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Abstract: To address the structure–activity relationship of Chlamys farreri polysaccharides on their
immunostimulatory efficacy, two polysaccharides (CFP-1 and CFP-2) were extracted from Chlamys
farreri by hot water extraction, and separated through column chromatography. The isolated CFPs
were chemically analyzed to clarify their physicochemical characteristics and cultured with murine
macrophage RAW264.7 cells, in order to evaluate their immunostimulatory efficacy. Despite the fact
that both CFP-1 and CFP-2 were mainly comprised of glucose lacking the triple-helix structure, as
revealed through preliminary physicochemical analyses, obvious differences in regard to molecular
weight (Mw), glucuronic acid content (GAc) and branching degree (BD) were observed between
CFP-1 and CFP-2. In in vitro immunostimulatory assays for macrophage RAW264.7 cells, it was
demonstrated that CFP-2 with larger Mw, more GAc and BD could evidently promote phagocytosis
and increase the production of NO, IL-6, TNF-α and IL-1β secretion, by activating the expression of
iNOS, IL-6, TNF-α and IL-1β genes, respectively. Hence, CFP-2 shows great promise as a potential
immunostimulatory agent in the functional foods and nutraceutical industry, while CFP-1, with
lower molecular weight, less GAc and BD, displays its weaker immunostimulatory efficacy, based on
the indistinctive immunostimulatory parameters of CFP-1.

Keywords: Chlamys farreri polysaccharides; physicochemical analysis; RAW264.7 cells;
immunostimulatory activity

1. Introduction

A multitude of monosaccharide units bonded through glycosidic linkages constitute
polysaccharides, which frequently exist in plants, bacteria, fungi and animals, as a vital biological
macromolecule. The low toxicity associated with polysaccharides, together with their wide-ranging
bioactivities, like antidiabetic [1], anti-inflammatory [2,3], antitumor [4], antioxidation [5,6],
antiobesity [7] and immunomodulation [8,9] have contributed towards their increasing popularity
in the scientific community. Similarly, immunostimulatory polysaccharides can directly or indirectly
activate the immune system by triggering several cellular or molecular events [10]. The chief mediators
of the action of such polysaccharides are reported to be monocytes, macrophages, and neutrophils [11],
with most studies focusing on the function of macrophages [12].

The study about the polysaccharide from Sarcodon aspratus, for instance, showed that its
immunostimulatory activity not only enhanced the phagocytic function of RAW264.7 cells, but also
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increased the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α
and IL-6) [13]. Similar results were also found in a low-molecular-weight β-glucan from Durvillaea
Antarctica, which could significantly activate RAW264.7 cells to release NO, ROS, TNF-α, MCP-1 and
IL-1β, and exerted stronger immunostimulatory activity on RAW264.7 cells compared with lentinan,
in many aspects [14]. Moreover, some studies reported that immunostimulatory polysaccharides
affected the proliferation and differentiation of macrophages as well [15,16]. With the developments in
polysaccharides research, it has been found that the biological activities of polysaccharides are closely
related to their structure. The structure-activity relationship of polysaccharides, hence, has become an
essential part of polysaccharide research.

Marine invertebrates are attracting the attention of researchers in recent years, due to their
nutritive value, potential health benefits and therapeutic applications [17]. They are rich in protein,
amino acids, carbohydrate, vitamins, and inorganic elements. The active proteins isolated from these
invertebrates have been reported to have antioxidant, antifatigue and immunostimulatory activity [18].
In addition to proteins, some bioactive polysaccharides have been discovered, such as the Jellyfish skin
polysaccharides, which showed strong inhibitory effects on oxidized low-density (oxLDL) induced
conversion of macrophages into foam cells [19]. Likewise, the sulfated polysaccharides obtained from
sea cucumber had stronger anticoagulant activity [20].

Chlamys farreri is a member of the Pectinidae family, which is naturally distributed throughout
the coasts of East Asia, and is a commercially available mollusk in China [21]. Various bioactivities,
including antioxidant, antitumor and antiviral activities, have been reported for the polysaccharides in
shellfish [22], however, its immunostimulatory efficacy remains unexplored. In this study, the crude
polysaccharide isolated from the Chlamys farreri (CFP) by hot water extraction was separated into
two fractions (CFP-1 and CFP-2), through DEAE-52 cellulose chromatography, while these fractions
were homogenized using Sephadex G75 chromatography. These fractions were then subjected to
physicochemical analyses, including molecular weight, monosaccharide composition and structural
features. Moreover, the immunostimulatory activity of crude CFP, CFP-1 and CFP-2 were investigated
in vitro, using murine macrophage RAW 264.7 cells. In addition, the molecular level study of their
immunomodulation efficacy was performed using RT-QPCR.

2. Results and Discussion

2.1. Isolation and Purification of CFPs

2.1.1. Optimization of Extraction Conditions

The single-factors tests were performed, to determine the effects of different factors on the
extraction efficiency of CFP (Table 1). The total sugar yield increased from 26.31% to 28.78%, as the
solvent to material ratio (V/W) changed from 30 to 60. A change in this ratio from 60 to 70, however,
did not exhibit any obvious differences in this regard. Likewise, a rapid increase in the yield was
detected up to 65 ◦C, demonstrating a direct proportionality between high temperature and increased
yield. A slight increase in yield was also observed at 95 ◦C. Similar patterns of extraction were also
reported in other polysaccharides’ extraction [19]. In a similar fashion, the yield improved, with an
increase in extraction time from 1 to 4 h, while no significant differences in this regard were observed
upon increasing the extraction time up to 5 h. The extraction rate under optimum conditions (solvent
to material ratio of 60, 65 ◦C and 4 h) was 29.84%.
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2.1.2. Removal of Proteins from Crude Polysaccharides

Polysaccharides are traditionally deproteinized, either by denaturing the proteins by chemical
reagents, or through their enzymatic hydrolysis with the help of proteases [23]. A more environment
friendly and convenient method, ethanol-ammonium sulfate ATPS, has also been reported as an
effective tool in this context [4,5,24]. In the present study, sevag method exhibited a higher residue
rate of protein (39.81 ± 4.10%) and a higher loss rate of polysaccharide (18.28 ± 2.37%) than the
ethanol-ammonium sulfate ATPS method (Table 2). In addition, Sevag regent contains poisonous
chloroform, which is environmentally disadvantageous. It is for this reason that ethanol-ammonium
sulfate ATPS was preferentially chosen for the removal of proteins from CFP.

