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Abstract. In this paper we present computational methods to detect
the symmetry in dermoscopic images of skin lesions. Skin lesions are
assessed by dermatologists based on a number of factors. In the litera-
ture, the asymmetry of lesions appears recurrently since it may indicate
irregular growth. We aim at developing an automatic algorithm that can
detect symmetry in skin lesions, as well as indicating the axes of sym-
metry. We tackle this task based on skin lesions’ shape, based on their
color and texture, and based on their combination. To do so, we consider
symmetry axes through the center of mass, random forests classifiers to
aggregate across different orientations, and a purposely-built dataset to
compare textures that are specific of dermoscopic imagery. We obtain
84–88% accuracy in comparison with samples manually labeled as hav-
ing either 1-axis symmetry, 2-axes symmetry or as being asymmetric.
Besides its diagnostic value, the symmetry of a lesion also explains the
reasons that might support such diagnosis. Our algorithm does so by
indicating how many axes of symmetry were found, and by explicitly
computing them.

Keywords: Dermoscopic images · Skin lesion · Computational
methods · Symmetry detection · Shape · Texture · Color · Machine
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1 Introduction

Skin cancer is a disease caused by the abnormal and uncontrolled proliferation
of melanocytes—cells that pigment the skin—that have undergone a genetic
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mutation. This disease is one of the most widespread around the world as it rep-
resents 40% of all cancers [6]. There are several types of malignant skin cancers
(basal cell carcinoma, squamous cell carcinoma, etc.) but the most aggressive
and deadliest one is known as melanoma. In Europe, cutaneous melanoma rep-
resents 1–2% of all malignant tumors [3] but its estimated mortality in 2018 was
3.8 per 100.000 men and women per year [2].

This type of disorder is characterized by the development of a skin lesion
which usually presents an irregular shape, asymmetry and a variety of colors,
along with a history of changes in size, shape, color and/or texture. Based on
this, experts designed protocols, the so-called diagnostic methods, to quantify
the malignancy of the lesions. Some examples are pattern analysis, the ABCD
rule, the 7-point checklist, and the Menzies method. In these, the asymmetry
of the lesion plays an essential role towards the assessment of the lesion. How-
ever, each of them defines symmetry in a slightly different way. While according
to the Menzies method, benign lesions are associated to symmetric patterns
in all axes through the center of the lesion, disregarding shape symmetry [4].
Another example: regarding the ABCD rule, there might be symmetry in 0, 1 or
2 perpendicular axes when evaluating not only the contour, but also its colors
and structures. Moreover, the assessment of symmetry might be altered by the
individual judgment of the observers, which depends on their experience and
subjectivity [4].

The increasing incidence of melanoma over the past decades along with the
desire to overcome the variability in interpretation have promoted the develop-
ment of computer-aided diagnosis systems. They provide reproducible diagnosis
of the skin lesions as an aid to dermatologists and general practitioners in the
early detection of melanoma.

There are several general-purpose techniques to calculate symmetry in the
computer vision field, as presented in [13]. A few techniques have been applied to
the detection of asymmetry in skin lesions in dermoscopic images. Seidenari et al.
[14] quantify the asymmetry as the appearance of an irregular color distribution
in patches within the lesion. Also, Clawson et al. [5], following the same line,
further integrates Fourier descriptors into a shape asymmetry quantifier. Other
authors, such as Kjoelen et al. [9] and Hoffman et al. [7], estimate the asymmetry
by computing the nonoverlapping areas of the lesion after folding the image along
the best axis of symmetry, taking into account grayscale texture and color.

However, as far as we know, the study of the presence of asymmetry in skin
lesions has been used to classify lesions as malignant or benign in diagnostic
aid systems. In most articles, the approaches that calculate the symmetry of
the lesions do so in an integrated way in an automated system that extracts
other features, simultaneously. This fact hinders both the symmetry evaluation
and the interpretability of the results, such as reporting what is the impact of
finding asymmetry towards the classification of a specific lesion as malignant.

Hence, our objective is two fold. First, to study the symmetry of lesions from
three different points of view. The first focuses on the shape of symmetry of
the lesion, while the second is based on the symmetry of the textures (including
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colors). Finally, these two approaches are combined into the third one. Second,
to compare and analyze their impact, as well as to quantitatively assess their
performance.

