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Abstract

Motivation: In recent years, the well-known Infinite Sites Assumption has been a fundamental feature of computa-
tional methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent
studies leveraging single-cell sequencing (SCS) techniques have shown evidence of the widespread recurrence and,
especially, loss of mutations in several tumor samples. While there exist established computational methods that
infer phylogenies with mutation losses, there remain some advancements to be made.

Results: We present Simulated Annealing Single-Cell inference (SASC): a new and robust approach based on
simulated annealing for the inference of cancer progression from SCS datasets. In particular, we introduce an ex-
tension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of
mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves
high levels of accuracy when tested on both simulated and real datasets and in comparison with some other
available methods.

Availability and implementation: The SASC tool is open source and available at https://github.com/sciccolella/sasc.

Contact: imh2003@med.cornell.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent developments in targeted therapies for cancer treatment rely
on the accurate inference of the clonal evolution and progression of
the disease. As discussed in several recent studies (Morrissy et al.,
2016; Wang et al., 2016), understanding the order of accumulation
and the prevalence of somatic mutations during cancer progression
can help better devise these treatment strategies.

Most of the available techniques for inferring cancer progression
rely on data from next-generation bulk sequencing experiments,
where only a proportion of observable mutations from a large
amount of cells is obtained, without the distinction of the cells that
carry them. In recent years, many computational approaches have
been developed for the analysis of bulk sequencing data with the

purpose of inferring tumoral subclonal decomposition and recon-
structing tumor phylogenies (evolutionary trees) (Bonizzoni et al.,
2018; El-Kebir et al., 2016; Hajirasouliha et al., 2014; Jiao et al.,
2014; Malikic et al., 2015; Marass et al., 2016; Popic et al., 2015;
Satas and Raphael, 2017; Strino et al., 2013; Toosi et al., 2019;
Yuan et al., 2015). The main drawback of this technique is that a
bulk sequencing sample contains a mixture of both healthy and can-
cerous cells—and this clonal evolution can only be estimated by the
proportions of observable mutations.

Single-cell sequencing (SCS) technologies promise to deliver the
best resolution for understanding the underlying causes of cancer
progression. However, it is still difficult and expensive to perform
SCS experiments with a high degree of confidence or robustness.
The techniques currently available are producing datasets, which
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contain a sizeable amount of noise in the form of false negatives
from allelic dropout, and missing values due to low coverage.
Another issue that these technologies suffer from is the presence of
doublet cell captures. However, such issues are slowly fading away
and the state-of-the-art in preprocessing steps for removing such
artifacts is quite advanced (DePasquale et al., 2019). Hence, we be-
lieve that more immediate issues, such as the lack of accuracy
reflected in the high dropout and false-negative rates inherent to the
technology, call for methods that are able to infer cancer progression
from this data produced by current SCS techniques.

Various methods have been recently developed for this purpose
(Jahn et al., 2016; Ross and Markowetz, 2016; Zafar et al., 2017,
2019), some of them introducing a hybrid approach of combining
both SCS and VAF (bulk sequencing) data (Malikic et al., 2019a;
Ramazzotti et al., 2019; Salehi et al., 2017). Most of these methods,
however, rely on the Infinite Sites Assumption (ISA), which essen-
tially states that each mutation is acquired at most once in the phyl-
ogeny and is never lost. One reason being that such a simplifying
assumption leads to a computationally tractable model of evolution,
namely, the problem of finding a perfect phylogeny (Gusfield,
1991). This model is safe to use in settings, such as the evolution of
natural populations, and tends to be the norm more than the excep-
tion in this setting (Kimura, 1969). Cancer progression, however, is
a fairly extreme situation, where the evolution is very fast, under at-
tack from the immune system, and with a high mutation rate. As a
result, studies of SCS data are beginning to reveal phenomena that
cannot always be explained with a perfect phylogeny (Brown et al.,
2017; Kuipers et al., 2017). Some articles (Kuipers et al., 2017) re-
veal widespread recurrence and loss of mutations, while large dele-
tions on several branches of a tree can span a shared locus (Brown
et al., 2017), thus, a given mutation may be deleted independently
multiple times.

In this work, we propose a novel and more general model to ex-
plain the above phenomena, which is not unnecessarily held back by
strict adherence to the ISA. Some recent methods are beginning to
appear, which have the same objective in mind, such as TRaIT
(Ramazzotti et al., 2019), SiFit (Zafar et al., 2017) and SPhyR (El-
Kebir, 2018): in detail, TRaIT accounts for violations of the ISA by
accommodating for convergent evolution; SiFit accounts for both
mutation recurrence and loss without specifying a particular model
of evolution; and, on the other hand, SPhyR (independently from
our article) utilizes the same phylogeny model used in this work,
thus allowing deletions of mutations.

