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A B S T R A C T   

Objective: To construct and compared the short-term prognosis prediction models of acute 
ischemic stroke (AIS) by machine learning (ML). 
Methods: Retrospectively study. The group W (mRS≤3) was clustered, and combined with group P 
(mRS>3) to form the post-clustering dataset for modeling. The “glmnet”, “rpart”, “xgboost”, 
“randomForest”, “neuralnet” packages were used to construct ML models. The accuracy, sensi-
tivity, specificity, positive predict value (PPV), negative predict value (NPV) among the models 
were compared. Four external clinical datasets were used for external clinical validation. The 
optimal prediction model was determined by variable screening ability, model visualization, and 
external clinical validation performance. 
Results: The post-clustering dataset contains 139 patients (group W) and 122 patients (group P). 
The neutrophil multiplied by D-dimer (NDM) has predictive value in all ML prediction models in 
this study. In the decision tree model, NDMQ occupies the first tree node, When NDM≤5.62 and 
the age<74.5, the probability of poor prognosis of AIS is less than 20 %. When NDM>5.62 and 
accompanied by pneumonia, the incidence of poor prognosis of AIS is about 90 %. In the Random 
Forest (RF) model, NDMQ had the highest Gini index. The variable combination screened by the 
RF model had the best performance in the neural network, and the accuracy, sensitivity, speci-
ficity, PPV, and NPV of the external validation were 0.800, 0.774, 0.833, 0.857, and 0.741, 
respectively. The RF model had the best performance in the external clinical validation datasets, 
with accuracies of 0.646, 0.697, 0.695, and 0.713, respectively. 
Conclusions: NDM shows predictive value for AIS short-term prognosis in all ML models in this 
study. The optimal model in screening characteristic variables and the performance of in external 
clinical datasets was RF model. In the analysis of medical data with small sample size and 
outcome as categorical variables, RF could be used as the main algorithm to build a model.   

1. Introduction Background 

Acute ischemic stroke (AIS) is a disease with elevated risk and proportion of death, which is associated with large disability- 
adjusted life year and poor short-term prognosis after onset [1,2]. Global population growth and aging will cause the AIS burden 
remaining high, increase and become younger [3]. For this, the establishment of a rapid prognostic prediction model could provide 
early warning to clinics, and the incidence of poor prognosis could be reduced through early detection, diagnosis and intervention. 
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Routine laboratory tests such as neutrophil [4], lymphocyte [5], folic acid [6], glucose [7] may reflect the underlying problems 
leading to poor prognosis in AIS patients. Clinical information about AIS patients can affect their short-term prognosis. Clinical in-
formation, including demographic information, past history, personal history, medication history and onset clinical symptoms, can be 
easily queried or obtained in patients’ medical records. Comprehensive analysis of laboratory project results and clinical information 
will help improve the performance of the prediction model. At present, the construction methods of machine learning (ML) include 
LASSO cross-validation regression, decision tree-classification tree, Xgboost, Random Forest (RF) and artificial neural network (ANN), 
etc. [8] Few studies have combined blood cell analysis, coagulation, lipid profile, immune function, and clinical information to 
construct rapid prognostic models by ML [9]. Besides, there are limitations in using a single ML method [10]. For the prediction 
classification problems, it is currently not possible to provide a standard solution for a particular problem, because spurious results 
need to be avoided. Instead, it is prudent to construct the best model through empirical and trial methods. 

In summary, this study retrospectively analyzed the first routine laboratory test items, the first page of course information during 
hospitalization, and the 3-month follow-up records of AIS patients after admission, and constructed a short-term rapid prognosis model 
for AIS based on the ML. The optimal model was found by comparing models constructed by different ML methods. 

2. Materials and methods 

2.1. Enrollment inclusion and exclusion criteria 

Patients with ischemic encephalopathy in the First Affiliated Hospital of Harbin Medical University (HMU) from July 2019 to July 
2021 were selected for retrospective study. The diagnosis of AIS was based on the Chinese Guidelines for the Diagnosis and Treatment 
of Acute Ischemic Stroke 2018. Short-term prognosis: all patients were followed up for 3 months to track modified RANKIN Scale 
(mRS) records, mRS>3 was classified as poor prognosis, because patients with mRS>3 would show severe disability or even death, 
which would seriously affect the quality of life, combined with previous literature studies, 3 was used as the cut-off value for analysis 
and modeling in this study. 

Inclusion criteria: patients diagnosed with AIS for the first time; age>18 years old; patient or family member sign the subject’s 
informed consent. 

Exclusion criteria: those who were age<18 years old; complications include acute myocardial infarction, pulmonary embolism, 
venous thrombosis, surgery, tumors, diffuse intravascular coagulation, severe infection, tissue necrosis, and other clinical diseases; 
incomplete clinical data or laboratory project data; withdraw; refuse to be included. 

