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Current models of mental effort in psychology, behavioral eco-
nomics, and cognitive neuroscience typically suggest that exerting
cognitive effort is aversive, and people avoid it whenever possible.
The aim of this research was to challenge this view and show that
people can learn to value and seek effort intrinsically. Our experi-
ments tested the hypothesis that effort-contingent reward in a
working-memory task will induce a preference for more demand-
ing math tasks in a transfer phase, even though participants were
aware that they would no longer receive any reward for task per-
formance. In laboratory Experiment 1 (n = 121), we made reward
directly contingent on mobilized cognitive effort as assessed via
cardiovascular measures (β-adrenergic sympathetic activity) during
the training task. Experiments 2a to 2e (n = 1,457) were conducted
online to examine whether the effects of effort-contingent reward
on subsequent demand seeking replicate and generalize to
community samples. Taken together, the studies yielded reliable
evidence that effort-contingent reward increased participants’
demand seeking and preference for the exertion of cognitive
effort on the transfer task. Our findings provide evidence that
people can learn to assign positive value to mental effort. The
results challenge currently dominant theories of mental effort and
provide evidence and an explanation for the positive effects of
environments appreciating effort and individual growth on peo-
ple’s evaluation of effort and their willingness to mobilize effort
and approach challenging tasks.

mental effort j cognitive control j value of control j learned
industriousness j achievement motivation

The pursuit of many of our most important goals in daily life
requires the persistent recruitment of cognitive effort. This

holds in particular when automatic routine behaviors do not
suffice to achieve a goal or when novel and unpracticed tasks
must be completed, which require planning, problem solving,
or self-control. Likewise, most extraordinary human skills like
reading, writing, mastering an instrument, playing tennis, mak-
ing medical diagnoses, or solving differential equations are the
result of thousands of hours of deliberate practice and contin-
ued high-effort exertion (1). The societal relevance of cognitive
effort becomes particularly obvious when considering that,
according to the World Economic Forum Future of Jobs
Report 2020, over the next few years, the fourth Industrial Rev-
olution will radically change the skills required in most indus-
tries, with complex problem solving, creativity, and critical
thinking as well as self-management and active learning being
top competencies needed in the workplace of the future.

While cognitive effort is and will continue to be extremely use-
ful, most current models of cognitive control in psychology, cogni-
tive neurosciences, and behavioral economics describe the exertion
of effort as generally aversive and as something people strive to
avoid whenever possible (2–5). For example, Kool and colleagues
(3) demonstrated that when faced with the choice between two
tasks of varying cognitive demands, participants clearly preferred
the less demanding task (see also refs. 6 and 7). These findings
have been interpreted as strong support for the assumption that
cognitive effort incurs intrinsic cost and that humans generally aim
to minimize cognitive effort investment (2).

In stark contrast to the view that effort is generally aversive,
there are situations in daily life in which people appear to freely
choose to exert effort, even without any obvious external
reward. For example, individuals may enjoy completing the
daily newspaper crossword puzzles every morning, students are
often motivated by challenging intellectual problems, and ama-
teur pianists may spend hours striving for perfection in the
absence of any obvious extrinsic reward. Recently, some scien-
tists have started to call into question that effort is always aver-
sive and argued instead that cognitive effort can at least under
certain circumstances be experienced as intrinsically rewarding
and valuable (8).

However, to date, there has been surprisingly little empirical
research to test the assumption that cognitive effort can be
intrinsically rewarding. Indirect evidence for the effects of
effort on the processing of reward stems from recent neuroim-
aging studies showing that extrinsic rewards elicit stronger
activation in reward-related brain regions including the ventral
striatum after the exertion of high compared to low effort (9).
However, while this result shows that high effort may increase
the value of external reward for completing a task, it does not
address the question whether effort as such can be or become
intrinsically rewarding.

In the present research, we draw on traditional learning the-
ories, which suggest that specific behavior may acquire intrinsic
value and become a so-called secondary reinforcer if it is
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repeatedly paired with reward (10). Numerous studies on rein-
forcement learning and chaining, with intermitted reinforce-
ment plans, demonstrated that animals acquire all kinds of
behavior that persists even after the reward has been removed
(11, 12). Theoretically, it could thus be possible to promote the
intrinsic motivation for effort exertion itself by experiences of
effort-contingent extrinsic reward.

Note that when we propose that effort-contingent reward via
mechanisms of associative learning enhances the intrinsic value
of effort, this does not imply that such an effect would be visi-
ble as enhanced intrinsic task motivation. People might not be
willing to continue working on a previously incentivized task with-
out extrinsic reward. A large body of research documents that via
mechanisms of cognitive evaluation (i.e., overjustification), intrin-
sic task motivation may be undermined by extrinsic rewards (13,
14). Thus, to observe effects on intrinsic value of effort, it is cru-
cial to assess effort seeking on a different transfer task.