Table 1. Effect of solvent to material (V/W ratio), extraction temperature and extraction time on the
total sugar yield. Values are represented as the means ± SD, as determined from triplicate experiments.

Factors Yield of Total Sugar (%)

V/W ratio
(65 ◦C, 3 h)

30 40 50 60 70
26.31 ± 0.82 26.95 ± 0.60 28.27 ± 1.12 28.78 ± 0.64 28.50 ± 0.73

Temperature (◦C)
(50 V/W, 3 h)

35 50 65 80 95
21.84 ± 0.47 22.93 ± 0.52 25.21 ± 0.70 25.64 ± 1.12 25.74 ± 0.33

Time (h)
(50 V/W, 65 ◦C)

1 2 3 4 5
24.04 ± 0.22 25.10 ± 0.34 25.47 ± 0.31 26.30 ± 0.11 26.45 ± 0.14

Table 2. Comparison of two methods for de-proteninzation of crude CFP. Values are represented as the
means ± SD as determined from triplicate experiments.

Method Rps (%) a Lps (%) a Rpro (%) a

ATPS
Top phase 19.34 ± 0.62

14.83 ± 2.77
16.60 ± 0.80

Bottom phase 65.82 ± 2.16 8.04 ± 0.45
Sevag 81.72 ± 2.37 18.28 ± 2.37 39.81 ± 4.10

a Rps denotes recovery ratio of polysaccharide, Lps denotes loss ratio of polysaccharide, and Rpro denotes residue
ratio of protein.

2.1.3. Separation of Deproteinized Polysaccharide

The crude CFP was collected by the ethanol precipitation method, and then purified by DEAE
cellulose-52 column chromatography. The HPLC chromatogram represented two observable peaks
(Figure 1A). The peak representing the neutral polysaccharide was eluted with distilled water,
while 0.3 mol/L NaCl was used as an eluent for the acidic polysaccharide. After being collected,
the polysaccharides were further purified by Sephadex G-75 with pure water as eluent (Figure 1B,C).
The main fractions (CFP-1 and CFP-2), as depicted by the elution curve, were collected and concentrated
at 50 ◦C before subjecting them to freeze-drying. The freeze-dried of the crude CFP, purified CFP-1
and CFP-2 will be for further research.
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curve, the molecular weights of CFP-1 and CFP-2 were calculated to be 8436 Da and 82372 Da, 
respectively. 
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2.2.2. Chemical Composition Analysis 

The glucuronic acid content of crude CFP, CFP-1 and CFP-2 was measured by the 
m-hydroxydiphenyl method, and calculated as 12.01% ± 2.051%, 3.73% ± 1.04% and 24.09% ± 5.03%, 
respectively. For the monosaccharide composition analysis, the results from HPLC spectrum (Figure 

Figure 1. Various column chromatography elution curve of CFP. (A): DEAE cellulose-52 column
chromatography of crude CFP, (B): Sephadex G75 column chromatography of neutral polysaccharide,
(C): Sephadex G75 column chromatography of acidic polysaccharide

2.2. Chemical-Physical Properties of Polysaccharides

2.2.1. The Molecular Weight of CFP-1 and CFP-2

Both CFP-1 and CFP-2 exhibited a single and symmetric peak in the HPGPC chromatograms,
indicating that they are homogeneous polysaccharides (Figure 2). The retention time of CFP-1 was 20.85
min, and that of CFP-2 was 9.80 min. On the basis of the equation derived from the standard curve,
the molecular weights of CFP-1 and CFP-2 were calculated to be 8436 Da and 82372 Da, respectively.
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2.2.2. Chemical Composition Analysis

The glucuronic acid content of crude CFP, CFP-1 and CFP-2 was measured by the
m-hydroxydiphenyl method, and calculated as 12.01% ± 2.051%, 3.73% ± 1.04% and 24.09% ±
5.03%, respectively. For the monosaccharide composition analysis, the results from HPLC spectrum
(Figure 3B) indicated that crude CFP was composed of glucuronic acid, galacturonic acid, and glucose,
with a molar ratio of 1:1.92:29.13. HPLC only detected traces of galacturonic acid and glucuronic acid,
mainly because the hydrolysis time is too long, the high temperature of 120 ◦C, and also the strong
oxidizing effect of TFA, so the two uronic acids may be destroyed; it would affect their quantification.
However, if the hydrolysis time was shortened, it may also lead to the crude CFP, which cannot be
quantified accurately by incomplete hydrolysis. These results indicated that glucose is the main sugar
unit, and because the content of these two uronic acids was very low, it did not affect the judgment of
the main glycosidic linkage.
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3. Glucuronic acid; 4. Galacturonic acid; 5. Glucose; 6. Galactose; 7. Arabinose; 8. Fucose.
(B) Monosaccharide of crude CFP.