2.2. Collection of clinical information 

Through the hospital’s electronic medical record system at the First Affiliated Hospital of HMU, comprehensive data including 
basic information (gender and age), personal history (smoking history, smoking index, and drinking history), past medical history, 
previous medication uses records, clinical manifestations, and mRS recorded during a 3-month follow-up period were meticulously 
collected by experienced neurologists. The smoking index (SI) was calculated as the number of cigarettes smoked per day multiplied by 
the number of years smoked. Given that some AIS cases exhibit a low incidence of prior diseases, complex histories of medication 
usage, and diverse clinical presentations, those may not be adequately captured in limited medical records quantity-wise; these factors 
were excluded. Consequently, this study focused solely on analyzing common past medical history elements, previous medication uses 
records, and clinical manifestations as predictive factors. 

The comprehensive medical history encompasses the following conditions: transient ischemic attack (TIA), diabetes, hypertension, 
coronary atherosclerotic heart disease (hereinafter referred to as heart disease or cardiac disease), atrial fibrillation (AF), pneumonia, 
hyperlipidemia (HLP), and hyperhomocysteinemia (HHCY). The previous medication usage includes antidiabetic drugs, antihyper-
tensive agents, lipid-lowering drugs (LLDs), and AF treatment (AFT). AF can be categorized into stable-heart rate medications and 
anticoagulant therapy. Clinical manifestations comprise aphasia and Babinski sign (+). During the follow-up period, all patients 
received prompt pharmacological intervention within 3-months after discharge. 

Meanwhile, this study aimed to develop a 3-month prognosis model for AIS patients, the factors related to post-discharge medi-
cation treatment were not considered. According to whether patients with AIS had poor prognosis, they were divided into group P 
(poor prognosis, mRS>3) and group W (well prognosis, mRS≤3). 

2.3. Testing and data collection of routine laboratory items 

Routine laboratory testing data for AIS patients tested and collected within 2 h of admission are as follows: 
Neutrophil, lymphocyte, monocyte, eosinophil, basophil, hemoglobin, red blood cell distribution width, platelet, platelet distri-

bution width, prothrombin time, prothrombin activity, international normalized ratio, activated partial thrombin time, fibrinogen, D- 
dimer, homocysteine, albumin, prealbumin, glucose, cholesterol, triglyceride, high density lipoprotein cholesterol, low density li-
poprotein cholesterol, ratio of LDL to HDL, apolipoprotein A, apolipoprotein B, ratio of APOA to APOB, lipoprotein a. Based on our 
previous studies, the neutrophil, lymphocyte and D-dimer were calculated to obtain new variables [11], NLR is ratio of neutrophil to 
lymphocyte, NDM is neutrophil multiplied by D-dimer. See Supplementary Table 1 for abbreviations and units. 

Since neutrophil, lymphocyte and D-dimer had formed new variables through calculation, they would no longer be included in the 
subsequent modeling in order to reduce the collinearity between variables, and only NLR and NDM would be included. At the same 
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time, abnormal variables such as LLDs, basophil and PTINR were eliminated to avoid overfitting the model. NLR and NDM were visual 
binning as follows: NLRQ1:≤2.17, NLRQ2: 2.18–3.14, NLRQ3: 3.15–4.48, NLRQ4: 4.49–8.06, NLRQ5: 8.07+; NDMQ1:≤2.62, NDMQ2: 
2.63–5.62, NDMQ3: 5.63–12.47, NDMQ4: 12.48–42.43, NDMQ5: 42.44+. 

2.4. Description of the basic data 

The measurement data of the research are in skewness distribution, thus expressed as M (P25, P75). Count data is expressed as N 
(%). The statistical analysis software is IBM SPSS statistics 25.0, R 4.2.0 and RStudio (2022.07.2 + 576). The graphics software is 
Adobe Photoshop CC 2018 and Adobe Illustrator 2023. 

2.5. Data clustering based on K-means 

Data pre-processing is based on the real-world of medical data samples. There were a total of 1856 patients with AIS, of whom only 
122 had a poor prognosis, a ratio of approximately 1:14 between poor and well prognosis. K-means clustering was used to keep the 
sample size mostly consistent between groups and ensure the objectivity of the data screening. Group W, which occupies a large 
proportion in the original dataset, was effectively clustered to ensure the highest intra-cluster similarity and the lowest similarity 
among the clusters. Data from each cluster were selected according to the 8 % and combined with group P to form the post-clustering 
dataset. 

ML model performance test uses part of data from the one database (train set) for model training and cross-validation, and data 
from another database (test set) for external-validation. In this study, the post-clustering data was randomly split into two sets, with the 
train set accounting for 70 % and the test set accounting for 30 %. 

2.6. The LASSO cross-validation regression modeling 

The “glmnet” package was used to construct LASSO cross-validation regression modeling, and internal and external-validation of 
the model were done. After the confusion matrix was generated, the accuracy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and AUC were calculated for both train and test sets. The nomogram was drawn to realize the 
visualization of the model. 