In our approach, we use the Dollo model (Farris, 1977; Rogozin
et al., 2006), one of the models that is more general than the perfect
phylogeny model, to allow the loss of point mutations. In particular,
while the Dollo model still constrains that a mutation can only be
acquired at most once, it allows any number of independent losses
of the mutation. Once we depart from an ideal, error-free, perfect
phylogeny model (Gusfield, 1991), we lose its convenient computa-
tional tractability: in fact allowing errors or missing data results in
an NP-hard problem. Adopting the more general Dollo model is
only going to exacerbate the problem. However, if we restrict the
number of losses of any mutation to 1 or 2 (rather than strictly 0),
the resulting solution space is still small enough to explore a sizable
portion of it in a reasonable amount of time, in practice. Moreover,
from a biological point of view, one would not expect a mutation to
be lost more than a few times, since it is not likely that mutations
are widely lost (Brown et al., 2017; Kuipers et al., 2017).
Furthermore, all the currently available methods assume that the
false-negative rate is the same for all mutations. While this is suit-
able for samples coming from DNA (i.e. scDNA-seq) data, the false-
negative rate of the mutations in samples coming from RNA (i.e.
scRNA-seq) data can vary a because of differing levels of gene ex-
pression. Since our approach is suitable for both types of data, i.e. a
suitable parameter setting can be found for modeling the progres-
sion of cancer from samples coming from either DNA or RNA data,
to accommodate the latter, our approach also allows a different
false-negative rate for each mutation: it is one of the first methods
with this feature. In fact, to the best of our knowledge, the only
other article with a similar feature has appeared very recently (Wu,

2019); in that article, different false negative and false-positive rates
are allowed for each mutation and for each cell. At the same time,
mutation losses are not allowed. SciU (Singer et al., 2018) also
allows different rates, but it is essentially a phylogeny-aware muta-
tion caller, not a tool designed to infer tumor phylogenies.

Here, we introduce the Simulated Annealing Single-Cell infer-
ence (SASC) tool, a maximum likelihood phylogeny search frame-
work that allows deletion of mutations, by incorporating the Dollo
parsimony model (Farris, 1977; Rogozin et al., 2006). We show that
our approach is competitive with the state-of-the art tools for infer-
ring cancer progression from SCS data, while being the only tool to
correctly identify important driver mutations in some real datasets,
as verified by the manually curated progression scenarios for these
data.

2 Materials and methods

2.1 Formulation of the tree reconstruction problem
As mentioned before, cancer progression reconstruction can be mod-
eled as the construction of a character-based incomplete phylogeny
on a set of (cancer) cells, where each character represents a
mutation.

In this framework, we consider the input as an n � m ternary
matrix Iij, where an entry Iij¼0 indicates that the sequence of cell i
does not have mutation j, Iij¼1 indicates the presence of mutation j
in the sequence of cell i, and a ? indicates that there is not enough in-
formation on the presence/absence of mutation j in cell i. This uncer-
tainty about the presence of a mutation in a cell is a consequence of
insufficient coverage in the sequencing, a common scenario in SCS
experiments.

However, the uncertainty of some entries is not the only issue
that results from the sequencing process. In fact, entries of the input
matrix I can also contain false positives and false negatives—while
the false-positive rate is usually very low, the false-negative rate can
be high and can also vary depending on different factors. In particu-
lar, for scRNA-seq data, the varying expression levels of different
genes can easily lead to different false-negative rates for each muta-
tion, since a highly expressed gene will have significantly higher
coverage than an under-expressed gene, resulting in a more accurate
single-nucleotide variant (SNV) call for that particular gene. On the
other hand, a gene, which is less expressed is likely to have a lower
coverage, leading to a less accurate presence/absence estimation in
the cells. We assume that these errors occur independently across all
the (known) entries of I. Namely, if Eij denotes the final n � m out-
put matrix, i.e. the binary matrix without errors and noise estimated
by the algorithm, then aj denotes the false-negative rate of mutation
j, and b denotes the false-positive rate, similarly to El-Kebir (2018),
Jahn et al. (2016), Ross and Markowetz (2016) and Zafar et al.
(2017). Hence, for each entry of Eij the following holds:

PðIij ¼ 0jEij ¼ 0Þ ¼ 1� b PðIij ¼ 0jEij ¼ 1Þ ¼ aj

PðIij ¼ 1jEij ¼ 0Þ ¼ b PðIij ¼ 1jEij ¼ 1Þ ¼ 1� aj:

We aim to find a matrix, which maximizes the likelihood of the
observed matrix I (Jahn et al., 2016) under the probabilities of false
positives/negative and missing entries. Differently from previous
works, our model also accounts for losses of mutations, thus, we de-
fine the prior probability PðLðjÞÞ ¼ cj—independent from the previ-
ous ones—of losing mutation j and the set of variables cj for
j ¼ 1; . . . m that denotes the total number of losses for mutation j in
the evolutionary history. In practice, we expect that a researcher
might able to determine that some mutations j are very unlikely be
lost, therefore setting cj ¼ 0.