2.2.3. Fourier Transform Infrared (FT-IR) Spectrum and UV Scanning Spectrum of CFP-1 and CFP-2

FT-IR spectrum analysis is an essential method to explore the structure of polysaccharides, because
of the characteristic absorption of each functional group [25]. As shown in Figure 4, the broad
stretching peaks in the region of 3385 cm−1 (CFP-1) and 3404 cm−1 (CFP-2) were assigned to the
hydroxyl stretching vibration of the polysaccharide, and the absorption peak at 2938 cm−1 (CFP-1) and
2937 cm−1 (CFP-2) designated C-H stretching vibration [26]. The absorbance of COO- deprotonated
carboxylic group or bound water was indicated by the absorption peaks at 1624 cm−1 (CFP-1) and
1623 cm−1 (CFP-2) [27]. Moreover, the broad stretching peak in the region of 950 cm-1 ~ 1200 cm-1 was
indicative of ring vibrations overlapping with the stretching vibrations of C-OH side group and the
(C-O-C) glycosidic band vibration [28]. The absorptions at 1021 cm−1, 1079 cm−1, 1155 cm−1 (CFP-1)
and 1021 cm−1, 1079 cm−1, 1155 cm−1 (CFP-2) testified that the polysaccharides are a pyranose form of
carbohydrate [29]. The whole the FT-IR spectra revealed no significant differences between CFP-1 and
CFP-2, in regard to the characteristic absorptions of the functional groups (Figure 4).
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The UV scanning spectra for both CFP-1 and CFP-2 were void of any absorption at 260 and 280 nm,
which was indicative of the absence of proteins and nucleic acids in both fractions (Figure 5).
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2.2.4. The Congo-Red Testing for Crude CFP, CFP-1 and CFP-2

The complexation formed by triple-helical polysaccharides and Conge-red can cause the red-shift
of maximum absorption in Congo-red solution, and if the triple-helix structure of polysaccharides was
destroyed by chemicals, the maximum absorption in Congo-red solution would decrease [25].

Curdlan, representing a typical triple-helical polysaccharide conformation, was used as standard
in this study. A significant decrease in the maximum absorption wavelength of curdlan and Congo-red
complexation at a higher concentration of NaOH (0.5 mol/L) was evident, indicating the destruction
of triple-helix conformation (Figure 6). The Congo-red results of crude CFP, CFP-1 and CFP-2 were
consistent with that of the standard, wherein the maximum absorption wavelength increased at a
NaOH concentration, ranging from 0 to 0.2 mol/L. Conversely, no significant decrease in this regard was
observable at higher NaOH concentrations, suggesting that CFPs, unlike curdlan, lacked a triple-helix
conformation, and that they may form a new bonding with Congo-red in NaOH solution [25]. Although
triple-helix conformation ofβ-d-glucans has been associated with enhanced immunostimulatory activity
in a previous work [30], other reports suggest the contrary. In fact, the immunostimulatory activity of
(β1→3)-d-glucans by increasing TNF-α in mouse serum has been reported to be dependent upon the
single-helix conformation [31]. Similarly, heteroglucans, lacking a helical conformation, have also been
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found to possess immunostimulatory function [32,33]. Hence, it is safe to assume that the triple-helix
structure is not a necessary factor in determining the immunostimulatory efficacy of polysaccharides.
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2.2.5. GC-MS of Alditol Acetate Derivatives from the Methylated Product of CFP-1 and CFP-2

CFP-1 consisted of 1,2-linked Glcp, 1,4-linked Glcp and 3,4,6-linked Glcp, in a molar ratio of
2.12:1.00:6.54, while CFP-2 displayed 1-linked Glcp, 1,4-linked Glcp and 1,3,4-linked Glcp, in a molar
ratio of 1.00:9.73:1.72 (Table 3). The DB value for CFP-1 and CFP-2 turned out to be 0.68 and 0.22,
respectively. As is known, structure is closely associated with the function of a biological molecule,
and branching degree, representing the presence of linked monosaccharides or linked chains, is an
important feature of the structure of polysaccharides. For instance, an enhanced immunostimulatory
activity has been reported for the highly branched β-(1→3)-d-glucans, in comparison to their less
branched or linear counterparts [34,35]. Likewise, more branches of residue units or side chains
of fucose, galactose, and/or mannose have been associated with improved immunostimulatory
activity in α-d-heteroglucans and β-d-heteroglucans [36,37]. On the other hand, α-(1→6)-d-glucans
and α-(1→4)-d-glucans have been found to possess immunostimulatory activity in both linear and
branched conformations. In fact, a lower branching degree has been suggested as the structural feature
responsible for enhanced immunostimulation in α-(1→4)-d-glucans [38]. In a similar fashion, the less
branched CFP-2 in the present study demonstrated a stronger immunostimulatory activity than the
relatively highly branched CFP-1, pointing towards the possibility that α-(1→4)-d-glucans form the
backbone of CFPs.

Table 3. GC-MS of alditol acetate derivatives from the methylated product of the CFP-1 and CFP-2.

Retention Time (min) Methylated Sugar Linkage Types Molar Ratio (%)

CFP-1
13.80 2,4,6-Me3-O-methyl-d-Glcp 2-d-Glcp 2.12
13.98 2,3,6-Me3-Omethyl-d-Glcp 4-d-Glcp 1.00
15.68 1,3,5,6-Me4-O-methyl-d-Glcp 3,4,6-d-Glcp 6.54

CFP-2
12.92 2,3,4,6-Me4-O-methyl-d-Glcp T-d-Glcp 1.00
13.98 2,3,6-Me3-O-methyl-d-Glcp 4-d-Glcp 9.73
15.07 2,6-Me2-O-methyl-d-Glcp 3,4-Glcp 1.72
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2.3. Immunostimulatory Activity

2.3.1. Effects of Polysaccharides on RAW264.7 Cell Proliferation

A measure of the proliferation of macrophage, an important immune cell in both innate and
adaptive immune response, is regarded as a vital index in the context of cellular immunity [39]. In the
present study, the effects of CFPs (in a concentration range of 125 to 2000 µg/mL) on RAW264.7 cell
proliferation were examined. As is evident, there were no significant differences between the LPS
group (control) and the polysaccharides group, indicating the nontoxicity of CFPs (≤2000 µg/mL)
towards RAW264.7 cells (Figure 7A).
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Figure 7. Effects of polysaccharides on the viability of RAW264.7 cells (A); Effects of polysaccharides
on the phagocytosis activity of RAW264.7 cells (B); Effects of polysaccharides on the production of NO
(C), TNF-α (D), IL-6 (E) and IL-1β (F) of RAW264.7. The group without polysaccharide was used as the
normal control, and LPS (5 µg/mL) was used as the positive control group. The data shown are means
± SD (n = 3). All data were analyzed statistically using a one-way analysis of variance. (*) p < 0.05 and
(**) p < 0.01, compared with the normal control, respectively.
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2.3.2. Effects of Polysaccharides on Phagocytic Activity of RAW264.7 Cells