2.7. The decision tree-classification tree modeling 

The "rpart" package was used for decision tree-classification tree modeling. When referring to the minimum value of xerror, the 
corresponding tree node is selected. Classification tree modeling was divided into three steps. In the first step, only clinical information 
was included. In the second step, only the laboratory test results were included. In the third step, the characteristics selected in the two 
steps above were included, to conduct the final decision tree-classification tree modeling and draw the tree model to realize visual-
ization. After the confusion matrix of test set was generated, the accuracy, sensitivity, specificity, PPV and NPV were calculated for test 
set. 

2.8. The xgboost in screen characteristics 

The “xgboost” package was only used for screen characteristics. 

2.9. The RF modeling 

The “randomForest” package was used to carry out RF modeling. After the confusion matrix was generated, the accuracy, sensi-
tivity, specificity, PPV, NPV and AUC were calculated for both train and test sets, and the ROC curve was plotted. 

2.10. ANN modeling 

The “neuralnet” package was used to carry out ANN modeling. After data standardization, the characteristics screened by LASSO 
cross-validation regression/decision tree-classification tree/Xgboost/RF were as the predictive factors to construct the ANN model. 
After the confusion matrix was generated, the accuracy, sensitivity, specificity, PPV and NPV were calculated for both train and test 
sets. The optimal model for this study was found by comparing the models and given an objective evaluation. 

2.11. External clinical validation of predictive models 

In order to verify the clinical application ability of the prediction model and the relationship between model performance and 
sample size, this study conducted external clinical validation of the prediction model. There were 4 external clinical validation datasets 
with different sample size. They are the information of patients with ischemic encephalopathy in the First Affiliated Hospital of HMU 
from July 2018 to June 2019; in the First Affiliated Hospital of HMU from August 2021 to July 2022; in the Second Affiliated Hospital 
of HMU from July 2019 to July 2021; in the Fourth Affiliated Hospital of HMU from July 2019 to July 2021. Subject inclusion, 
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exclusion criteria, clinical information and laboratory data collection are the same as before. 
The accuracy, sensitivity, specificity, PPV and NPV of LASSO cross-validation model, decision tree-classification tree model and RF 

model in four external clinical data were calculated by R external validation program, and the accuracy of the models was compared. In 
order to reflect the application value of the prediction model in the real world, the external data is not cluster analyzed. 

3. Results 

3.1. Data set construction 

After removing the missing values, there were 1734 patients in group W and 122 patients in group P. After K-means clustering, it 
was ideal to cluster the patients in group W into 4 clusters, with 1264, 159, 236, and 75 in each After 8 % patients in each cluster were 
randomly selected, 139 patients in group W combined with 122 patients in group P formed the post-clustering dataset, for the sub-
sequent construction of the prediction model (Fig. 1a and b). 

The train set (70 %) and test set (30 %) were randomly allocated. It is worth noting that the number of patients in the train and test 
sets fluctuates within a small range each time the R was used for random assignment of the datasets, but this does not affect the 
modeling results. In this study, one of the distribution results were selected to show the post-clustering dataset. The number of patients 
in the train set was 184, including 93 in group W and 91 in group P. The test set consisted of 77 patients, including 46 patients in group 
W and 31 patients in group P (Supplementary Table 2). 

3.2. LASSO cross-validation regression modeling results 

The minimum λ was calculated as 0.0248. When confirming the suitable model, λ1se was used, and its value was 0.0643 (Fig. 2a/ 
2b). The following characteristics were selected by the LASSO cross-validation regression model: AGE, PNEUMONIA, BARBINSKI, 
PTA, HCY, PROALB, APOB, NDMQ. The results show that NDMQ is significant in the model, and the OR values are all greater than 4 
(Table 1). Nomogram was used for visualization (Fig. 2c). The regression model was internally validated, and the C-statistic was 0.910. 
After correction, the C-statistic was 0.871. The calibration curve has been drawn (Fig. 2d–e), and it can be seen from the figure and 
results that the internal-validation and external-validation results were good. The AUC of external-validation was 0.825 (95%CI: 
0.732–0.918) (Fig. 2f). The confusion matrix in the train and test sets were shown in Table 2. The performance was shown in Table 3 
for both the train and test sets. The accuracy, sensitivity, specificity, PPV and NPV were 0.853, 0.846, 0.860, 0.856, and 0.851, in the 
train set and 0.753, 0.806, 0.717, 0.658, and 0.846 in the test set, respectively. 

3.3. Decision tree-classification tree modeling results 

The following three steps were adopted in the characteristic selection. Step 1: Only clinical information involved. The tree node was 
2, involving three characteristics, including PNEUMONIA and AGE (Fig. 3a). Step 2: only laboratory test data involved. The tree node 
was 1, including NDMQ (Fig. 3b). Step 3: Screened characteristics in the two steps above involved. The tree node was 5, involving three 
characteristics, including NDMQ, PNEUMONIA and AGE (Fig. 3c). The confusion matrix for the three tree models was shown in 
Table 2. The result of confusion matrix operation shows that the prediction model constructed with only laboratory information is the 
most outstanding in terms of sensitivity, with sensitivity of 0.806, accuracy of 0.727, specificity of 0.674, PPV of 0.625 and NPV of 
0.838. The prediction models constructed with only clinical information were average in accuracy, sensitivity and specificity. The 
accuracy, sensitivity, specificity, PPV, PPV and NPV were 0.740, 0.774, 0.717, 0.649 and 0.825 respectively (Table 3). 

