals with different patterns of alcohol consumption, or indi-
viduals presenting comorbidity with other substance or drug use. It 
is worth mentioning that DNAm patterns for a particular cell type 
are inherited through successive cell cycles and extended through 
a specific lineage (Kim & Costello, 2017). A future study using the 
within- family design is warranted to address the heritable effects 
that might be a confounding factor to assess alcohol consumption 
on epigenetic age. Furthermore, differences in the effects of alcohol 
use between women and men are well documented, but the study 
lacked sufficient power to evaluate sex differences in the effect of 
alcohol exposure on biological aging.

CONCLUSION

We found that alcohol use affects epigenetic aging in a nonlinear 
manner, with heavy consumption increasing and nonheavy use de-
creasing epigenetic age. The use of cell- type- specific epigenetic 
clocks that are known to be directly affected by alcohol exposure 
may provide more precise information than that provided by more 
holistic epigenetic clocks that estimate more global effects on bio-
logical aging. Considering adverse effects of alcohol consumption 
on health, findings should be interpreted with caution. Our study 
expands previous knowledge and provides new insights into the ef-
fect of a spectrum of alcohol use on epigenetic aging.
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