A distinguished feature of activated macrophages is illustrated by an increase in phagocytosis [40],
which in turn demonstrates the activation of the innate immune response. Neutral red assay was
employed here, in order to evaluate the effects of CFPs on the phagocytic activity of RAW264.7 cells.
The phagocytic activity was significantly enhanced by LPS, crude CFP and CFP-2, while CFP-1 failed to
produce any demonstratable effects in this regard (Figure 7B). In the case of crude CFP, the phagocytic
OD values of RAW264.7 increased in a dose-dependent manner, until the concentration was 1000 µg/mL.
A slight decline, however, was observed at 2000 µg/mL, indicating that 1000 µg/mL of crude CFP was
the optimal concentration for enhancing the phagocytic activity of RAW264.7 cells. A similar trend in
this context was also noted for CFP-2. Such an enhancement of phagocytic activity suggests that both
crude CFP and CFP-2 are capable of inducing macrophage activation.

2.3.3. Effects of Polysaccharides on NO Production

As an important biological messenger and functional molecule, NO is associated with the
physiological function in immune and nervous systems [41]. Activated macrophages initiate an
innate immune response to kill the foreign bodies directly by phagocytosis and the release of NO.
Consequently, the production of NO is considered as an important index to reflect upon the level
of immune activity. In the present study, LPS, crude CFP and CFP-2 were found to be potent in
significantly enhancing the production of NO by RAW264.7 cells (Figure 7C). Such an increase in NO
production suggested that crude CFP and CFP-2 may activate the bactericidal and tumoricidal activity
of macrophages, by binding specific macrophage receptors. Both crude CFP and CFP-2 promoted the
release of NO in a dose dependent manner. However, CFP-2 enhanced NO production to a greater
extent in comparison to crude CFP. Additionally, NO production was higher in cells treated with CFP-1
(2000 µg/mL) than those in the control group, but this increase was lower than that demonstrated by
crude CFP and CFP-2. Furthermore, the increase in NO production by crude CFP and CFP-2 was
higher than that reported for Lentinula edodes polysaccharides, wherein the concentration of released
NO was less than 4 µmol/L after being treated with 500 µg/mL of the polysaccharide [32]. The results
displayed that both crude CFP and CFP-2 had the ability to functionally activate macrophages.

2.3.4. Effects of Polysaccharides on the Cytokines Secretion by RAW264.7 Cells

After being activated, the macrophages can produce a variety of cytokines, such as TNF-α, IL-1β
and IL-6, to regulate the cellular and humoral immune responses. As a crucial cytokine, TNF-α not only
mediated the immune responses, but also induced inflammatory reactions. CFPs used in this study
were able to demonstrate significant effects on the release of TNF-α by RAW264.7 cells (Figure 7D).
All tested CFPs enhanced TNF-α levels, but CFP-1 left behind crude CFP and CFP-2 in this regard.
Such an enhancement was at its peak at 500 µg/mL and 2000 µg/mL, in the case of crude CFP and
CFP-2, respectively, and was significantly higher than that produced by LPS.

IL-1β can regulate the immune response, in addition to being involved in a variety of cellular
activities, including the proliferation of T and B lymphocytes [42]. As shown in Figure 7E, LPS, crude
CFP and CFP-2 remarkably stimulated the IL-1β secretion by RAW264.7 cells. Crude CFP and CFP-2
enhanced the production of IL-1β in a dose-dependent manner, at concentrations ranging from 125 to
2000 µg/mL, and the effects of CFP-2 were higher than crude CFP at the same concentrations.

IL-6, secreted by immune cells, plays an important role in the regulation of host defense response.
A manifest increase in IL-6 secretion was evident for both crude CFP and CFP-2 (Figure 7F). CFP-1,
on the other hand, failed to produce any significant effects in this regard.

On the basis of results obtained here in regard to NO, TNF-α, IL-1β and IL-6 production, it is safe
to conclude that crude CFP and CFP-2 are capable of functionally activating macrophages, and, hence,
can be used as potential immunomodulators. Although both CFP-1 and CFP-2 were fractionated from
the same source (crude CFP), the effects of them on RAW264.7 were entirely different. The research data
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available on polysaccharides suggest that the type, conformation, molecular weight, functional groups
and the branching degree of polysaccharides affect their bioactivities, including immunostimulatory
efficacy. The apparent differences exhibited by CFP-1 and CFP-2 in stimulating RAW264.7 cells are
consistent with their dissimilar physicochemical properties, as previously discussed.

Polysaccharides with an average molecular weight exceeding 1000 Da have been reported to
produce immunostimulatory effects in macrophages [43]. Similarly, it has been advocated in previous
studies that high molecular weight polysaccharides are more potent in the aspect of immunostimulatory
activity than their lower molecular weight counterparts [44]. As is mentioned earlier, the molecular
weight of CFP-2 was much higher than that of CFP-1. Besides the molecular weight, the presence of
functional groups, like acetyl and sulfate groups, can affect immunostimulatory activity, by changing
the charge, solubility and conformation of polysaccharides [45,46]. Mollusks are a rich source of uronic
acid-containing polysaccharides (UACPs), possessing biological and pharmacological activities [47].
The glucuronic acid, uronic acid analog of glucose and galactose, the content of CFP-2 was markedly
higher than that of CFP-1. A high content of glucuronic acid confers net negative charge on CFP-2.
Likewise, the difference in the degree of branching observed for CFP-1 and CFP-2 contributed towards
their different immunostimulatory effects, despite both possessing a similar backbone.