Dataset of Dermoscopic Images

In order to complete the clinical analysis and the diagnosis of skin lesions at its
earliest stage, physicians commonly employ a technique called dermoscopy. It
is an in-vivo, non-invasive imaging technique based on a specific optical system
with light that amplifies the lesion, which has previously been covered with
mineral oil, alcohol or water to avoid the reflection of light on it and increase
the transparency of the outermost layer of the epidermis. Dermoscopy has been
shown to improve the diagnostic accuracy up to 10–30% [10] compared to simple
clinical observation. In some cases, dermoscopy can capture digital images of
skin lesions, providing more detailed information of morphological structures
and patterns compared to normal images of skin lesions.

From the available databases of dermoscopic images we decided to use the
PH2 database [11], which contains 200 dermoscopic images annotated by expert
dermatologists. For each image, relevant information about the manual segmen-
tation and the clinical diagnosis of the skin lesion, as well as some dermoscopic
features, such as asymmetry, colors, and dermoscopic structures, are available.
It is worth mentioning that the symmetry of the lesion is evaluated by clinicians
according to the ABCD rule, and therefore, concerning its distribution of con-
tour, color and structures simultaneously. There are three possible labels for this
parameter: 0 for fully symmetric lesions, 1 for asymmetric lesions with respect
to one axis, 2 for asymmetric lesions with respect to two axes.

In Sects. 2, 3 and 4 we detailed the three different approaches used to study
the symmetry of the lesions, based respectively on shape descriptors, texture
descriptors and a combination of both. In Sect. 5 we discuss on the results
obtained, and conclude with the main strengths and limitations of our approach.

2 Shape-Based Method to Assess Symmetry of Skin
Lesions

In this section we present the first of three computational approaches towards
assessing the symmetry of skin lesions. In particular, we focus exclusively on the
shape of the lesion.

We parameterize the candidates to be axes of symmetry as the lines through
the center of mass. Such lines are the only ones that split any continuous two-
dimensional figure in two parts of the same area. The assumption that symmetry
axes contain the center of mass is convenient: they become characterized by their
angle with respect to the horizontal axis, α. Also, the center of mass is easy to
compute.

To assess whether an axis divides symmetrically the lesion we employ the
Jaccard index [8]. We consider that a line is a perfect axis of symmetry if the
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second half is equal to the reflection of the first one with respect to the axis.
Since we are dealing with the shape of the lesion, being equal refers to whether
a pair of pixels are both tagged as lesion or both tagged as skin. Let � be a line
of the plane, M+,M− the two halves in which � splits the lesion region. Let R�

denote the reflection with respect to � and let |A| denote the area of a region.
Then, we define the shape-based symmetry index of a line �, S1(�) to be:

S1(�) =
|M+ ∩ R�(M−)|
|M+ ∪ R�(M−)| .

The final assessment of the symmetry within the skin lesion based on shape
is based on a random forest classifier. We consider a pencil of N lines through
the center of mass, �180◦·k/N , for k = 0, . . . , N − 1. Then, we obtain their shape-
based symmetry index, S(�180◦·k/N ). A random forest classifier aggregates all
the indices into a final answer, being either “no symmetry”, “1-axis symmetry”
or “2-axes symmetry”. We remark that substituting the learning classifier with
experimentally-set fixed thresholds achieves worse quantitative results, but pro-
vides the insight of which lines represent the main and perpendicular axes of
symmetry, if there are any.

Qualitative results of this method are found in Fig. 1. In it, we show an
accurately classified sample (left) and a wrongly classified one (right). The latter
presents a symmetric shape, but it also shows some inner structures that are not
symmetric with respect to one of the perpendicular axes.

In our implementation, we used N = 20, and 10 trees in the classifier. This
is a fast algorithm, whose execution time is typically in the range 1–2 s.

3 Texture-Based Method to Assess Symmetry of Skin
Lesions

To assess how two halves fold symmetrically with respect to their texture, we
need to assess how similar two textures appear to be. Corresponding pixels are
not required to be equal, but to have been drawn from a similar statistical
distribution. Moreover, the distributions we found are specific: textures in der-
moscopic images are not necessarily similar to textures found in other computer
vision tasks. We consider a patch-based approach: we assess similarity of tex-
tures in two locations based on a local neighbourhood of them. This approach
led to the creation of a dataset containing pairs of similar and different textures,
introduced in the following.