However, we are interested in the reconstruction of the evolu-
tionary history of the input cells, thus the resulting matrix E should
contain clones (groups of cells with the same mutations) that can be
explained by an evolutionary process of the mutations. This restric-
tion motivates the introduction of the concept of phylogenetic tree,
or simply phylogeny.

A (cancer) phylogeny T on a set C of m mutations and n cells
(affected by these mutations) is defined as a rooted tree whose
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internal nodes are labeled by the mutations of C, while the leaves
are labeled by the cells (see Fig. 1A). Notice that the labeling must
satisfy some restrictions depending on the evolutionary model that
we consider. For example, in a perfect phylogeny, no two nodes
have the same label. This is an alternative, but essentially equivalent,
definition of classical character-based phylogeny, where the tree T is
defined on a set of characters and where leaves have no label and
represent different species.

The state of a node x is defined as the set of mutations that have
been acquired but not lost in the path from the root to x. The state
of each leaf l of T is naturally represented by a binary vector of
length m, called genotype profile, that we denote D(T, l), where
DðT; lÞj ¼ 1 if and only if the leaf l has the mutation j and 0 other-
wise (see Fig. 1B).

We say that the tree T encodes a matrix E if there exists a map-
ping r of the rows (cells) of E to the leaves of T such that Ei ¼
DðT;riÞ for each row i of E, where ri denotes the image of row i
through the mapping r. Informally, ri is the node in the phylogenetic
tree corresponding to the node where the cell i is attached. Notice
that the matrix E is fully characterized by the pair ðT; rÞ (see
Fig. 1C). Thus, our problem can be expressed as finding the tree T
that maximizes the following objective function:

max
Xm

j

½�cj logð1� PðLðjÞÞÞ þ
Xn

i

log ðPðIijjDðT; riÞjÞÞ�:

We point out that the values assigned to the unknown entries of
the input matrix do not factor into the objective function, i.e.
PðIij ¼ ?jEij ¼ 1Þ ¼ PðIij ¼ ?jEij ¼ 0Þ. To simplify the computation
of the likelihood, we slightly abuse notation in supposing that
PðIij ¼ ?jEij ¼ 1Þ ¼ PðIij ¼ ?jEij ¼ 0Þ ¼ 1. Furthermore, r can be
computed directly from T; for each tree, we can obtain the best as-
signment using an exact mapping; leaving T as the only variable to
optimize.

2.2 Introduction of the Dollo-k model
The Dollo parsimony rule assumes that, in a phylogeny, any single
mutation is uniquely introduced in the evolutionary history, but
deletions of the mutation can occur any number of times. A
restricted version of the Dollo model can be obtained by bounding
the number of deletions for each mutation. We denote as Dollo-k
the evolutionary model in which each mutation can be acquired
exactly once and can be lost at most k times. The special cases,
Dollo-0 and Dollo-1, correspond to the perfect (Gusfield, 1991) and
persistent (Bonizzoni et al., 2012, 2017; Della Vedova et al., 2017)
phylogeny models, respectively. The phylogeny reconstruction prob-
lem under a Dollo-k model is NP-complete (Goldberg et al., 1996)
for any k > 1.

Since the Dollo evolutionary model allows back mutations, we
introduce a new type of node label in the phylogenetic tree, to ex-
press mutational losses. For each mutation p, we create k new muta-
tions p�l for l 2 f1; . . . ; kg, representing the possible losses of
mutation p. As in the perfect case, we require that no two different
nodes have the same label. Additionally, we impose that all nodes
labeled by a mutation loss p– are descendants of the node labeled by
the gain of mutation p. Consequently, the vector DðT; riÞ, which
expresses the genotype profile of a row i will have a 1 in mutations
acquired but never lost in the path from the root to the parent ri of
the leaf i. Note that, the tree of Figure 1D is a Dollo-1 phylogeny.
We stress that, unlike the case of the perfect phylogeny, when dele-
tions are introduced, we might have more than one tree that is a so-
lution. For example, switching the labels of nodes b– and d– in
Figure 1 produces a different tree, which is still a solution of the pro-
posed input matrix when the Dollo model is considered. Moreover,
the set of ancestral relationships between those two mutations is op-
posite in both representations. An increase of the number of cells
and mutations, coupled with the noise caused by false calls and
missing entries, expands the solution space of this problem, increas-
ing the number of different cancer progression phylogenies which
equally explain the same input.

2.2.1 Our model

The model, we employ in this work is the Dollo-k model, with the
added restriction that there are at most d total mutation losses in the
entire progression. In addition to k, this d is a user supplied param-
eter. Note that, with a maximum d of total losses in the progression,
it means that the variable c is subject to (i) cj � k 8j and (ii)Pm

j

cj � d. Only a small number of mutation losses in each tumor
have been reported (Kuipers et al., 2017), therefore we expect small
values of k and d to be used in practice. Most precisely, we believe
that k � 2 and d � 5 in almost all cases. If the number of mutation
is not too small, setting d � 5 essentially implies k � 1, hence mak-
ing the parameter k mostly irrelevant. Still, we have decided to keep
it because it guarantees that some degenerate trees are never com-
puted. We recall that our model also has the cj parameters, i.e. the
prior probability of losing mutation j.