2.3.5. Effects of the Polysaccharides on mRNA Expression of iNOS and Cytokines

The transcriptional level effects of CFPs on macrophage activation were determined by measuring
iNOS and cytokines (TNF-α, IL-1β and IL-6) mRNA expression in RT-QPCR. Though NO is produced
by all three forms of nitric oxide synthase (NOS), inducible (iNOS) is the dominant type of these
enzymes during the large production of NO, in the event of tissue injury, cancer tumor suppression
and antimicrobial activity [48]. As manifested in Figure 8, the mRNA expression of iNOS (A), TNF-α
(B), IL-1β (C) and IL-6 (D) showed a significant increase after treatment with crude CFP and CFP-2.
The mRNA expression of iNOS and IL-1β were promoted in a dose-dependent manner. However,
CFP-1 showed no effects on mRNA expression of iNOS and the cytokines. These results testified the
capability of crude CFP and CFP-2 in enhancing NO, TNF-α, IL-1β and IL-6 secretion, by upregulating
their corresponding genes.

2.3.6. Effects of Inhibitors on the Cytokines Secretion by RAW264.7 Cells

As biological macromolecules, polysaccharides mediate immune response through receptors on
the surface of cells. Although many receptors were reported to be involved in immune response,
TLR4 showed an essential role in the binding of macrophages [49]. Many studies have shown that
LPS and polysaccharides can induce NO release and cytokine secretion in activated macrophages,
accompanied by the phosphorylation of ERK, JNK and p38 [50]. As shown in Figure 9, it is obvious
that theses inhibitors can decrease the secretion of NO (Figure 9A) and TNF-α (Figure 9B) in CFP-2
treated RAW264.7 cells, compared with the CFP-2 only treatment group. These results suggested
that CFP can be recognized by TLR4 and activate the MAPKs (ERK, JNK and p38 MAPK) in the
process of CFP-mediated activation in macrophages, of which the effect of CFP-2 on the signal pathway
immunostimulatory is speculated, and displayed in Figure 10.
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Figure 8. Effects of CFPs on iNOS (A), TNF-α (B), IL-1β (C) and IL-6 (D) mRNA expression. The group
without polysaccharide was used as the normal control, and LPS (5 µg/mL) was used as the positive
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one-way analysis of variance. (*) p < 0.05 and (**) p < 0.01 compared with the normal control, respectively.
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3. Materials and Methods

3.1. Materials

RAW264.7 cell line was purchased from the Type Culture Collection of Chinese Academy of
Sciences (Shanghai, China). DMEM, with the supplement of 100 IU mL−1 benzylpenicillin, 100 IU
mL−1 streptomycin and 10% fetal bovine serum, was procured from Gibco (Fort Worth, TX, USA).

Assay kits for IL-1β, IL-6, TNF-α, pyridine and lipopolysaccharides (LPS) were acquired from
Sigma Chemical Co. (Saint Louis, MO, USA). MTT and NO assay kit was obtained from Nanjing
Jian cheng Bioengineering Institute (Nanjing, China). Assay kits for the quantification of messenger
RNA(mRNA) were purchased from Beijing Solarbio Science & Technology Co., LtD (Beijing, China).
TAK-242 (TLR4 inhibitor), SP600125 (JNK inhibitor), U0126 (ERK inhibitor) and SB203580 (P38
inhibitor) were acquired from Abmole (Houston, TX, USA). Water used in the study was produced by
Milli-Q system (Millipore, Bedford, MA, USA). All other chemicals and solvents were of analytical
reagent grade.

3.2. Isolation and Purification of Polysaccharides from Chlamys farreri

3.2.1. Optimization of Extraction Conditions

The extraction conditions were optimized using three parameters, including volume ratio (30,
40, 50, 60 and 70 mL/g), extraction time (1, 2, 3, 4 and 5 h) and temperature (35, 50, 65, 80, 95 ◦C).
The experiment was designed such that only one variable was altered at a time, while the others were
kept constant. The total sugar contents were measured by phenol-sulfuric acid method, using d-glucose
as a standard.

3.2.2. Removal of Proteins from Crude Polysaccharides

The crude polysaccharide was deproteinized by sevag method [51] and aqueous two-phase system
(ATPS) method composed of ethanol and ammonium sulfate [4,24].

Sevag Method

Crude polysaccharides (50 mg) were dissolved in distilled water (50 mL). It was then mixed
with 20 mL Sevag reagent (1-butanol: chloroform = 1:4), and the mixture was stirred to homogenize.
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After 30 min, the mixture was centrifuged at 4000rpm for 10min. The supernatant, hence obtained,
was collected, and the process was repeated five times. The recovery rate of polysaccharide (Rps,
%) and residue rate of protein (Rpro, %) were the concentration of the polysaccharides and proteins
deproteinized by sevag method to the amount added, which were calculated as the following equations:

Rps (or Rpro) = C × V/m × 100% (1)

where, C: concentration of polysaccharide or protein in the deproteinized solution by sevag method;
V: volumes of the deproteinized solution by sevag method; m: the detected amount of the crude
polysaccharides or proteins initial dissolved. The loss rate of polysaccharide (Lps, %) was calculated
as the following equations:

Lps = (1 - Cps × V / m) × 100% (2)

where, Cps: concentrations of the polysaccharide in the deproteinized solution by sevag method;
V: volumes of the deproteinized solution by sevag method; m: the detected amount of the crude
polysaccharides initial dissolved.