Dataset to Discriminate Texture in Dermoscopic Skin Lesions

The texture of skin lesions play an important role in its symmetry. As previ-
ously mentioned, its symmetry is jointly based on the shape of the lesion, and
the appearance of similar structures and patterns. To discriminate such pat-
terns, we must be able to compare the local texture in different locations of the
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Fig. 1. Dermoscopic image (top), lesion mask (middle) and symmetry axes based on
shape (bottom), of two samples.

image. However, textures found in dermoscopic images are specific, not having
the same statistical distributions that textures found in textile, piles of sim-
ilar objects or other settings. To discriminate such textures, we propose the
extraction of a dataset from dermoscopic images, providing pairs of similar and
different patches. Each patch, a n × n-pixel region cropped from the original
image, contains information about the local texture in a specific point.

We extract pairs of patches from a dermoscopic image in a fully automatic
way. We require not only the dermoscopic image, but also a segmentation of
the lesion. In order to obtain pairs of patches with similar textures, (pA, pB),
we randomly select two locations that are very close, under the restriction that
both patches are completely inside the lesion or completely outside. We remark
that both patches are largely overlapping. To obtain pairs of patches with dif-
ferent textures, (pA, pB), we randomly select one patch completely inside the
lesion, and the other one outside the lesion. In this case, there will be no overlap
between them, and we will assume that they represent regions with a differ-
ent underlying texture. All the samples of our dataset will be those patches,
x = (pA, pB), and the reference data will be whether they are of the first or the
second, y ∈ {‘Similar’, ‘Different’} type. In Fig. 2 we show similar and different
patches extracted using this strategy.
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Fig. 2. Pairs of patches with similar texture (left) and different texture (right).

Several limitations must be acknowledged. First, the samples of differently-
textured patches are biased towards our task: they do not follow the same sta-
tistical distribution that differently-textured patches inside the lesion do. This
negative effect does not seem to have a huge impact in its usage (see Sect. 3),
possibly due to the appearance of different skin tones in the original dermoscopic
images. Second, close patches are assumed to be similar, and patches inside the
lesion are assumed to be different to patches outside of it. While this is not
necessarily the case, it has proven to hold the vast majority of times. Third, a
learning classifier that compares them could cheat on solving the task, using the
more basic approach of detecting as positive only those patches that present a
large overlap.

To overcome the second and third limitation, we limit ourselves to manually
select texture-relevant features. We use the Gray Level Co-occurrence Matrix
(GLCM) with two-pixel distance and a horizontal orientation to extract five
texture features. They are dissimilarity, correlation, energy, contrast, and homo-
geneity. Correlation is understood as a measure of the linear dependence of gray
levels between pixels at the specified distance. The energy feature measures the
brightness of the images as well as the repetition of subunits. Contrast refers
to the local gray level variations, while the homogeneity is a measure of the
smoothness of the gray level distribution. Finally, we extract the 25th, 50th and
75th percentiles of the marginal distribution of the RGB channels of the pixels.

The patches were randomly extracted from the PH2 database of dermoscopic
images, selecting 10 pairs with similar texture and 10 pairs with different texture
for each of the 200 images in the database. It includes a manually segmented
lesion, which we used to check whether patches were completely inside or outside
the lesion. Given the original resolution of images, 764 × 576, we set the size of
patches to be 32 × 32, as a good trade-off to obtain a region representative
enough but whose texture is approximately uniform. Besides considering the
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features mentioned above, we decided to use shallow-learning algorithms only,
specifically selecting random forest due to the amount and diversity of features.

Aggregation of Patch Similarity

Using the newly created patch dataset, we trained a random forest classifier T
that, given two patches pA, pB , extract the features introduced in Sect. 3 and
then estimates whether they represented the same texture or not. Such classifier
is represented as:

T(pA, pB) ∈ {0, 1}.