2.3 Simulated annealing
As mentioned before, the fact that (i) we can flip entries and that
(ii), we want to find the maximum likelihood tree, makes the phyl-
ogeny reconstruction problem under the Dollo-k model computa-
tionally hard for any k > 0. For this reason, in this article, we
consider the Simulated Annealing (Kirkpatrick et al., 1983) (SA) ap-
proach in order to find a tree which maximizes the likelihood of an
incomplete input matrix and that satisfies the Dollo-k phylogeny
model, where k is given as input.

SA is a random search technique, which explores the region of
feasible solutions, searching for an optimal one. As all other meta-
heuristic strategies, it is not guaranteed that SA finds the optimal
value of the objective function in a finite number of steps; neverthe-
less, unlike other deterministic search methods, which can be
trapped into local optima, SA has been designed to overcome this
drawback and converge to a global optimum. The basic idea of the
algorithm is to perform a random search, which accepts, with some
probability, changes that do not necessarily improve the objective
function. At each step, the probability of moving to some state with
a smaller value changes according to a parameter called the tem-
perature, which continuously decreases as the exploration evolves.
In the first iterations of the algorithm execution, the temperature is
very high, and it is possible (with a fairly high probability) to accept
a move into a state with a lower objective value, but as temperature
decreases, the probability of moving also decreases. At the end,
when the temperature is sufficiently low, the algorithm becomes a
local search method, hence unable to escape a local optimum.

2.3.1 Neighborhood topology

An essential element of a SA approach that we must provide how
the algorithm search process can move from a given state to another.

a

b

c

s1

d

b−

e

d−
s2

a−

f

s3

g

s4
a b c d e f g

s1 1 1 1 0 0 0 0
s2 1 0 0 0 1 0 0
s3 0 1 0 1 0 1 0
s4 1 0 0 0 0 0 1

Fig. 1. Example of a binary matrix E (right) representing a sample of the (n ¼ 4)

cells fs1 . . . s4g affected by the set C ¼ fa . . . gg of mutations. The tree (left) is a can-

cer phylogeny T explaining this matrix. Note that, the state of the internal node in

the tree (left) labeled with (mutation) f has state fb, d, fg (mutation a appears in the

root, but was lost in the path to this node), hence the genotype profile DðT; s3Þ of

leaf s3 in the tree is 0101010. Note that Esi
¼ DðT; rsi

Þ holds for the (trivial) map-

ping rsi
¼ si, hence T (left) encodes E (right). Informally, leaf s1 was ‘attached’ to

the internal node labeled by f because genotype profile DðT; s3Þ of leaf s3 in T

matches the row for s3 in E, e.g. Observe that the matrix (right) does not allow a

perfect phylogeny, and that the tree (left) is a Dollo-1 phylogeny
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In our particular framework, we attempt to find a tree, thus, we
must define the neighborhood of a phylogenetic tree in the feasible
region, and the algorithm moves from a tree to one of its neighbors.
The choice of neighborhood is crucial in the algorithm definition
since it determines how feasible solutions are explored, hence, ultim-
ately determining whether or not the algorithm converges.

In our approach, the notion of neighborhood is operational, i.e.
two phylogenetic trees are neighbors if one can obtained from the
other via some operation from a set we will define shortly. For the
sake of clarity, we introduce some notation: given a phylogenetic
tree T and a node (labeled as) i, qðiÞ denotes the parent of i in T.

• Subtree Prune and Reattach: given a tree T and two internal

nodes u; v 2 T such that neither is an ancestor of the other, we

prune the subtree rooted in u by removing the edge ðu;qðuÞÞ and

we reattach it as a new child of v by adding the edge ðv; qðvÞÞ.
• Add a deletion: given two nodes u; v 2 T such that v is an ances-

tor of u, we insert a node v– that represents a loss of mutation v.

The new node is made the parent of u. We remark that this oper-

ation takes place only if the resulting tree satisfies the desired

phylogeny model. More precisely, for the Dollo-k we must check

that the mutation v has been previously lost in the tree at most

k – 1 times, and never lost in any ancestor or descendant of v–.
• Remove a deletion: given a node u 2 T, labeled as a loss, we sim-

ply remove it from the tree T: all children of u are added as chil-

dren of qðuÞ and the node u is then deleted.
• Swap node labels: given two internal nodes u; v 2 T, the labels of

u and v are swapped. If a previously added loss becomes invalid

due to this operation—because a mutation c is lost in a node c–,

but the node where the mutation c is acquired is not an ancestor

of c– anymore—then we remove the deletion c–.