Fig. 1. a: Optimal clustering number diagram, the optimal clustering number is 4. b: Cluster diagram of the 4 clusters for the Group W in the 
original data. 
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NDMQ occupies the first tree node in the classification tree model established by screening feature variables, suggesting that NDMQ 

plays an important role in the classification tree prediction model. When NDM<5.62 and the age<74.5, the probability of poor 
prognosis of AIS is less than 20 %. When NDM>5.62 and accompanied by pneumonia, the incidence of poor prognosis in AIS is very 
high, about 90 % (Fig. 3c). 

3.4. Xgboost screened characteristics 

In this study, all characteristics of the clustered data were included, and Xgboost was used to screen characteristics (Fig. 4). The 
results showed that the following characteristics were prominent in the Xgboost method, namely, NDMQ, HCY, PNEUMONIA, 
PROALB, PTA, and NLRQ. The feature variables screened by the Xgboost are the same as those of the decision tree-classification tree, 
NDMQ and PNEUMONIA, suggesting the important influence of these two variables on the prognosis prediction model of AIS. The 
variables selected by the Xgboost would be validated by the ANN and compared between models. 

Fig. 2. a: The coefficients of LASSO cross-validation regression. b: LASSO calculated variable to filter λ and calculate the minimum λ and λ1se. c: 
Nomogram for LASSO cross-validation regression modeling. d: Calibration curve for internal validation of LASSO cross-validation regression model. 
e: Calibration curve for external validation of LASSO cross-validation regression model. f: ROC curve for external validation of LASSO cross- 
validation regression model. 

Table 1 
Regression model constructed by LASSO cross validation in data after clustering.  

Characteristic OR 95 % CI P 

AGE 1.03 0.99, 1.07 0.200 
PNEUMONIA 6.08 1.94, 22.40 0.003 
BARBINSKI 4.80 1.97, 12.50 <0.001 
PTA 0.99 0.96, 1.01 0.200 
HCY 1.03 1.00, 1.07 0.048 
PROALB 0.99 0.98, 1.00 0.044 
APOB 8.17 1.60, 47.30 0.014 
NDMQ 

≤ 2.62 – –  
2.63–5.62 4.34 0.93, 29.30 0.085 
5.63–12.47 4.80 0.99, 32.60 0.071 
12.48–42.43 8.30 1.64, 58.30 0.017 
42.44+ 42.60 6.94, 389.00 <0.001 

Note: "OR": Odds ratio. "CI": confidence interval. 
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3.5. RF modeling results 

When the tree model suitable for operation in the train set was 49, the error was minimal (Fig. 5a). The accuracy and GINI graph 
obtained after the RF model was set to 49 (Fig. 5b). The GINI graph showed that NDMQ, NLRQ, PROALB, MONO, PT, HCY and 
PNEUMONIA were relatively important in the model. The confusion matrix results in the train and test sets were shown in Table 2. The 
accuracy, sensitivity, specificity, PPV, NPV, and AUC were 0.788, 0.789, 0.787, 0.780, 0.796, and 0.810 in the train set (Fig. 5c), 
meanwhile, those 0.701, 0.806, 0.630, 0.595, 0.829, and 0.718 respectively (Fig. 5d) (Table 3), indicating that the results of internal 
and external validation were acceptable. 

Table 2 
The confusing matrix of ML models.  

Model Set Prognosis Well (Predict) Poor (Predict) 

LASSO cross-validation Train set Well (True) 80 13 
Poor (True) 14 77 

Test set Well (True) 33 13 
Poor (True) 6 25 

Classification tree 
Clinical information only1 Test set Well (True) 33 13 

Poor (True) 9 22 
Laboratory test only2 Test set Well (True) 31 15 

Poor (True) 6 25 
Screening characteristics3 Test set Well (True) 33 13 

Poor (True) 7 24 
RF Train set Well (True) 74 20 

Poor (True) 19 71 
Test set Well (True) 29 17 

Poor (True) 6 25 
ANN 
LASSO cross validation regression Test set Well (True) 15 5 

Poor (True) 9 26 
Decision tree-classification tree Test set Well (True) 28 13 

Poor (True) 5 9 
Xgboost Test set Well (True) 21 6 

Poor (True) 12 16 
Random Forest Test set Well (True) 20 4 

Poor (True) 7 24 

Note: 1: Clinical information only included the Characteristics as follows: SEX, AGE, TIA, DIEBETES, HYPERTENSION, CARDIAC, AF, PNEUMONIA, 
HLP, HHCY, APHASIA, BARBINSKI, SMOKE, SI, DRINKING, ANTIDIABETIC, HEPOTENSOR, AFT. 2: Laboratory test only included the Characteristics 
as follows: MONO, ESO, HGB, RDW, PLT, PDW, PT, PTA, APTT, FIB, HCY, ALB, PROALB, GLU, CHOL, TG, HDL, LDL, LHR, APOA, APOB, ABR, LPa, 
NLRQ, NDMQ. 3: Screening characteristics included the Characteristics as follows: NDMQ, AGE, PNEUMONIA. 