Quite surprisingly, there is little research which directly
tested the hypothesis that people can learn to value effort
through effort-contingent reinforcement. Notable exceptions
are a few studies on the so-called learned industriousness effect
(15–17). Mostly focusing on animals (physical tasks) or children
in field settings (cognitive tasks), these studies yielded sugges-
tive evidence for an increase in effort-seeking tendencies on a
novel task in the same performance realm, depending on the
effort required to achieve a fixed reward on a preceding task.
These results are consistent with classical theories of achieve-
ment motivation, which also proposed that positive learning
experiences with demanding tasks early during ontogenesis may
contribute to stable interindividual differences in the motiva-
tion to engage in challenging activities (18). However, evidence
from the achievement motivation literature on the development
of motivation to mobilize cognitive effort is sparse and exclu-
sively correlational (19). Overall, there is a lack of well-
controlled experimental studies with humans investigating the
learning mechanisms that can induce an individual to seek
effort without a prospect of extrinsic reward.

The Present Experiments. The aim of this research is to challenge
the predominant view that people generally avoid effort and to
test the hypothesis that individuals can learn to seek effort
intrinsically. Importantly, we attempt to show that cognitive
effort is not merely approached when it leads to higher extrinsic
(e.g., monetary) reward, but our key hypothesis is that people
can become motivated to exert effort itself even if there is no
prospect of further extrinsic reward. More specifically, we pro-
pose that one can increase the intrinsic value of effort with a
learning phase during which participants receive reward that is
made contingent on the degree of exerted effort. We approached
this research question from two distinct perspectives.

First, a laboratory experiment utilized cardiovascular (CV)
measures to directly incentivize mobilized effort on a working-
memory task as indicated by β-adrenergic sympathetic activity
(20). Empirical support for this measurement of effort mobili-
zation on cognitive tasks has substantial support from well over
100 experiments utilizing diverse protocols and participant pop-
ulations (for reviews, see ref. 21). Second, we conducted a
series of online studies in which effort during the learning
phase was operationalized via varying task demands on the
same working-memory task used previously. In both studies,
effort seeking was operationalized as demand selection on a
follow-up math task with varying task demands.

Taken together, this pair of studies allowed us to test the
hypothesis in situations in which either experimental control or
generalizability were high, providing us with a more complete
picture of the phenomenon. All studies were designed to con-
trol for interindividual differences in math ability, the subjective
value of performing well on a demanding task, and social

desirability to choose a demanding task in an experimental set-
ting. Most importantly, in the test phase in which participants
were free to choose tasks requiring different degrees of cogni-
tive effort, we eliminated any extrinsic incentives which other-
wise could have motivated the choice of higher task demands.
This constitutes a set of studies that directly tested the hypothe-
sis that rewarding individuals for recruiting effort can render
the exertion of mental effort intrinsically valuable.

Experiment 1
In Experiment 1 (n = 121), as an objective indicator of cogni-
tive effort mobilization, we assessed the CV response of
β-adrenergic sympathetic activity through the force of contrac-
tions in the left ventricle (22) along with blood pressure and
heart rate responses. We operationalized heart contraction
force (contractility) in terms of heart pre-ejection period (PEP)
(22). PEP is the time interval between the onset of ventricular
depolarization (i.e., beginning of electrical stimulation to the
left ventricle) and cardiac ejection of blood from the heart (i.e.,
the opening of the aortic valve).

During the learning phase (15 min), participants were pre-
sented a series of working-memory tasks (N-back) varying in
task difficulty (1-, 2-, or 3-back, 5 blocks each). After each
block, participants received a monetary reward ranging from 1
to 60 cent (CT). In the experimental group, unbeknownst to
the participants, rewards were made contingent on participants’
effort mobilization as inferred from their PEP reactivity
(changes compared to the baseline). In the control group,
rewards were selected randomly. In both groups, rewards were
granted independently of participants’ performance provided
that they passed the low threshold of 50% accuracy. This
threshold was met on virtually all (99.89%) blocks, suggesting
that all participants were generally engaged in the task (see SI
Appendix, Learning Phase for a manipulation check and
detailed analyses of reward allocation).

In the second phase of the experiment, participants com-
pleted the math effort task (MET) (23). They could choose the
level of difficulty for blocks of mathematical problems from a
continuum of five difficulty levels. Importantly, participants
were informed that they would no longer be rewarded and that
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Fig. 1. Average task difficulty choice during the MET for participants in
either the contingent reward or control groups. Error bars indicate SEs.
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they would receive no indication of their performance during
this second task. Finally, we obtained self-report measures of
demand seeking as indicated by the hope of success dimension
of achievement motivation (AMS-R) (24) (e.g., “I enjoy situa-
tions in which I can make use of my abilities.”) and assessed
their math self-concept (25) (e.g., “I feel that I am naturally
good at math.”)