2.3.2 The algorithm

The goal of the algorithm is to find a maximum likelihood Dollo-k
phylogeny tree; a SA process is performed using the previously
defined set of valid operations according to the same temperature
decay process—in each iteration, one of these operations is per-
formed, chosen uniformly among all possible candidate operations.
Finally, after a new neighbor is generated, cells are optimally
attached to the tree, maximizing its likelihood, resulting in the score
of the new solution.

Moreover, in the SA search processes, we have that, given a tree
and a valid tree operation, the probability of accepting the new solu-
tion is minfeDv=T ;1g, where Dv is the possible change in the likeli-
hood function after performing the operation, and T is the current
temperature. The cooling process follows a geometric decay with a
factor (cooling rate) cr of 10�2, i.e. the temperature at the i-th iter-
ation is equal to Ti ¼ ð1� 10�2ÞTi�1 and T0 ¼ 104. The SA process
stops when the temperature drops below a lower bound set at 10�3.

Since mutation losses are not as frequent as mutation gains, our
approach allows to set an upper bound on d: the total number of
deletions of the resulting tree. For example, in a Dollo-k model, we
can consider only trees where each mutation is lost at most k times,
but there are at most d nodes associated to mutation losses.

2.4 Visualization
Alongside the main tool, we produced a post-processing tool, called
SASC-viz, that can be used to perform processing and filtering oper-
ations after the computation of the main tool. Notice that the fol-
lowing operations do not change the actual evolutionary history
computed but only how it is displayed.

• Collapsing simple paths: when this option is activated, all simple

non-branching paths are collapsed, i.e. if a node has only one

child, then such node is merged with its child;

• Collapsing low-support paths: when this option is activated, if

the support of a node i is lower than a specified value, then i is

merged with its parent qðiÞ, where the support si of a mutation i

is computed on the output tree as follows: let st(i) be the set of

nodes in the subtree rooted at i, and let C(i) be the number of

cells assigned to the node i. Then, the mutation support si is:

• si ¼
P

u2stðiÞ CðuÞP
v2stðpðiÞÞ CðvÞ�CðqðiÞÞ :

We used SASC-viz to produce the pictures of the real dataset
analyzed. In particular, Figures 6 and 7 are obtained by activating
the collapsing simple paths option. Figure 5 was produced with
more enabled options: by collapsing simple paths and collapsing
low-support paths with threshold 5%.

3 Results

3.1 Results on simulated data
We have tested our method on simulated data, where the ground
truth phylogeny is known. We recall that it is possible, however,
that a completely different tree achieves a better likelihood on the in-
put data than the one obtained via simulation. This problem is es-
sentially unavoidable, since generating a progression that is the
unique solution for the corresponding SCS input matrix would re-
quire the contrived addition of artifacts to both the desired tree and
the input matrix. These artifacts would likely be so artificial that the
resulting instance would not satisfy even the basic assumptions on
cancer progression.

3.1.1 Generating simulated datasets

To test the methods, we run three different experiments with in-
creasingly sophisticated models, according to the parameter settings
of Supplementary Table S1. In the first experiment, we explore a
model with the possibility of mutation losses, a phenomenon, which
has been evidenced by (Kuipers et al., 2017); the second experiment
is produced with a model using only different (mutation-specific)
false-negative rates, as seen in the real data we use. For the third ex-
periment, we combine the previous two to extend the simulation to
the most general model in which mutations have the possibility to
be lost, and each have a specific false-negative rate.

The false negative error rate distribution of the real datasets are
obtained by analyzing the raw data of MGH36 and MGH64 from
Tirosh et al. (2016) and comparing the mutation frequencies in the
scRNA-seq data to the matching Whole-Exome Sequencing (WES)
from bulk RNA sequencing, to deduce the drop-out frequency. We
have analyzed more than 2000 mutations and observed that the dis-
tribution of the real data is consistent with a Beta distribution,
which we have used as a base for the generation of our simulated
data.

The values of different false-negative rates are randomly chosen
from a Beta distribution Bða;bÞ with parameters a;b < 1, to better
simulate the values found in real datasets; the different values of the
prior probabilities of mutation losses are produced using a
Triangular distribution with lower limit a, upper limit b and mean c,
indicated as T ða; c; bÞ. Such distribution is usually used when only
the mode, upper and lower bounds are known in a population as
proxy for a fair estimation of real-case scenarios. A detailed descrip-
tion of the method used to simulate the datasets is available in the
Supplementary Material.

3.1.2 Evaluating the simulated datasets

For each of the three experiments, we measure the accuracy of SASC
with two scores based on standard cancer progression measures
used in various studies (Jahn et al., 2016; Malikic et al., 2019a), i.e.
Ancestor–Descendant and Different-Lineage accuracies; a novel
parsimony-based score based on the difference between the number
of flips, i.e. changes from 0 to 1 and from 1 to 0, estimated by some
tool to correct the input; and the actual number of flips introduced
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by the simulation process to induce the noise. Lastly, we evaluate
the trees using the edit distance measure of Karpov et al. (2018). A
detailed explanation of all the measures is available in the
Supplementary Material. Note that none of the above mentioned
metrics explicitly measures the ability of tools to correctly infer ISA
violations.