Let us continue assuming that an axis of symmetry contains the center of
mass. We define a line to be an axis of symmetry with respect to its texture if
symmetric patches present the same texture. We thus define the texture-based
symmetry index of a line �, S2(�), as:

S2(�) =
1
N

N∑

i=1

T(pi)
+, p

i)
−),

where N is the amount of patches that can be extracted from the intersection
of the upper region and its reflected lower half, M+ ∪ R�(M−); p

i)
+ is the i-th

patch from the upper region M+, and p
i)
− is its corresponding patch from the

lower region M− with respect to the symmetry axis �.
Similarly to the shape-based symmetry detector, we consider N equidis-

tributed lines and aggregate their texture-based symmetry index with a different
random forest classifier. Also, substituting such classifier with experimentally-set
fixed thresholds provides the insight of which lines are the main and perpendic-
ular axes of symmetry, if there are any.

Results of the above-mentioned procedure are found in Fig. 3. In it, we show
a sample with symmetric textures (right) and a sample with differently tex-
tured matched regions (left). The result of the patch-based classifier is encoded
as a semi-transparent circle, ranging from green (similar) to red (non-similar)
patches. Also, we emphasize that we select partially overlapped patches, and we
restrict the patch selection procedure to those regions within the lesion.

At an implementation level, several details must be mentioned. The patch-
based classifier, T(pA, pB), is a random forest classifier with 200 trees and two
outputs—either similar or different. Its inputs are a list of 2 · n features: n fea-
tures extracted from the first patch pA, and n features from the second one pB.
We used n = 5 + 3 · 3, extracting 5 features from the grey-level co-occurrence
matrix, and 3 quantiles of each of the channels R, G and B (see Sect. 3). Also,
we used N = 10 lines, and 32 × 32-pixel patches. These parameters were exper-
imentally selected. The second classifier, used to aggregate information across
different orientations, is also a random forest with 100 trees and, as in the case
of the shape-based classifier, three outputs. This algorithm requires, with non-
optimized code, around 40–50 s.
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Fig. 3. Dermoscopic image (top), symmetry axes based on their texture (middle) and
patch-based comparison of a specific axis (cropped and rotated, bottom), of two sam-
ples.

4 Combined Method to Assess Symmetry of Skin Lesions

Finally, to answer the hypothesis of whether both shape and texture are actively
contributing towards the symmetry of the lesion—as identified by a human
expert—, we combine both symmetry indicators. Following the same reasoning,
given a pencil of lines (�α)α we compute for each line �α its shape-based symme-
try index, S1(�α) and its texture-based symmetry index, S2(�α). We aggregate
these two lists with a 10-tree random forest classifier to output a final decision
as either “no symmetry”, “1-axis symmetry” or “2-axes-symmetry”.

5 Analysis of Results and Conclusions

We presented a constructive approach towards symmetry detection, somehow
similar to an ablation study. First, the symmetry detection has been addressed
using only the shape of the lesion. However, as shown in Fig. 1 (right), taking
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into account only the shape can not provide satisfactory results. Experts take
into account the shapes, but also the textures and colors of the inner parts of
the lesion to define symmetry. Considering this, the information loss is too high,
which implies that more information must be used to be more accurate. This is
why the symmetry of textures and colors has to be included and studied.

In the second approach, only texture and color symmetry has been considered
to determine the presence of symmetry in skin lesions. We remark that texture
and color are hardly separable, since the former is defined in terms of changes of
the latter. In this case two random forest classifiers have been used: to assess the
symmetry of two 32 × 32 patches, and to aggregate information across different
orientations. Qualitatively, the similarity map tends to be reliable and the axes
of symmetry are never aberrant regarding textures.

In the following, we present the results obtained with the aforementioned
methods and conclude with some final remarks.

5.1 Results

In this section, we present the experimental settings and results obtained. This is
done quantitatively to add up to the qualitative results contained in Figs. 1 and
3. We do so by comparing with the manually labelled data of the PH2 dataset. It
contains, for each dermoscopic sample, a tag indicating either “no symmetry”,
“1 axis of symmetry” or “2 axes of symmetry”. Therefore, we have a 3-class
classification problem, where the three class are: no symmetry, 1-axis symmetry
and 2-axis symmetry. In the PH2 database we have the following distribution
labeled by experts: 26% for the first class, 15.5% for the second class, and 58.5%
for the last class.