Ethanol-Ammonium Sulfate ATPS

Crude polysaccharide (50 mg) was mixed with 80g ATPS, which was comprised of 17.7% (w/w)
ethanol and 27.3% (w/w) (NH4)2SO4 at TLL (tie line length) of 35. The extraction ATPS mixture was
shaken for 30 min using an electric mixer, centrifuged at 3000 rpm for 1 min. The top phase and bottom
phase were isolated by a pipette and analyzed, respectively. The recovery rate of polysaccharide (Rps,
%) and residue rate of protein (Rpro, %) were the concentration of the polysaccharides and the proteins
deproteinized, in both the top phase and bottom phase by ATPS method, which were calculated as the
following equations:

Rps (or Rpro) = (Ct × Vt + Cb × Vb)/m × 100% (3)

where, Ct and Cb: concentrations of polysaccharide or protein in the top and bottom phases; Vt and Vb:
volumes of the top and bottom phases; m: the detected amount of the crude polysaccharides or proteins
initial dissolved. The loss rate of polysaccharide (Lps, %) was calculated as the following equations:

Lps = (1 − Rps) × 100% (4)

where, Rps: recovery rate of polysaccharide by ATPS method.

3.2.3. The Separation of Polysaccharide from Chlamys farreri

DEAE Cellulose-52 Column Chromatography

Crude CFP (40 mg) dissolved in 4 mL distilled water was filtered through 0.45 µm membrane
and passed through a DEAE-52 cellulose column (1.6 × 20 cm), which was pre-equilibrated with
distilled water. The column was eluted with distilled water at 1.0mL/min, and afterwards with a liner
gradient of NaCl (0 to 1mol/L). Each fraction (5 mL eluent) was collected using an automatic collector,
and detected by the phenol-sulfuric acid method. The tube number was plotted against the absorbance
shown by the eluent to obtain an elution curve. Eluents with the same peak, according to the elution
curve, were combined and dialyzed against distilled water for 48 h at the room temperature using the
dialysis bags (molecular weight (Mw) cut off 3.5 KDa). This was followed by the concentration of the
polysaccharide at 50 ◦C, and its subsequent freeze-drying.

Gel Permeation Chromatography on Sephadex G75

Each polysaccharide fraction (20 mg each) obtained after DEAE cellulose-52 column
chromatography was dissolved in 2 mL distilled water, and the resultant solution was filtered
through a membrane (0.45 µm). The filtrate was, afterwards, loaded onto a Sephadex G75 column
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(1.6 × 20 cm). The column was eluted with distilled water (0.25 mL/min), and 2.5 mL eluents (each
comprising a distinct polysaccharide fraction) were collected using an automatic collector and detected
by the phenol-sulfuric acid method. The elution curve was drawn by plotting the tube number against
the absorbance of the eluent. The main fraction collected after gel filtration was concentrated at 50 ◦C,
and then subjected to freeze-drying.

3.3. Chemical-Physical Properties of Polysaccharides

3.3.1. Determination of Glucuronic Acid Content

The glucuronic acid content of CFP was determined following the m-hydroxydiphenyl method,
with glucuronic acid as a standard [19,52]. Disodium tetraborate sulfuric acid solution (1.5 mL), in a
concentration of 12.5 mmol/L, was added to 0.25 mL polysaccharide solution (1 mg/mL), and was
mixed thoroughly. After reacting at 100 ◦C for 10 min, the reaction was stopped, by transferring the
reaction mixture to an ice bath. Finally, 25 µL of m hudroxydiphenyl NaOH solution (0.15%) was
added to it, and the resultant solution was kept at ambient temperature for 40 min, before measuring
its absorbance at 523 nm.

3.3.2. Determination of Homogeneity and Molecular Weight

The molecular weight of CFP was determined through high performance gel filtration
chromatography technique (HPGFC), using an HPLC system that was equipped with a TSK-gel
G4000PW column (7.8 mm × 300 mm) and an evaporative light scattering detector (Alltech ELSD6000,
New Westminster, BC, USA). The polysaccharide solution (2 mg/mL) was dissolved in 50 mmol/L
ammonium acetate. After filtration through a 0.45 µm of membrane, the 10 µL filtrate was injected
into the HPLC system. The column was eluted with 50 mmol/L ammonium acetate, at a flow rate of
0.5 mL/min. Dextran standards (80 kDa, 40 kDa, 20 kDa, 10 kDa, 5 kDa) for GPC were used, and a
calibration curve was drawn.

3.3.3. UV and FT-IR Analyses

The UV-vis absorption spectra of CFPs were recorded using UV-1800PC, in the wavelength
range of 200–600 nm. Similarly, the FT-IR (MAGNA-IR 750, Thermo Nicolet Co., Madison, WI, USA)
spectrum was determined in the frequency range of 4000–400 cm−1, by pressing CFPs (1 mg) and KBr
(100 mg) into a pellet.

3.3.4. Congo Red Analysis

The spatial conformation of CFPs was determined according to Congo red method reported in
our previous publication24. CFPs (2 mg), dissolved in 1mL distilled water, were mixed with 2 mL
of 100 µM Cong-red solution. The maximum absorption wavelength of the solution was measured
using UV-1800 PC spectrophotometer at different NaOH concentrations (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7 mol/L). Curdlan was used as a positive standard in this study.

3.3.5. Analysis of Monosaccharide Composition

HPLC was used to ascertain the monosaccharide composition of CFPs, following a modified
procedure laid down in an earlier report [53]. Briefly, 5 mg CFP was hydrolyzed with 1 mL TFA
(2 mol/L), at 120 ◦C for 4 h in a sealed tube. After removing excess TFA in a stream of N2, the residue
was re-dissolved in 1mL distilled water. The hydrolyzed product (100 µL) was reacted with 0.6 mol/L
NaOH (100 µL) and 0.5 mol/L PMP (200 µL), at 70 ◦C for 2 h. Finally, the PMP derivatives were
extracted using CH2Cl2, and analyzed using HPLC, equipped with a UV-detector and a Hypersil
ODS2 column (5 µm; 250 mm × 4.6 mm). The mobile phase comprised of 0.1 mol/L phosphate buffer
(pH 6.8) and acetonitrile in a ratio of 84:16 (v/v, %), and the flow rate was maintained at 0.8 mL/min.
The temperature inside the column was 30 ◦C, and the analytes were detected at 254 nm.
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3.3.6. Methylation Analysis