Main Analyses. The data and analyses scripts are available at
https://osf.io/8pcex/. A one-way ANCOVA was conducted to
determine the influence of experimental group on difficulty
choice. Math self-concept was included as a covariate to control
for participants’ preexisting differences in valuation of math.
The analysis yielded a significant main effect of group, F(1, 118)
= 4.88, P = 0.029, η2 = 0.033 (Fig. 1). As predicted, participants
in the effort-contingent reward group selected higher difficulty
levels in the MET (M = 3.10, SD = 0.74) as compared to partici-
pants in the control group (M = 2.87, SD = 0.58).*

Exploratory Analyses.
Difficulty choice across time. A growth curve model was esti-
mated (Table 1) to predict difficulty choice by time and group.
To make the coefficients more interpretable, time was rescaled
as the proportion of trials completed. On a visual inspection of
the pattern of difficulty choice over time (inverted U shape),
there was a clear need to include a quadratic term for time
(Fig. 2). We found that group had a significant main effect,
with those in the control group selecting lower difficulty levels.
This was supported by a nonsignificant interaction between
group and trial with the 95% CI not excluding zero, providing
an indication that the group effect was stable across time.
Predicting difficulty choice with effort mobilization. Next, we
tested whether exerted effort on the N-back task would corre-
late with difficulty choice differently in the two groups. If rela-
tive PEP reactivity (within each level of difficulty) during the
N-back task correlated with difficulty choice on the MET in the
experimental group but not in the control group, this would
provide further evidence for our assumption that incentivizing
effort exertion and not merely working on a difficult task
enhanced participants effort motivation. In order to obtain a
measure of relative PEP reactivity, we first residualized the
average PEP scores obtained during each N-back block by pre-
dicting them with the associated difficulty of said block. We
then averaged these residualized scores for each participant
and used the average score to predict difficulty choice. In
the experimental group, this residualized PEP score was signifi-
cantly correlated with demand selection in the math effort task

in the expected direction (r = �0.262, P = 0.038). Higher men-
tal effort, as indicated by lower PEP values, was associated with
a tendency to select more demanding tasks. In the control
group, PEP and demand selection in the MET were not corre-
lated (r = �0.001, P = 0.994). The interaction between group and
relative N-back effort was not significant (F(1, 117) = 1.78, P =
0.19), which might be due to the lack of power for moderation
analyses (26).
Group differences in effort and performance. We conducted
hierarchical models to test for group differences in effort and
MET performance across single MET blocks controlling for
block difficulty (see SI Appendix, Subsequent Performance Task
for detailed analyses). None of the analyses found a difference
between the two experimental groups, neither for PEP reactivity,
B = 1.49, SE = 1.37, t = 1.09, P = 0.28, nor for accuracy, B =
�0.036, SE = 0.18, z = �0.20, P = 0.84.
Relationship between task difficulty, effort, and performance.
We further carried out multilevel analyses to explore the
nature of the relationship between task difficulty, mobilized
effort, and performance in the N-back task. The results show
that the level of difficulty was a predictor of effort mobiliza-
tion, F(2, 1,591) = 6.41, P = 0.0017, ηp

2 = 0.008, as well as for
performance, F(2,1,678) = 492.07, P < 0.001, ηp

2 = 0.37. Not
surprisingly, higher difficulty levels were associated with
greater effort mobilization and lower performance. Effort, how-
ever, was not predictive of performance F(1, 263) = 0.004, P =
0.95, ηp

2 = 0.00002.†

Achievement motivation. An exploratory analysis of self-
reported achievement motivation revealed a significant differ-
ence between experimental groups after controlling for math
self-concept, F(1, 118) = 11.68, P < 0.001, η2 = 0.062. Partici-
pants in the effort-contingent reward group reported slightly
higher achievement motivation (M = 3.18, SD = 0.56) than
their control counterparts (M = 2.90, SD = 0.60).

In sum, Experiment 1 provides first evidence for our intrin-
sic value of effort hypothesis in a controlled laboratory setting.
When participants received rewards contingent on physiologi-
cal indicators of cognitive effort mobilization, they subse-
quently showed a higher preference for more demanding tasks
than participants in the control group did, even though they
were aware that they would no longer receive any extrinsic
rewards.
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Fig. 2. Average task difficulty choice throughout the MET for participants
in either the contingent reward group or the control group in Experiment 1.

Table 1. Coefficients of group in quadratic hierarchical linear
model predicting difficulty choice across trials on the MET in
Experiment 1

Variable B SE T p 95% CI

Intercept 1.50 0.23 6.53 <0.0001 [1.05, 1.95]
Math self-concept 0.06 0.01 5.22 <0.0001 [0.04, 0.09]
Group -0.40 0.13 -2.93 0.004 [-0.66, -0.13]
Time 2.28 0.23 10.01 <0.0001 [1.83, 2.72]
Time2 -1.92 0.19 -9.89 <0.0001 [-2.30, -1.54]
Group:Time 0.26 0.33 0.78 0.44 [-0.39, 0.90]
Group:Time2 0.06 0.28 0.22 0.82 [-0.49, 0.61]

Group: 0 = experimental condition, 1 = control condition. Time =
number of trials completed/total number of trials. Variables with 95% CI
excluding zero shown in bold.

*Without controlling for math self-concept, the main effect for group was marginally
significant, F(1, 119) = 3.76, P = 0.055.