Table 3 
The performance of ML models.  

Model Set Accuracy Sensitivity Specificity PPV NPV 

LASSO cross-validation Train set 0.853 0.846 0.860 0.856 0.851 
Test set 0.753 0.806 0.717 0.658 0.846 

Classification tree 
Clinical information only1 Test set 0.714 0.710 0.717 0.629 0.786 
Laboratory test only2 Test set 0.727 0.806 0.674 0.625 0.838 
Screening characteristics3 Test set 0.740 0.774 0.717 0.649 0.825 
RF Train set 0.788 0.789 0.787 0.780 0.796 

Test set 0.701 0.806 0.630 0.595 0.829 
ANN 
LASSO-ANN4 Test set 0.745 0.743 0.750 0.839 0.625 
Decision tree - ANN5 Test set 0.673 0.643 0.683 0.409 0.848 
Xgboost-ANN6 Test set 0.673 0.571 0.778 0.727 0.636 
RF-ANN7 Test set 0.800 0.774 0.833 0.857 0.741 

Note: PPV indicates for positive predictive value, NPV indicates for negative predictive value. 1: Clinical information only included the Characteristics 
as follows: SEX, AGE, TIA, DIEBETES, HYPERTENSION, CARDIAC, AF, PNEUMONIA, HLP, HHCY, APHASIA, BARBINSKI, SMOKE, SI, DRINKING, 
ANTIDIABETIC, HEPOTENSOR, AFT. 2: Laboratory test only included the Characteristics as follows: MONO, ESO, HGB, RDW, PLT, PDW, PT, PTA, 
APTT, FIB, HCY, ALB, PROALB, GLU, CHOL, TG, HDL, LDL, LHR, APOA, APOB, ABR, LPa, NLRQ, NDMQ. 3: Screening characteristics included the 
Characteristics as follows: NDM, AGE, PNEUMONIA. PPV indicates for positive predictive value, NPV indicates for negative predictive value. 4: ANN 
model with the characteristics included AGE, PNEUMONIA, BARBINSKI, PTA, HCY, PROALB, APOB, NDMQ. 5: ANN model with the characteristics 
included NDMQ, PNEUMONIA and AGE. 6: ANN model with the characteristics included NDMQ, HCY, PNEUMONIA, PROALB, PTA, and NLRQ. 7: ANN 
model with the characteristics included NDMQ, NLRQ, PROALB, MONO, PT, HCY, and PNEUMONIA. 
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3.6. Comparison results of the ANN modeling 

The characteristics in the ANN were that selected from the above four prediction models, which were as follows: 
LASSO cross-validation regression: AGE, PNEUMONIA, BARBINSKI, PTA, HCY, PROALB, APOB, and NDMQ (Fig. 6a); 
Decision tree-classification tree: NDMQ, PNEUMONIA, and AGE (Fig. 6b); 
Xgboost: NDMQ, HCY, PNEUMONIA, PROALB, PTA, and NLRQ (Fig. 6c); 
RF: NDMQ, NLRQ, PROALB, MONO, PT, HCY, and PNEUMONIA (Fig. 6d). 
After the prediction model was built through the ANN, the confusion matrix was calculated separately (Table 2), so as to calculate 

the accuracy, sensitivity, specificity, PPV and NPV. The results showed that the accuracy, sensitivity, specificity, PPV and NPV for the 
LASSO-ANN model were 0.667, 0.567, 0.729, 0.567, and 0.729; for the decision tree-ANN model were 0.679, 0.583, 0.762, 0.677 and 
0.681; for the Xgboost-ANN model were 0.577, 0.500, 0.658, 0.606 and 0.556; for the RF-ANN model were 0.718, 0.774, 0.680, 0.615, 

Fig. 3. The result of decision tree-classification tree three-step prediction model construction. a: Clinical information only. b: Laboratory test only. c: 
Screening characteristics included the characteristics as follows: NDMQ, PNEUMONIA and AGE. 

Fig. 4. Results of feature screening by Xgboost.  
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and 0.821, respectively (Table 3). 

3.7. External clinical validation of predicted models and comparison between models 

The four external data patients were 659, 398, 1074, and 1239, respectively. The incidence of poor prognosis was 6.07 %, 6.43 %, 
6.42 %, and 6.38 %, respectively. Only the accuracy of the model was shown (Table 4). The RF model performed best in external 
clinical validation datasets with accuracy of 0.646, 0.697, 0.695 and 0.713, respectively. Only the accuracy of LASSO cross-validated 
regression model was significantly correlated with sample size (P = 0.026). There was no significant correlation with sample size 
(Fig. 7a). 