The pattern of glycosidic linkages present in CFPs was elucidated following methylation analysis,
as described earlier [54]. After dissolving 5 mg CFP in 5 mL DMSO in the presence of N2, the resultant
solution was supplemented with NaOH (20 mg) and CH3I (300 µL). The reaction mixture was then
kept in the dark for 4 h, and the reaction was subsequently terminated by the addition of 2 mL distilled
water. It was afterwards extracted with dichloromethane (4 mL), and the dichloromethane layer was
resuspended in 1 mL water, before drying it at 50 ◦C under vacuum. A complete methylation was
confirmed by the disappearance of O-H absorption (3200-3700 cm−1) in IR spectrum. Subsequently,
the residue was hydrolyzed with TFA for 4 h at 120 ◦C. The hydrolyzed product was also dried under
vacuum at 50 ◦C, while the residue was later reduced with NaBH4, neutralized with acetic acid and
acetylated with acetic anhydride, to obtain a mixture of partially O-methylated alditol acetates.

The acetylated product was analyzed by GC-MS (QP-2010ULTRA, Shimadzu, Japan), equipped
with an Agilent DB-225 ms capillary column (0.25 mm × 30 m × 0.25 µm). The injector and detector
temperatures were maintained at 250 ◦C and 280 ◦C, respectively, while the temperature inside the
column was 100 ◦C. Helium was used as the carrier gas at a flow rate of 1 mL/min. The partially
methylated alditol acetates were identified by their retention time and electron ionization spectrum.
The degree of branching value (DB) was obtained by using the following equation:

DB = (NT + NB) / (NT + NB + NL) (5)

where NT, NB and NL represent the number of terminal, branched and linear residues, respectively.

3.4. Immunostimulatory Activity of CFPs

3.4.1. Cell Culture

RAW264.7 cells were cultured in DMEM, supplemented with 10% (V/V) inactivated FBS, glutamine
(2.0 mmol/L), penicillin (100.0 U/mL) and streptomycin (100.0 µg/mL). The cells were cultivated at
37 ◦C in a cell incubator, with humidified air containing 5% CO2, and were afterwards collected
in the logarithmic phase by gentle scraping. They were then resuspended in DMEM medium for
further experimentation.

3.4.2. Determination of Proliferation of RAW264.7 Cells

The MTT method was used to measure the effects of CFPs on the proliferation of RAW264.7 cells.
The cell suspension (1 × 105 cells/mL) was seeded into a 96-well flat-bottom plate (100 µL per well).
After an incubation period of 24 h, the culture supernatants were discarded, and the pre-selected doses
of CFP (0, 125, 250, 500, 1000 and 2000 µg/mL) and LPS (5 µg/mL), which were proven to have no
obvious inhibitory effect on cell growth, were added into the wells. An incubation period of 24 or
48 h was implemented for the cultured cells in the presence of 5% CO2. The cells were subsequently
treated with MTT in the dark for 4 h, followed by the removal of the medium. Formazan crystals,
hence obtained, were suspended in 200 µL/well DMSO. Cell viability was determined as a ratio of
sample absorbance and control absorbance at 570 nm.

3.4.3. Macrophages Phagocytosis Assay

The neutral red uptake assay was used to measure the efficacy of phagocytosis of RAW264.7
cells [55]. Each well of a 96-well flat-bottom plate was seeded with 200 µL of the cell suspension
(1 × 105 cells/mL). The culture supernatants were removed after incubating the cells for 24 h. This was
followed by the addition of CFP (0, 125, 250, 500, 1000 and 2000 µg/mL) and LPS (5 µg/mL) in the culture
wells, and incubation at 37 ◦C in 5% CO2 for 24 or 48 h. Following the removal of the supernatant,
each well was supplemented with 100 µL neutral red solution (0.1%). The cells were subjected to
another incubation for 30 min, followed by the removal of the supernatant and rinsing of the cells in
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PBS. The cells were subsequently incubated with 100 µL cell lysis buffer (ethanol and glacial acetic acid
in a ratio of 1:1) for 2 h, and the absorbance was measured at 540 nm. The inhibitory ratio of CFPs
against RAW264.7 cell proliferation was calculated by the following formula:

Inhibitory ratio (%) = [1 − (Asample − Ablank) / (Acontrol − Ablank)] × 100% (6)

where Acontrol and Ablank were the absorbance of the system without addition of CFPs and RAW264.7
cells, respectively.

3.4.4. Measurement of NO Production

The production of NO was measured in Griess assay by seeding the cell suspension
(1 × 105 cells/mL) in a 96-well flat-bottom plate (200 µL per well), and incubating it for 24 h.
After discarding the supernatant, the culture wells were supplemented with CFP (0, 125, 250, 500,
1000 and 2000 µg/mL) and LPS (5 µg/mL). This was followed by incubation for 24 h or 48 h at 37 ◦C
in the presence of 5% CO2, and the collection of the supernatant. The supernatant (50 µL) obtained
after centrifugation (4000 rpm; 5 min) was treated in dark with an equal volume of Griess reagent at
ambient temperature, and the absorbance was calculated at 540 nm.

3.4.5. Measurement of TNF-α, IL-1β, IL-6 and IL-10

The concentrations of TNF-α, IL-1β and IL-6 were assessed using ELISA kits, according to the
manufacturer’s instructions.