†While a similar analysis would theoretically make sense during the MET, the much more
rapid switching between difficulty levels and the slight delay in PEP reactivity to
changes in task difficulty make the results harder to interpret. However, as in the N-
back task, we did find that PEP was unrelated to performance, F(1, 201) = 0.17, P =
0.69, ηp

2 = 0.0008.
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Experiments 2a to 2e
While Experiment 1 allowed us to obtain objective (physiologi-
cal) measures of effort investment, the aim of Experiments 2a
to 2e was to enhance generalizability and demonstrate repli-
cability of our findings. To this end, we adapted our effort-
contingent reward paradigm for an online study and recruited
multiple community samples (Experiments 2a to 2e, all studies
that we conducted with this paradigm) on Amazon Mechanical
Turk. Experiments 2b to 2e were preregistered on aspredicted.
org (https://aspredicted.org/WXA_MZE, https://aspredicted.
org/M21_MGH, https://aspredicted.org/HXG_YQ4, and https://
aspredicted.org/TTE_URQ).

The learning phase of Experiment 2 was identical to that
employed in Experiment 1, with the exception that in the exper-
imental group, reward was contingent solely on the difficulty of
the task in a given block since the online format precluded the
measurement of cardiovascular responses. The 50% accuracy
threshold in the N-back task was met in more than 93% of
blocks over all five studies. The MET was also identical to
Experiment 1 and was followed by the math self-concept scale
(25) in addition to other questionnaires which were added for
exploratory reasons and varied across samples (see SI Appendix
for details).

Main Analyses. A one-way ANCOVA was conducted to deter-
mine the influence of group on difficulty choice following the
preregistered analysis plan. Math self-concept was again
included as a covariate. The first four smaller samples (n = 228,
255, 241, 233) yielded mixed results, with a marginally signifi-
cant main effect for experimental group in Experiment 2a, F(1,
225) = 3.04, P = 0.083, ηp

2 = 0.013, a nonsignificant effect for
group in Experiment 2b, F(1, 252) = 0.10, P = 0.75, ηp

2 =
0.0004, a significant main effect for group in Experiment 2c,
F(1, 238) = 5.02, P = 0.026, ηp

2 = 0.021, and a nonsignificant
effect for group in Experiment 2d, F(1, 230) = 2.67, P = 0.10,
ηp

2 = 0.011. Experiment 2e was conducted with a larger sample
(n = 500) and yielded a highly significant main effect for group,
F(1, 497) = 10.25, P = 0.001, ηp

2= 0.020.
A meta-analysis that was conducted across all five samples

on the group difference in difficulty choice, controlling for
math self-concept, yielded a significant difference, d = 0.22,
95% CI [0.12, 0.33], z = 4.24, P < 0.0001 (Fig. 3), indicating
that the experimental group selected more difficult levels com-
pared to the control group.

Exploratory Analyses.
Difficulty choice across time.As in Experiment 1, a growth curve
model was estimated to predict difficulty choice by time and
group. Each of Experiments 2a to 2e indicated a significant
negative quadratic term for time. A meta-analysis on the group
by quadratic time interaction term revealed a negative co-
efficient, d = �0.24, 95% CI = [�0.40 to �0.08], z = �2.93,

P = 0.0034, suggesting a stronger quadratic function for the
control group compared to the experimental group (Fig. 4).
MET performance. A logistic hierarchical linear model with ran-
dom slopes and intercepts was used to analyze accuracy on the
MET, with math trials nested within participant. Experimental
group was the Level 2 predictor, and difficulty level was the
Level 1 control variable. In all Experiments 2a to 2e, the
expected main effects of difficulty level were present, with accu-
racy decreasing as difficulty level increases. The main effect of
group was subjected to a meta-analysis for Experiments 2a to
2e and produced a nonsignificant effect, B = 0.003, 95% CI
[�0.19, 0.20], z = 0.03, P = 0.97 (see SI Appendix for detailed
analyses), demonstrating that participants in both experimental
and control conditions performed equally well on the MET
accounting for difficulty level.
Achievement motivation. Experiments 2d and 2e included
measures of achievement motivation for purposes of exploratory
analysis; both experiments showed that there was no significant
difference between groups controlling for math self-concept, P >
0.53, η2 < 0.0013.

In sum, following a preregistered procedure and analysis
plan in a large community sample, Experiment 2 provides fur-
ther evidence for the assumption that rewarding effort as indi-
cated by task difficulty can enhance effort seeking.