4. Discussion 

The prediction models were constructed and compared by various ML in this study. The RF model achieves the best performance 
among medical prediction models with categorical variables as dependencies. NDM can be used in a variety of ML prediction models. 
In addition, if the sample size difference between groups is overly large, it is necessary to reduce the sample size difference between 
groups by random selection after clustering to obtain a more accurate model. 

4.1. Features of the prediction models constructed by each ML method 

Currently, no categorization algorithm has been found to have absolute an advantage for any industry or data. Extensive research 
has shown that many algorithms are similar in accuracy and need to be used on a case-by-case basis. To improve the rigor and ob-
jectivity, this study used supervised learning to construct four prediction models and compared the performance in the train and test 
sets of the ANN model. The results show that RF is able to screen variables better than the remaining three ML methods. RF is rec-
ommended for screening characteristics and modeling when the data volume is small and the dependent is categorical. 

To improve the performance of predictive models, it is necessary to construct effective predictive models using reasonable sta-
tistical methods. The advantage of LASSO cross-validation regression is that the regression coefficients are clearly displayed, and it is 
convenient to implement the visualization of the model by plotting a nomogram, so that the model can be easily interpreted. However, 
the LASSO cross-validation regression model has certain limitations. (1) Some data will be lost when the continuous variable is 
converted to discrete values, and the trade-off of “regression unit” during the assignment increases some losses. Thus, the prediction of 
disease risk is only an approximation of the actual risk predicted in the complete model. (2) The regression coefficient, which is the 

Fig. 5. Results of RF model construction. a: Figure of tree error graph in train set. b: The accuracy graph and Gini graph obtained after the RF model 
is set to the optimal biop. c: ROC curve of RF model in train set. d: ROC curve of RF model in test set. 
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basis of the LASSO cross-validation analysis, reflects the proportion of dependent variables that vary with the unit independent 
variable. However, the regression coefficients do not directly reflect the relationship between the derived variables. Therefore, the 
scoring form needs to compare the independent variables in order to better identify and analyze the relationship between them. 

Compared to LASSO cross-validation regression, the decision tree-classification tree method has the advantage of rapid modeling 
speed and accurate conclusions. High degree of visualization and interpretation. The advantages of decision tree include: (1) the target 
dimension can be summarized according to the known dimension; (2) considering the influence of multiple known dimensions on the 
target dimensions, the robustness of the system is improved. (3) effectively inhibit the interference of noisy data; (4) effectively deal 
with the absence of some data; (5) it is more flexible to use as there is no need to make any prior assumptions; (6) effectively alleviate 
the problems in medical data acquisition, so as to improve the accuracy and reliability of the system. The disadvantage of decision tree 
is that it is easy to overfit in model construction. Fortunately, a reasonable pruning strategy can effectively balance the complexity of 
tree structure and the accuracy of the conclusion. In this study, we chose the post-prune of the decision tree algorithm, which controls 
the number of samples per node. Although this method will increase the overall calculation of the decision tree, it can produce a more 
accurate decision tree and facilitate the interpretation and utilization of the model. In order to discover the role of binary argument 
variables in data, decision tree needs to be carried out in steps when screening characteristics. As a result, improper use may drown 
some valuable characteristics or the issues they represent. 

The RF algorithm with Bootstrap as the core constructed data sets through repeated random sampling and finally generated a forest 
composed of M decision trees. The results of these decision trees were integrated together for statistical analysis to effectively find out 

Fig. 6. a: Neural network model based on LASSO validation regression variable selection. b: Construct neural network model by filtering variables 
according to classification tree. c: Neural network was constructed according to Xgboost screening variables. d: Construction of neural network 
based on RF screening variables. 

Table 4 
The performance of LASSO cross-validation model, decision tree classification tree model and RF model in four external clinical datasets.  

Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Sample Size 659 389 1074 1239 
Incidence of poor prognosis 6.07 6.43 6.42 6.38 
Accuracy 
LASSO cross validation 0.656 0.648 0.665 0.677 
Decision tree-classification tree 0.590 0.573 0.577 0.600 
Random Forest 0.646 0.697 0.695 0.713  
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the classification conclusions with the highest accuracy. By using Gini coefficient to measure the effect of current node division, this 
study adopts post-pruning strategy to control bifurcation nodes in RF algorithm, so as to make the tree structure more concise and 
efficient [12], and it can better reflect the effectiveness of node partitioning. Compared with decision tree, RF has the following ad-
vantages: (1) it can effectively solve local optimization and overfitting; (2) insensitivity to collinearity between dimensions during 
modeling; (3) the model has higher classification and prediction accuracy. The drawback of RF is that it is difficult to visualize the 
model. Currently, R is used to plot the RF Gini diagram to show the importance index of features in the model, the Gini coefficient. 
There is no relevant package to visualize the RF model in R, but the "graphviz" of Python algorithm can work at present. For medical 
workers, it is better to convert the model algorithms into software or web pages to facilitate the use of the model when running RF 
models. 