Additionally to the aforementioned measures, we provide two
accuracy measures for the estimation of false negatives: (i) an accur-
acy of the estimation of the average false-negative rate in the simula-
tions and (ii) the value of the average, over the 50 trees, of the mean
squared error (MSE) over the set of estimations, for each mutation,
of the mutation-specific false-negative rates. Note that (ii) gives an
indication also of the variance of the estimation of false-negative
rates, which is important when these rates are heterogeneous, and
far from being normally distributed—something we see in real data
that we use here and that is due to varying gene amplification and
expression levels.

3.2 Results of the simulation experiments
We now detail the evaluation of the last experiment, which shows
the most interesting results. Due to lack of space, we refer to the
Supplementary Material for a detailed discussion on the other two,
less general, experiments.

We decided to compare SASC against SCITE (Jahn et al., 2016),
SiFit (Zafar et al., 2017) and SPhyR (El-Kebir, 2018). While B-
SCITE (Malikic et al., 2019a) is a clear improvement over SCITE, it
combines single-cell data with bulk sequencing data—since we do
not manage the latter kind of data, a fair comparison is not feasible.
For the same reason, we do not compare against TRaIT (Ramazzotti
et al., 2019) and PhISCS (Malikic et al., 2019a). OncoNEM (Ross
and Markowetz, 2016) was excluded because it is not able to com-
plete the execution on datasets as large as the ones used in the simu-
lations. Each of the tools is properly run with millions of iterations
and multiple restarts; the complete settings are available in the
Supplementary Material.

This experiment shows the results when the datasets contain
both heterogeneous false negatives and deletions based on scRNA-
seq error model, thus complementing the other experiments. SASC
outperforms any other tool in every considered measure (Figs 2 and
3) and it also shows the best estimation of the false-negative rates in
terms of average and MSE (Fig. 4). It is particularly interesting to
notice the drop in performance of SPhyR when it is forced to employ
the Dollo model, since this is the only experiment with mutation
losses involved. It is also very clear that SASC outperforms all the
available methods when it deals with heterogeneous false-negative
rates and mutation losses. It also interesting to notice that SASC
shows a much higher accuracy than the other two tools that allow

mutational losses—SiFit and SPhyR—when such losses are present
in the dataset.

3.3 Results on real cancer data
We test and compare SASC on four different datasets, comprising
both scDNA-seq and scRNA-seq sequencing data. Due to lack of
space, the figures of the trees inferred by the other methods are dis-
played in the Supplementary Material. Since SiFit exhibited poor
performances on the simulated datasets, it is excluded in the com-
parison on real datasets.

3.3.1 Oligodendroglioma IDH-mutated tumor

We test SASC on an oligodendroglioma IDH-mutated tumor; in par-
ticular, on cancer MGH36 (Tirosh et al., 2016), consisting of 77
SNVs, distinguished from PCR false positives using matched WES,

Fig. 2. Accuracy results for the simulated experiment. In this experiment, SASC

scores better than any other tool in these measures. Once again SiFit is the poorest

scoring method. The accuracy of SPhyR lowers when mutation losses are included

into the dataset and it is forced to employ a Dollo model. To the contrary, SASC

performs the best when it utilizes the full extent of its capabilities, i.e. the handling

of heterogeneous false-negative rates and mutation losses. Notice that larger values

in both measures are better

Fig. 3. Accuracy results for the simulated experiment. According to these two meas-

ures, SASC scores better than any other tool. A clear performance drop is noticed

when SPhyR is forced to employ a Dollo model. We represent the results of the par-

simony score with and without SiFit, since its results are much different from the

other ones. Notice that smaller values of both measures are better

Fig. 4. False-negative rates estimation for the simulated experiment. SASC estimates

the false-negative rates better than the other tools, both in terms of average estima-

tion, as well as MSE of the single rates for each mutation. Especially in the latter

measure, we can notice a vast discrepancy in the accuracy of the estimation of false-

negative rates. The thick red line is the average of the individual false-negative rates

of the mutations in the ground truth
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over 579 cells. Figure 5 shows the tree computed by SASC and the
distribution of the false-negative rates (shown in the bottom-right
corner plot). The distribution stresses the necessity of a method that
considers heterogeneous false-negative rates, since there are two
spikes of rates (at roughly 0.1 and 0.9), i.e. it is highly bimodal, and
using the average of the rates would not be an accurate representa-
tion. In this particular tumor, no deletion was expected: this is con-
firmed by the inferred tree.