To assess the success of our method we consider its accuracy. That is, the
ratio of correctly classified samples. We emphasize that we are considering a 3-
class classification problem, so binary metrics (such as recall or F-measure) can
not be computed. The results obtained by the different algorithms are presented
in Table 1.

Table 1. Accuracy of the three-class classifiers.

Classifier Accuracy

Based on shape 86%

Based on texture 84%

Based on both 88%

We train and validate the algorithms with disjoint datasets. We split the
200 images in the training set (first 50) and the validation set (last 150). No
randomization was applied to the samples since their symmetry is not ordered.
We remark that the validation set is larger since we aim at estimating the gener-
alization capacity of the model with low variance. Metrics in Table 1 have been
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computed over the validation set. Any other learning stage, including the clas-
sifier employed to compare patches, have been trained only with the training
set.

Table 1 summarizes the results obtained with each of the methods described
in Sects. 2, 3 and 4. As can be observed, these classifiers provide satisfactory
quantitative results. We emphasize the subjective nature of this task: in contrast
to, for instance, assessing the malignancy of the lesion, the symmetry of a lesion
is measured against the perceptive criteria of a human expert.

The superiority of the shape-based approach over the texture-based one is
not contradictory: the latter purposely neglects information regarding the shape.
That is, it exclusively uses pairs of patches such that both of them are located
within the lesion, disregarding the fact that there may or may not exist additional
pairs of patches such that first one represents healthy skin and the second one
the lesion. Such pairs have not been provided to the texture-based method in
order to avoid implicitly using information derived from the shape of the lesion.

The images leading to classification errors are different in the shape-based
and texture-based methods. This implies that the two sources of information do
not provide equivalent results.

As one would expect, classification based on both shape and on texture has
superior results. The final accuracy reaches up to 88% which defines a reliable
model that may be used in real applications. Other models may be used, but
considering the features size and the quality of the results given by the random
forest classifiers with a minimalist tuning, they seem to be appropriate to solve
the problem raised in this work.

5.2 Strengths and Limitations

We have addressed the computational problem of symmetry evaluation in terms
of (i) shape, and (ii) texture (including its color) as is considered by dermatolo-
gists [1,12]. This provides the clinician with a comprehensible and interpretable
tool, that indicates the presence of symmetry axis and its location. Asymmetry
of skin lesions is an important indicator of the presence of irregular growth in
skin lesion. Thus, it contributes substantially to its diagnosis. In the ABCD rule
of dermoscopy, for example, asymmetry is the parameter that contributes with
a larger coefficient to the ABCD-based diagnosis [12]. We emphasize that the
aim of this work is to detect the presence of symmetry (or not) in a dermo-
scopic image of a skin lesion, rather than the classification of the lesion as either
malignant or benign.

The algorithms designed deal with the symmetry of skin lesions, which is an
important indicator of uncontrolled growth of cells. They treat the symmetry
as it is evaluated by the experts considering at the same time its shape, texture
and colors. Therefore, the output provided by the algorithm is interpretable by
experts. The algorithms in this paper can be freely accessed online at the website
http://opendemo.uib.es/dermoscopy/, as well as using it as a the standalone
python package dermoscopic symmetry.

http://opendemo.uib.es/dermoscopy/
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The shape-based algorithm is faster than the texture-based one: 1–2 s and 40–
50 s to process a medium-sized dermoscopic image. Although the code could be
optimized, the complexity of the latter is much higher. The shape-based method
can be used for real-time applications, whereas both could be used off-line or for
knowledge distillation into a faster classifier.

Both shape and texture information seem to be necessary towards assessing
the skin lesion symmetry. The rationale lies on the fact that irregular growth—
the malignancy cue looked after—may cause both types of effects. However,
given the quantitative metrics in Table 1, both texture and shape provide a
large amount of information.

A limitation of this work lies on the biases in the patch dataset introduced in
Sect. 3. First, we assume that close regions present similar textures, which does
not always hold. Second, we have a very limited amount of interesting different
textures. Due to the automatic selection of patches, we can only assume that
two patches represent a different texture if one of them is within the lesion and
the other outside of it. This means that, in each pair of different patches, one of
them was extracted from the skin, whereas we are later comparing two patches
that are within the bounds of the lesion.

Finally, this study is biased towards light-skin patients: it has been quanti-
tatively contrasted against the labels of the PH2 dataset.
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