ANN based algorithms are characterized by multiple inputs and a single output. In this study, the ANN model is constructed using 
the BP algorithm, which takes the data from the input layer, processes it through the intermediate layers, and finally obtains the 
predicted values in the output layer, thus enabling fast and accurate analysis of complex information. We perform extensive tests and 
comparisons on complex intermediate layer architectures via R to determine the best hidden layer architecture to improve accuracy. 
These hidden layers may contain one or more complex structures, each containing multiple nodes [13], as a result, we can better 
understand the complexity of the middle tier. The disadvantage of the ANN algorithm is the difficulty to analyze the fraction of features 
in the model from the model graph alone, and the model needs to be converted into software for ease of use in clinical applications. 
Some studies have found that the prediction accuracy of ML multilayer perceptron ANN model is better than that of multi-variate 
logistic regression model [14], which is slightly different from the results of this study. In this study, four ML screened characteris-
tics were used to build ANN models, and the performance of the ANN model was worse than that of the respective ML models on the 
basis of selecting the same characteristics. The reason may be that the ANN is more suitable for datasets where independent variables 
are continuous variables. However, data standardization does not affect the ability of ML model to screen characteristics by using ANN 
for comparison. 

At present, it has become a research trend to use multiple ML methods to construct and compare medical prediction models [8,15, 
16]. This study attempted to construct the short-term prediction model of poor prognosis of AIS based on ML methods, by collecting the 
clinical information of patients admitted to hospital and the results of the first laboratory examination after admission as the inde-
pendent variables, and whether there was poor prognosis as the dependent variable. Each model could basically identify AIS patients 
who were likely to have poor prognosis over the next 3 months. The performance of the models is then compared and the RF model has 
the best performance for screening characteristics in this study. When the dependent variable was the classification variable in the 
medical data modeling, RF model could be the first choice to screen characteristics (Fig. 7b). According to the performance 
comparative analysis, RF model is the optimal model in this study, and can be selected in the construction of medical prediction models 
with dependent variables as categorical variables. In this study, due to the small amount of data after sample clustering, RF, as a major 
algorithm model, has been verified in medical data analysis of small data samples (Fig. 7c). 

In terms of model visualization ability, the performance of LASSO cross-validation regression and decision tree-classification tree 
are better than RF when using only R. In the LASSO cross-validation regression model, the corrected C-statistic is 0.871 for the internal- 
validation and 0.825 for the external-validation, which is higher than the RF validation results. At the same time, the nomogram can be 
easily used by hospital staff. In the decision tree-classification tree model, the truncation values of characteristics and the probability of 

Fig. 7. a: The results were analyzed by plotting the performance of each model against the sample size. b: The performance comparison of LASSO 
cross-validation, decision tree-classification tree, RF in test set. c: Comparison of the ability of LASSO cross-validation, decision tree-classification 
tree, Xgboost, RF to filter variables. 
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poor prognosis were clearly shown in the model diagram, and the validation results were also good. 

4.2. Comparison between this study and other prediction model studies 

Among numerous prognostic prediction studies, only about 15 % of them focus on laboratory testing data. The predictive factors 
used to construct functional outcome prediction models are primarily blood glucose [7,17], neutrophil-to-lymphocyte ratio (NLR) 
[18], and C-reactive protein (CRP) [19,20]. Occasionally, studies include hemoglobin (HGB) [21], platelet count [18,22], serum 
triglycerides (TG) [23], and serum magnesium [24] as predictive factors. The NDM proposed in this study has only been reported in 
our previous study [11]. After summarizing the prediction models, it was found that in one case, the highest AUC (0.884) was 
established with NIHSS, RDW to platelet ratio, uric acid, 25 hydroxyvitamin D and angiopoietin-1 as characteristics [25], and others 
were all lower than 0.86. In this study, the LASSO cross-validation prediction model has strong accuracy, with C statistic up to 0.910 in 
the training set and 0.825 in the test set; the accuracy of RF prediction model in the training set was lower than that of LASSO 
cross-validation prediction model, but it had stronger sensitivity (0.806) and NPV (0.829). In terms of the AUC of the training set, the 
LASSO cross-validation prediction model in this study has been superior to the above model, and the data and information that can be 
easily obtained are used, which provides convenience for the use of clinical models. 

4.3. Prediction value of NDM in this study 

NDMQ has predictive value in all ML models in this study. In the classification tree model, NDMQ occupies the first tree node in the 
classification tree model established by screening feature variables, suggesting that NDMQ plays an important role in the classification 
tree prediction model. Combined with clinical information, the advantages of test items as predictors of poor prognosis can be more 
fully utilized. NDMQ combined with pneumonia may better predict the short-term prognosis of AIS patients. The RF prediction model 
can identify patients who are likely to have a poor prognosis in the short term, and with appropriate preventive measures or treatment, 
the occurrence of poor prognostic outcomes can be avoided. 