For the dataset MGH36 from Tirosh et al. (2016), there is no
manually curated tree to compare the results of the tools, thus, we
report the number of false negatives and false positives inferred by
the methods, this is the number of flips from 0 to 1 and from 1 to 0,
respectively, from the input to the output. The rationale for this
score is to report a parsimony score of the algorithms; a comparison
of the likelihood values will not be fair, since SASC uses a different
formula than the other tools. Such score is shown in Supplementary
Table S5; SASC introduces the lowest number of false negatives to
obtain the solution, albeit being very close to SCITE (Supplementary
Fig. S11), while SPhyR (Supplementary Fig. S14) infers the highest
number.

3.3.2 Childhood acute lymphoblastic leukemia

Furthermore, we test SASC on Childhood Acute Lymphoblastic
Leukemia data from Gawad et al. (2014). In particular, we focus on
Patients 4 and 5 of this study, given their large amount of both cells
and mutations, as well as their complexity. Data on Patient 4 consist
of 78 somatic SNVs over 143 cells, while Patient 5 is affected by
104 somatic SNVs over 96 cells. The original study estimated an al-
lelic drop-out rate of <30%. Since the trees in Gawad et al. (2014)
determined using expectation–maximization on a multivariate
Bernoulli distribution model, are manually curated and of high qual-
ity, we select them as the ground truth.

To ensure the absence of doublets, i.e. noise produced by error
due to the fact that two cells are sequenced instead of a unique cell,
we preprocess the input using the Single-Cell Genotyper (SCG) tool
(Roth et al., 2016). SCG is a statistical model, which removes all
cells of the datasets that are likely to be doublets.

Figure 6 shows the tree inferred by SASC for Patient 4; SASC
correctly infers the tree structure obtained in the study, as well as
the size of the subclonal population. The driver mutations are cor-
rectly detected, and mutations COL5A2, SDPR and TRHR are
inferred as deletions. Furthermore, bold-faced and colored muta-
tions indicate the correctly placed specific driver mutations for the
subclone of the same color. It is interesting to notice that, in the ori-
ginal study, the violet subclone does not have mutations COL5A2

and TRHR: these particular mutations are in fact deleted in the
clone. This solution was found assuming a Dollo-1 phylogeny model
with no restriction on the total number of deletions in the cancer
progression.

IDH1,
NOTCH2,RTTN,TBC1D10A,MLYCD,

CACNA1G,CTNNA2,NRN1,APC2,IL33,NBPF10,
RFX3,UBE2Z,ZZEF1,KHSRP,SH3BP5,CCDC181,
VGLL4,PIK3CA,PHLDB3,NR3C1,RP11-356C4.3,

VPS9D1,PLEKHM1,LINC00937,ST8SIA3,
CPEB4,TRPM3,TRIOBP,ZNF451,
CEP55,TFAP2A,ZNF721,KIF2A,

USP36,IFT81,SVEP1,MCM8,
ARHGEF3,AGAP2,NR5A2

HLA-DQB2,
ABCA7,STXBP1,
RUNX2,SOX5,

KIAA0907,CPAMD8

CEBPZ,DGCR6L,
MAN1B1,ENO3,

ZNF526

EMR2,
CYP27A1

MIR4477B,
SLC26A11,

KAT6A,CNNM2,
SLC16A7

KMT2C

PCDHA1

EEF1B2,ZNF462,
EP400,

RP11-403I13.8

NPEPL1TXNDC2,
HEATR4

HELZ2,
RIN2

ORC3,
CLEC18B

 

ANKRD30B,
FAM182B,
TRPM2,
AS3MT

Fig. 5. Tree inferred by SASC for the oligodendroglioma IDH-mutated MGH36

from Tirosh et al. (2016). The tree was computed using as input different false-nega-

tive rates for each mutation, whose distribution can be seen in the bottom-right cor-

ner plot. The picture was drawn using the SASC-viz post-processing tool Fig. 6. The tree inferred by SASC for Patient 4 of the Childhood Lymphoblastic

Leukemia data from Gawad et al. (2014). Different clones are indicated with differ-

ent colors. Red nodes indicate deletions of mutations, while bold-faced mutations

are the mutations indicated as driver in the original sequencing study. Mutations in

bold and colored are driver mutations for the clone with the same color. Mutations

are clustered by collapsing simple linear paths. The picture was drawn using the

SASC-viz post-processing tool

Fig. 7. Tree inferred by SASC for Patient 5 of the Childhood Lymphoblastic

Leukemia data from Gawad et al. (2014). Different clones are indicated with differ-

ent colors, while the red-colored nodes indicate deletions of mutations, and muta-

tions highlighted in bold are the mutations indicated as driver in the original

sequencing study. Mutations bold-faced and colored are driver mutations for the

same colored clone. Mutations are clustered by collapsing simple linear paths. The

picture was drawn using the SASC-viz post-processing tool
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In Figure 7, the inferred solution for Patient 5 of the same study
is shown. As in the previous dataset, our inferred tree perfectly sup-
ports the hypotheses proposed in the original sequencing study: in
fact, it correctly infers the topology of the tree, as well as the place-
ment of driver mutations. Bold-faced mutations are the driver muta-
tions for the tree or the subclone with the same color. This solution
was found assuming a Dollo-1 phylogeny model with a restriction
of 10 deletions in the cancer progression. As described in the Section
2.3, such values for k and d were empirically found to give the best
likelihood.