Discussion
The two studies presented here provide experimental evidence
that rewarding participants for the exertion of cognitive effort
enhances their motivation to engage in demanding tasks.
Importantly, participants in the experimental group did select
more demanding novel transfer tasks without any prospect of
gaining further extrinsic rewards for their performance in these
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Fig. 3. Meta-analysis of difference between mean difficulty choice residualized by math self-concept in Studies 2a to 2e (positive value indicates higher
difficulty choice in experimental condition).
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Fig. 4. Average task difficulty choice throughout the MET aggregated
across Studies 2a to 2e.
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tasks. Despite the very short training phase, the effect was sta-
ble and persisted throughout the transfer task and, if anything,
in the online studies became even more pronounced over time.
These results suggest that the manipulation increased the
intrinsic value of cognitive effort itself as indicated by the fact
that it enhanced participants’ tendency to seek effortful tasks
even in the absence of any extrinsic reward. The findings are
consistent with our assumption derived from learning theory
that effort can gain the quality of a secondary reinforcer and
become gradually intrinsically rewarding when it frequently
leads to extrinsic reward (15).

As in previous research discussing the intrinsic cost of effort
(3), we also used demand selection as the primary outcome mea-
sure. This approach does not allow to draw conclusions as to how
people subjectively experience the exertion of effort, that is,
whether they experience it as pleasurable or aversive. The subjec-
tive quality of intrinsic value or cost of effort, respectively, has yet
to be elucidated. It is possible that effort-contingent reward will
lead to more pleasure and hedonic experiences during the exer-
tion of effort as indicated by self-report or facial expressions
(corresponding to enhanced “liking” according to ref. 27). How-
ever, it is also possible that the frequent experience of effort-
contingent reward sensitizes the individual to perceiving effort as
a cue that (implicitly) signals the prospect of reward. It may thus
energize effortful behavior because of a generalized reward antic-
ipation (“wanting” in terms of ref. 27), even without the individ-
ual necessarily experiencing effort as subjectively pleasurable.
While the present data do not allow to distinguish between these
two possibilities, they clearly show that effort can acquire an
intrinsic value in the sense that participants choose more effortful
tasks even being fully aware of the absence of extrinsic reward.

Our experimental design allowed us to exclude several
potential alternative explanations. First, controlling for math
self-concept allowed us to control for any preexisting math-
related preferences. Second, we can exclude that participants in
the effort-contingent reward group only showed a pseudo pref-
erence for effort exertion by selecting more difficult tasks with-
out actually investing cognitive effort when completing them.
As indicated by the performance results in both experiments
and the PEP reactivity results in Experiment 1, participants in
the experimental groups not only chose more difficult tasks but
performed as well as their control counterparts on these tasks
and mobilized equally high levels of effort to complete them.

One might expect that a higher intrinsic value of effort
should also be reflected in better performance in the experi-
mental compared to the control group. However, when inter-
preting performance on the math effort task, it is important to
take into consideration that participants in the experimental
group selected on average more difficult tasks. Due to a ran-
dom assignment of participants to the experimental groups and
null findings concerning group differences in math self-concept,
we can exclude systematic differences in math ability between
groups. Thus, if participants in the experimental group had
invested the same amount of effort as the control group while
at the same time selecting on average more difficult tasks, they
should have shown lower average performance compared to
the control group (because of the higher average task diffi-
culty). However, multilevel analyses controlling for difficulty
level in predicting accuracy on each trial revealed no reliable
performance differences between the experimental and the
control groups. This constitutes converging evidence that par-
ticipants in the experimental group actually exerted more effort
to achieve the same performance level despite the higher
demands they had set themselves in the MET.

The pattern of present findings is fully consistent with our
intrinsic value of effort hypothesis. Nevertheless, we should
note that we cannot completely exclude the possibility that par-
ticipants may have learned to associate reward with demanding

task contexts rather than effort per se. To sustain this alterna-
tive interpretation, one would have to explain, however, why an
association between task demand and reward still exerts a bias-
ing influence on demand selection in the transfer task, even
though participants are fully aware that they will no longer
receive an extrinsic reward. One possible explanation could be
that the association between task demand and reward gained a
habit-like quality and biased choice behavior toward more
demanding tasks irrespective of participants’ lack of a conscious
reward expectancy. While it appears unlikely that the brief
reward manipulation in our experiments was sufficient to lead
to the formation of a habit-like choice bias, we cannot fully
exclude the possibility of a perseverating short-term bias effect
of an association between task demand and reward.

We observed the predicted effect of effort-contingent reward
after a brief learning phase of 12 min only. In real life, effort-
rewarding socialization practices occur over years of learning to
promote the development of a strong and generalized intrinsic
motivation to seek demanding tasks. Such a generalized intrin-
sic motivation to seek effort has been investigated as a person-
ality characteristic called achievement motive (or hope of
success). It predicts task choice and engagement on demanding
tasks (18, 19, 28). The present research investigates experimen-
tally the concrete learning mechanisms involved in the develop-
ment of individual differences in the achievement motive.
For explorative reasons, we included self-reported achievement
motivation in our analyses and obtained some evidence that
even a brief experience with effort-contingent reward in a
laboratory setting (Experiment 1) might transiently increase
people’s self-reported achievement motivation. However, since
the effect did not replicate in the online experiments, a stable
change of peoples’ achievement motive likely requires a more
extensive learning phase.