Inflammation may cause damage to the blood-brain barrier, microvascular failure, brain edema and blood oxygen stress, which can 
directly cause neuronal cell death, leading to more serious brain damage [26], and the detection of AIS severity, prognosis assessment 
and other inflammatory indicators have become the main direction of scientific research. Neutrophils can damage host tissue and 
infiltrate damaged brain tissue shortly after the onset of AIS, leading to increased inflammation [27]. After ischemia and reperfusion, 
neutrophils accumulate in the meninges and perivascular spaces, eventually reaching the infarct parenchyma [28]. D-dimer is a special 
degradation product of cross-linked fibrin in the process of fibrinolysis. It is a sign of thrombin formation and fibrinolysis and has 
relatively stable characteristics [29]. Early D-dimer levels have been found to be an independent predictor of large vessel occlusion and 
may help prehospital patients better transfer to an appropriate stroke center [30]. In this study, these two factors were multiplied and 
combined to amplify their prediction effect on the short-term poor prognosis of AIS. 

There are also studies on non-routine laboratory projects, including CCL11 [31], plasma copeptin [32], plasma Klotho [33], plasma 
RGM-A [34], plasma TAFI [35], plasma copeptin [32], serum irisin [36], serum Tau protein [37], serum tight-junction protein [38], 
serum retinoic acid [39], thrombospondin-1 [40], remnant lipoproteins [41], and Lipocalin-2 [42]. However, these non-routine 
laboratory tests face limitations in clinical application due to the difficulty in detection. Therefore, they are challenging to be used 
for building clinical rapid prediction models. These projects may require more complex and expensive laboratory techniques, as well as 
lacking uniform standards and ranges, which restrict their application in clinical settings. Therefore, in prognostic prediction research, 
the focus is mainly on routine laboratory tests to obtain more reliable and implementable prediction models. The independent variable 
for this study was selected as the laboratory data tested for the first time after admission. Combined with the medical history at 
admission, the data source was reliable and rapid, and the prediction model constructed provided speed advantages for the prediction 
of poor prognosis of AIS patients within 3 months. 

NLR plays an essential role in LASSO cross-validation regression model and RF model. It is recommended that physicians pay more 
attention to NLR results in clinical applications. Studies have shown that women with AIS are more likely to have a poor short-term 
prognosis [43,44]. While in this study, no significant difference in short-term poor prognosis was found between the genders. 

4.4. Predictive value of clinical information 

Some of the accompanying illnesses or symptoms may be caused by the brain injury itself, by physical braking, or by AIS related 
treatments. These concomitant diseases or symptoms may hinder the recovery of the nervous system and have an important impact on 
the prognosis of patients with AIS [45]. Pneumonia accounted for a large proportion in this study, although as predictors they per-
formed worse than NDM. It is worth mentioning that pneumonia is a prominent accompanying disease after AIS, accounting for 7–38 
%. AIS triggers an inflammatory response in the brain that can lead to secondary brain damage and even infarct enlargement [46]. 
Multiple clinical studies have confirmed that pneumonia may be independently associated with poor prognosis and disability of AIS 
patients [47–49]. Previous studies have also shown that a variety of conditions are associated with the severity and outcome of AIS, 
such as myocardial infarction, stroke severity, pre-stroke disability, elevated intracranial pressure, pneumonia [44,50]. The odds of a 
poor prognosis were 5.08 times higher in those with pneumonia. The reason for these phenomena may be that the inflammatory 
immune response is more severe in AIS patients with pneumonia. This study showed that there was no significant correlation between 
previous smoking, SI and drinking history and short-term prognosis of AIS. 

Y. Xing et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e24232

12

4.5. Limitations of this study 

There are some limitations to this study. This study did not find a statistically significant difference in short-term poor outcomes 
between male and female patients, and a gender-based subgroup sensitivity analysis was not performed, so potential differences in 
gender-based outcomes could not be identified. The data in this study are from high latitudes in China. Regional bias may be present in 
the included subjects due to differences in food culture across different latitudes. Data from different latitudes can be included in 
subsequent studies for multi-center comprehensive analysis. Stroke severity-NIHSS score was not included in this study, because it was 
difficult to find in all medical histories and would have a large number of missing values once included, thus NDM was not compared 
with NIHSS score. This study has not verified the significant role of age in predicting AIS prognosis, and whether this is related to the 
trend towards younger age for AIS needs to be demonstrated further. Follow-up studies should be conducted with multi-center studies 
to establish age groups and to model. 

5. Conclusion 

By comparing various prediction models, this study concludes that the optimal choice of feature variables is the RF prediction 
model. In medical data analysis with small data samples and outcome as a categorical variable, RF can be used to construct prediction 
models for major algorithms. LASSO cross-validation regression and decision tree-classification tree models have better visualization 
ability. NDM, as the leader of independent predictor in this study, has predictive value in all ML models. 
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