Since the original study (Gawad et al., 2014) provides manually
curated trees, we can compare SASC, SCITE and SPHyR to them.

SCITE is run using the same setting used for SASC, i.e. the pro-
posed values of false positive and false-negative rates.
Supplementary Figure S9 shows the tree inferred by SCITE for
Patient 4; the tree structure is similar to the one proposed in the art-
icle but it presents more clones. Furthermore, we highlighted in red
all driver mutations that were not correctly detected, and in blue
mutations that define a subclone and should be in the same subtree.
Supplementary Figure S10 shows the tree inferred by SCITE for
Patient 5 of the same study; the tree topology is correctly inferred,
however mutations highlighted in red are driver mutations that were
not correctly detected.

SPhyR is run using the same setting used for SASC, i.e. the pro-
posed values of false positive and false-negative rates and assuming
a Dollo-1 model. Supplementary Figure S12 shows the tree inferred
by SPhyR for Patient 4; the tree structure is similar to the one pro-
posed in the article. The drivers and distinct subclones are also cor-
rectly placed. Supplementary Figure S13 shows the tree inferred by
SPhyR for Patient 5 of the same study; the tree topology is correctly
inferred, however, it infers a large number of mutation losses, which
is very unlikely and it is probably due to the fact that deletions are
used, in this case, to correct false negatives at no cost in terms of
likelihood function.

3.3.3 Medulloblastoma

Lastly, we test the methods on Medulloblastoma patient BCH1031
from Hovestadt et al. (2019) consisting of 96 mutations over 330
cells. Given the complexity and the dimensions of the trees, we dis-
play them in the Supplementary Material. SASC and SPhyR com-
puted the solution using a Dollo-2 phylogeny model.

Supplementary Figure S15 shows the tree inferred by SASC,
which reported a total of two mutation losses. Both trees inferred by
SASC and SCITE (Supplementary Fig. S16) express, as expected,
various mutations correlated to the TUBB gene. On the other hand,
SPhyR (Supplementary Fig. S17) inferred a total of 56 mutations
over the 96 present in the sample. Furthermore, similarly to the pre-
vious experiment, SPhyR inferred a total of 24 mutational losses,
which is very unlikely for so many losses to be present in a single
sample, since evidence from Kuipers et al. (2017) suggests that this
phenomenon is extremely rare. It is more likely that, also in this
case, deletions are used to correct false negatives at no cost in terms
of likelihood. Lastly, while SASC and SCITE each finished its com-
putation in <2 h, SPhyR took more than 24 h.

4 Conclusion

We have presented SASC and we have shown that it is an accurate
tool for inferring intra-tumor progression and subclonal compos-
ition from both scDNA-seq and scRNA-seq data. SASC manages
cases with mutation losses and is robust to various sources of noise
in all data.

We have tested SASC on three simulated datasets, and we have
shown that SASC is able to outperform all tools when there are mu-
tation losses, while being competitive with SCITE and SPhyR when
there are no mutation losses.

We have tested SASC on three real datasets. SASC has inferred a
likely phylogeny tree structure, correctly identifying the driver muta-
tions and the decomposition of the clones. Furthermore, it has
solved those large datasets in adequate runtime.

A particularly interesting example is given by the inferred tree in
Figure 7. The corresponding input dataset in this case contains more
than 5000 conflicts between mutations—each conflict is a pair of
mutations witnessing a violation of the ISA. With only a slight relax-
ation of the ISA—the Dollo-1 model—SASC is able to infer an ac-
curate solution with a total of only eight deletions, while perfect
phylogeny methods would require a large number of changes to the
entries in the input just to produce a feasible solution.

A future extension could be the inclusion of coverage information
from the reads, as in Monovar (Zafar et al., 2016) and SciU (Singer
et al., 2018), since it will also have an impact on the false-negative
rates. Another direction is toward even more general models, e.g.
allowing each mutation to appear more than once in the tree. Also in
this case, special attention must be paid to keeping the model suffi-
ciently restricted so that computation time does not explode, and
inferred trees are still relevant from a biological point of view.

The need for a model that allows mutation losses has been estab-
lished in Kuipers et al. (2017), but no clear consensus on the model
that is most suited to represent the true evolution of tumors has
been reached so far, to the best of our knowledge. In our article, we
introduce and follow a restricted version of the Dollo-k model,
where the number of mutations in each site and the number of over-
all mutations is limited—even though our method can be used also
in a more relaxed setting. Determining which of the possible models
is going to be the basis for effective and efficient tumor phylogeny
inference is something that needs to be explored in the future, but it
will likely need the development of different methods, and a deeper
understanding of the models.

All the data produced and the experimental settings are publicly
available and reproducible at SASC’s repository https://github.com/
sciccolella/sasc.
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