Our results have implications both for theories of motivation
and effort as well as for a range of applied domains. Currently,
the most elaborate computational framework specifying when
effort is recruited and how it is allocated is the expected value
of control theory (4). According to this theory, the mobilization
of effort depends on the expected value of control, which is a
function of the expected payoff of completing a task, the
amount of control that must be invested to achieve this payoff,
and the intrinsic cost of effortful control. While we agree with
this general idea, our present findings indicate the need to
expand this theory by including not only a parameter for an
intrinsic cost of effort but also for individual differences in the
intrinsic value of effort.

If effort-contingent rewards boost intrinsic effort motivation,
why then do people often avoid effort and appear to include it
as a cost factor in their task choices (2, 3, 5)? Our results would
stand in conflict with these findings only if effort in daily life
would always lead to reward (as in our experimental group).
Even though people may intuitively believe that effort in daily
life is typically rewarded and idleness punished, research on
effort–performance relationships suggests that this is not gener-
ally the case. While investing more effort as compared to disen-
gagement does in fact often improve performance in a given
task (e.g., learning for an examination) (29), it is also true that
tasks requiring high effort (due to their higher difficulty)
involve a greater risk of failure as compared to easier tasks and
thus often lead to lower reward (28, 30). Our exploratory analy-
ses of the relation between difficulty, effort, and performance
on the N-back task confirm this rationale by showing that task
difficulty was positively related to effort and negatively related
to performance. If in everyday life, reward is based primarily
on success, people will learn that high effort signals that a task
involves a high likelihood of failure. Consequently, effort
becomes a secondary punisher promoting effort avoidance.
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In most educational and work environments, grades and
bonuses are granted for task success and not merely for the
exertion of effort per se. This might explain previous findings
documenting general tendencies of effort avoidance (2, 3).
However, incentive cultures, for example, in educational or
occupational settings, that focus more on intraindividual
improvement and growth and less on brilliant outcomes may
harness the here-described learning mechanism and promote
intrinsic effort motivation [e.g., Montessori schools (31) and
growth mindset cultures (32)].

Taken together, the present studies provide consistent evi-
dence that even after a short period of experiencing effort-
contingent reward, people begin to value effort positively and
choose to engage in tasks requiring high-effort exertion in the
absence of any extrinsic reward. This calls into question the
prominent view of effort exertion as generally costly, which
dominates current theories of decision-making and cognitive
control in neuroscience and economics (2–4). Humans might
not have an inherent tendency to follow the path of least effort.
Their inclinations to avoid demanding tasks might be a product
of their individual learning histories and the social context
rather than a universal law that dooms all ambitious striving to
be painful and agonizing.

Methods
All experiments were approved by the Technical University of Dresden ethics
committee (EK573122019). All participants provided informed consent before
viewing any studymaterials.

Experiment 1.
Participants. A total of 129 students from a German university participated
for course credit or e12. Eight participants from the sample of 129 were
excluded due to reasons determined through debriefing. Seven of these par-
ticipants reported a belief that the experimenter could watch their perfor-
mance on the MET. One further participant was excluded for thinking that
participants would receive a monetary incentive for their performance on the
MET. The final sample comprised 121 participants (37 males, 82 females, and

two participants who did not provide gender information;Mage = 23.82, SD =
6.42). Participants were divided randomly into either the experimental group
(n = 63) or control group (n = 58) by a computer program.
Cardiovascular measurement. We noninvasively measured impedance car-
diogram and electrocardiogram signals with a Cardioscreen 1000 system
(Medis) to assess heart rate (HR) and PEP. B-point location was estimated
based on the interval between the R peak of the electrocardiogram and the Z
peak of the impedance cardiography dZ/dt waveform of valid heartbeat cycles
(33). PEP (in milliseconds) was determined as the interval between R onset and
B point (34). This is generally accepted as the gold standard for measuring
beta-adrenergic activation due to the lack of influence from changes in para-
sympathetic activity or vascular resistance, as is the case in other common
beta-adrenergic activation measures (e.g., systolic blood pressure and HR).

HR was determined on the basis of interbeat intervals assessed with the
Cardioscreen system. Additionally, systolic blood pressure (SBP), diastolic
blood pressure, mean arterial pressure, and HR were oscillometrically assessed
with a Dinamap Carescape V100monitor (GE Healthcare).
Materials and procedure. Participants were seated at a desk containing a
computer monitor and mouse, two consent forms, and a baseline mood
checklist. Following the outbreak of the Coronavirus, a third information
form concerning health and safety was presented to participants in addition
to the other forms. Participants were asked to read over and complete the
forms. The checklist consisted of items from the Multidimensional Mood State
Questionnaire (Mehrdimensionaler Befindlichkeitsfragebogen; MDBF).
Responses were made on five-point scales containing endpoints of 0 (not at
all) and 10 (very).

When participants finished, the experimenter returned and placed electro-
des and the arm cuff on the participant for CV assessments. The experimenter
then explained that the protocol included an initial baseline period. During
the baseline period, participants were to sit and listen to a predetermined
playlist on YouTube selected for its affectively neutral content. After deliver-
ing baseline instructions, the experimenter returned to the control room,
started a stopwatch, and made baseline CV assessments. Experimenters
recorded CV response continuously during the 10-min period, taking as base-
line for each CV parameter the mean of values obtained in the final 2 min.

Once the baseline period was over, the experimenter informed the partici-
pant that they would complete two tasks presented to them on the computer.
The experimenter stressed that the two tasks would be completed in isolation
with the experimenter unable to see their screen or responses to either task.
In actuality, the experimenter was able to see an exact mirror of the

2000 ms (blank screen)

500 ms (stimulus)

2000 ms (blank screen)

500 ms (stimulus)

500 ms (stimulus)

In this test do a: 1-back

T

K

K

End of block 

…

In this block you have 
won: 5 cents

x (15 + N) trials

Fig. 5. Protocol for one N-back block. Each block consisted of 15+ N letters. CV values were recorded during the entirety of the block.
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participant’s screen in the experimental chamber. This piece of deception was
included to allow the experimenter to reward the participants based on their
effort mobilization, while also controlling for the influence of social desirabil-
ity on the participant’s effort exertion. The experimenter returned to the
experimental chamber and noted to which group the program had randomly
assigned the participant. From this moment on, no interaction between exper-
imenter and participant occurred until debriefing. The program began with
the N-back task. Participants first practiced one block at each level of diffi-
culty, receiving feedback on their performance following each block. Finally,
they were given the option to repeat the practice if they wished.

Participants then began the actual task, and the experimenter started a
stopwatch and began to record CV responses. The N-back script was based on
the single-task version of the N-back procedure (35) (Fig. 5). Participants were
shown a sequence of letters and were required to determine whether the cur-
rent letter was the same as that presented n letters ago (such letters are
referred to as “targets”). Participants had 2,500 ms to press the “A” key if the
letter is a target; no response was required for nontargets. Participants were
tested on 15 blocks consisting of five blocks of each 1-, 2- and 3- backs in a ran-
domized order. Participants were made aware that they would earn a reward
after completing each block but were not instructed on what determined the
reward.

The participants completed the 15 blocks of the learning phase in a ran-
domized order (approximately 15 min.). Following each block, the amount
they had earned appeared on the screen. In the experimental group, reward
ranges were aligned with the difficulty of the block, with reward ranges
increasing with N-back difficulty level (1 to 5, 10 to 15, and 40 to 60 ct. for the
1-, 2- and 3- back respectively). The exact amount that participants received
from each range on a block was determined by their CV reactivity. This was
determined by inputting CV values obtained during the N-back task into an
Excel spreadsheet that would automatically subtract the average CV response
obtained during the final 2 min of a baseline period from the CV responses
obtained during approximately four measurement points that occurred dur-
ing each N-back block. The average of these four values determined their CV
reactivity score for each block. Depending on the magnitude of reactivity, par-
ticipants received no reward (only if disengagement was observed through a
drop in effort-related CV response as denoted by all CV measures), a small
reward (lowest value possible for difficulty range), a medium reward (mean
value of difficulty range), or a high reward (highest value possible for diffi-
culty range). Reward determination was primarily made based off of PEP reac-
tivity. During 1-back blocks, PEP reactivity of 0 to �0.5 was provided a low

reward, �0.6 to �1.5 was provided a medium reward, and anything less than
�1.5 was provided a large reward. During 2-back blocks, PEP reactivity of 0 to
�1.5 was provided a low reward, �1.6 to �3.0 was provided a medium
reward, and anything less than �3.0 was provided a large reward. During
3-back blocks, PEP reactivity of 0 to �2.5 was provided a low reward, �2.6 to
�4.0 was provided a medium reward, and anything less than �4.0 was pro-
vided a large reward. The B-point formula used to determine PEP in real time
has been shown to correlate highly with hand-determined PEP (33) but can
cause errors in specific individuals with unusual morphologies. In these cases,
when PEP reactivity scores contradicted the other CV measures, SBP reactivity
was instead used to determine incentivization using the same scoring scheme
as PEP reactivity. In the control group, participants were offered the same
reward ranges (i.e., 1 to 5, 10 to 15, and 40 to 60 ct.) and the same reward
amounts (i.e., lowest, mean, or highest value possible from current range).
However, the ranges from which the reward was selected and the reward
itself was assigned at random, with each reward range and each reward value
from that range having a 33.3% chance of occurring. To determine the accu-
racy of our manipulation, we utilized a hierarchical linear model, which
confirmed that mobilized effort only predicted reward in our experimental
group (see SI Appendix, Learning Phase for detailed results).

While the experimenter was aware of the condition, we do not feel experi-
menter awareness biased the results of the study for three reasons. 1) The
experimenter did not learn of the condition until after they explained how
the computer program worked, which was the last time they interacted with
the participant until debriefing. 2) The experimenter had no influence on the
control condition. 3) The experimenter desired to increase participants’ effort
seeking, and thus, rewarding participants for more effort mobilization is the
only route to achieve such a desired result. If the experimenter was to reward
the experimental condition no matter the effort mobilization, individuals
would be taught that not trying also produced a large reward, weakening our
outcome as opposed to strengthening it (please see SI Appendix for additional
analyses supporting the relationship between CV reactivity and reward).

Subsequently, the participants completed the MET (23) (Fig. 6). In the MET,
participants work through 50 trials of addition problems, each consisting of
four numbers displayed one by one on the screen. The numbers in each trial
are selected randomly from a range that is determined by the level of diffi-
culty. Level 1 includes numbers 1 to 3, Level 2 includes numbers 3 to 9, Level 3
includes numbers 7 to 15, Level 4 includes numbers 7 to 25, and Level 5
includes numbers 7 to 35. This phase lasted ∼20 min, with CV measurements
being made during the entirety of the task.

Choose the default problem
level for the next 5 problems
Level 1
Level 2
Level 3
Level 4
Level 5

500 ms (blank screen)

800 ms (stimulus)

10300 ms (decision)

500 ms (blank screen)

800 ms (stimulus)

500 ms (blank screen)

800 ms (stimulus) Enter the solution:

Optional: do you want to
change levels?

Yes800 ms (stimulus)

Fig. 6. Protocol for the MET. CV values recorded during the entirety of the task.
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The program concluded with a series of questionnaires. It started by
having participants complete the MDBF again to gauge the effect that the
experimental manipulation had on well-being. This was followed by a four-
item math self-concept scale to capture the participant’s self-report of mathe-
matical capabilities (25). Responses were made on six-point scales containing
endpoints of 1 (Strongly disagree) and 6 (Strongly agree) (α = 0.88). Next, as a
self-report measure of demand seeking, participants completed the revised
AMS-R (24). Responses were made on four-point scales containing endpoints
of 1 (Strongly disagree) and 4 (Strongly agree) (α = 0.84). Finally, a post-task
questionaire was administered that asked participants how difficult they
found theMET, how enjoyable the overall task was, and how enjoyable it was
to complete each level of the MET, with an additional option stating that they
had not chosen this level. All questions utilized a four-point scale from Not at
all to Very. The completion of the questionnaires took ∼10min.

When the program finished, the experimenter returned to the experimen-
tal chamber for debriefing. After the debriefing, experimenters awarded
research credits or e12 base payment. Furthermore, all participants received
the full e3 nomatter the amount of reward earned during the learning phase.

Experiment 2.
Participants and design. In recent years, serious concerns about research rep-
licability led to suggestions for new approaches to evaluating hypotheses,
including conducting internal meta-analyses and focusing on effect sizes and
CIs rather than strictly relying on P values (see ref. 36). Maner (37) suggests
that results of ameta-analysis should holdmoreweight than inconsistent indi-
vidual tests of statistical significance (see also ref. 38). With this in mind, we
collected data from five samples on Amazon Mechanical Turk and conducted
a meta-analysis on the results. The studies were conducted successively over
a timeframe of 8 mo. Studies 2b to 2e were preregistered online (https://
aspredicted.org/WXA_MZE, https://aspredicted.org/M21_MGH, and https://
aspredicted.org/HXG_YQ4, https://aspredicted.org/TTE_URQ).

The calculation of sample size for Studies 2a to 2d was based on an inde-
pendent samples Student’s t test with a potentially small effect d = 0.29, α =

0.05 (one tailed) and a power of 1 – β = 0.80, suggesting 296 participants.
After exclusions, our final samples sizes were 228, 255, 241, and 233, respec-
tively. For Study 2e, a power analysis based on the first four samples was car-
ried out; for an ANCOVA with a small effect size of partial eta squared =
0.015, α = 0.05 (one-tailed) and a power of 1 – β = 0.80, 518 participants were
required. After exclusions, our final sample size of Study 2e was 500.

According to our preregistered exclusion criteria, participants were
required to earn at least 200 cents on the N-back task; this measure served to
guard against disengagement from the task, which would render our manipu-
lation ineffective.
Materials and procedure. Participants were randomly assigned to one of
the two groups (experimental group sample sizes were 107, 138, 129, 113,
and 258, control group sample sizes were 121, 117, 112, 120, and 242 in
Studies 2a to 2e, respectively) and received detailed instructions on how to
complete the N-back task. They practiced one block at each level of diffi-
culty, receiving feedback on their performance following each block. They
were then given the option to repeat the practice if they wished. Following
this, the participants completed the 15 learning blocks in a randomized
order, finding out after each block how much they had earned for that
block. No feedback was provided concerning their performance. This phase
lasted ∼15 min.

Subsequently, the participants completed theMET following the same pro-
cedure as in Experiment 1. The experiment concluded with the assessment of
math self-concept (α = 0.81) followed by some additional variables that varied
across samples and were included for exploratory purposes. Since they are rel-
evant to the present research question, we do not report them here; however,
all data are available at https://osf.io/8pcex/.

Data Availability. Numeric data in cvs format and the R script for analysis have
been deposited in Open Sciene Framework (https://osf.io/8pcex/).
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