3.4.6. Quantification of Messenger RNA (mRNA) (Bejing Solarbio Science & Technology Co., LtD.
Beijing, China)

The manufacturer’s protocol was followed for utilizing the total RNA extraction kit, in order to
extract RNA from 24 h CFP and LPS treated RAW264.7 cells. The extracted RNA was subsequently
converted into cDNA using reverse transcription. Relative target gene quantification was conducted
on the real-time PCR system using SYBR green. PCR reactions were performed for 5 min at 95 ◦C,
and then 40 cycles of 10 s at 95 ◦C and 30 s at 60 ◦C. Each reaction was performed in triplicate.
The expression of each gene was compared with GAPDH expression that served as a control.
The relative expressions of mRNAs were calculated using the comparative 2-∆∆ct method, and were
normalized using GAPDH. The nucleotide sequences of the primers used were GADPH (forward,
5-GGTGAAGGTCGGTGTGAACG-3; reverse, 5-CTCG CTCCTGGAAGATGGTG-3); iNOS (forward,
5-CGGCAAACATGACTTCAGGC-3; reverse, 5-CTCGCTCCTGGAAGATGGTG-3); IL-6 (forward,
5-TACTCGGCAAA CCTAGTGCG-3; reverse, 5-GTGTCCCAACATTCATATTGTCAGT-3); TNF-α
(forward, 5-AGATAGCAAATCGGCTGACG-3; reverse, 5-ACGGCATGGATCTCA AAGAC-3); and
IL-1β (forward, 5-TCTTTTGGGGTCCGTCAACT-3; reverse, 5-GC AACTGTTCCTGAACTCAACT-3).

3.4.7. Related Signal Path Experiment

RAW264.7 cells were pretreated with TLR4 (2.5 µmol/L), SP600125 (10 µmol/L), SB203508
(10 µmol/L) and U0126 (10 µmol/L); the culture supernatants were removed after incubating the cells for
1 h. Then, the cells were incubated with CFP-2 (500 µg/mL) for an additional 24 h. The concentrations
of NO, TNF-α, and L-6 were assessed according to the manufacturer’s instructions.

3.5. Statistical Analyses

Each experiment was performed in triplicate to minimize deviation. The data, hence obtained,
were presented as mean ± SD and subjected to variance (ANOVA) analysis, where p < 0.05 was
assumed to be statistically significant. The statistical analyses were performed using the Statistical
Package for the SPSS Statistics 20 software (IBM Co., Armonk, NY, USA).
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4. Conclusions

Two polysaccharides (CFP-1 and CFP-2) were extracted from Chlamys Farreri, which were
deproteinized by ethanol-ammonium sulfate ATPS, and separated by DEAE collulose-52 column
chromatography and Sephadex G-75. Furthermore, their physicochemical properties were elucidated,
including molecular weight, monosaccharide composition, the glucuronic acid content, UV and IR
analyses and glycosidic linkage determination. The results showed that CFP-1 and CFP-2 were mainly
composed of glucose with different molecular weight, glucuronic acid content and branching degree.
Besides, they lack the triple-helix structure, as elucidated in Cong-red experiment. Both crude CFP and
CFP-2 were found capable of significantly enhancing the phagocytic activity, and were able to increase
the production of the cytokines (NO, TNF-α, IL-1β and IL-6), by activating iNOS, IL-6 and TNF-α gene
expressions in RAW264.7 cells. CFP can be accepted by TLR4 and activate the MAPKs (ERK, JNK and
p38 MAPK) in the process of CFP-mediated activation in macrophages. CFP-1, however, failed to
produce desired effects in this regard. A comparison of the immunostimulatory activities exhibited by
CFP-1 and CFP-2 and their physicochemical properties pointed towards the evident role of molecular
weight, glucuronic acid content and branching degree, in determining the immunostimulatory activity
of polysaccharides.

Author Contributions: F.S. and Z.L. performed the experiments, data analysis, and wrote the paper; Y.L.
contributed to the conception and design of the experiments. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by grants from the National Natural Science Foundation of China (21476135),
and 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020LKSFG02E).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, Q.; Wu, X.Y.; Shi, F.L.; Liu, Y. Comparison of antidiabetic effects of saponins and polysaccharides
from Momordica charantia L. in STZ-induced type 2 diabetic mice. Biomed. Pharmacother. 2019, 109, 744–750.
[PubMed]

2. Li, Q.; Feng, Y.X.; He, W. Post-screening characterisation and in vivo evaluation of an anti-inflammatory
polysaccharide fraction from Eucommia ulmoides. Carbohydr. Polym. 2017, 169, 304–314. [CrossRef] [PubMed]

3. Kang, S.M.; Kim, K.N.; Lee, S.H. Anti-inflammatory activity of polysaccharide purified from AMG-assistant
extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 2011, 85, 80–85.
[CrossRef]

4. Cheong, K.L.; Xia, L.X.; Liu, Y. Isolation and characterization of polysaccharides from oysters (Crassostrea
gigas) with anti-tumor activities using an aqueous two-phase system. Mar. Drugs. 2017, 15, 338. [CrossRef]
[PubMed]

5. Wu, X.Y.; Li, R.C.; Zhao, Y.J.; Liu, Y. Separation of polysaccharides from Spirulina platensis by HSCCC with
ethanol-ammonium sulfate ATPS and their antioxidant activities. Carbohydr. Polym. 2017, 173, 465–472.
[PubMed]

6. Gao, J.; Zhang, T.; Jin, Z.Y.; Xu, X.M.; Wang, J.H.; Zhang, X.Q.; Chen, H.Q. Structural characterisation:
Physicochemical properties and antioxidant activity of polysaccharide from Lilium lancifolium Thunb.
Food Chem. 2015, 169, 430–438.

7. Lim, J.; Kale, M.; Kim, D.H.; Kim, H.S.; Chon, J.W.; Seo, K.H.; Lee, G.H.; Yokoyama, W.; Kim, H. Anti-obesity
effect of exopolysaccharides isolated from Kefir Grains. J. Agric. Food Chem. 2017, 65, 10011–10019. [CrossRef]

8. Akhtar, M.; Tariq, A.F.; Awais, M.M. Studies on wheat bran Arabinoxylan for its immunostimulatory and
protective effects against avian coccidiosis. Carbohydr. Polym. 2012, 90, 333–339.

9. Ramzani, S.M.; Mehdi, T.; Sangguan, Y. Isolation and chemical characterization of a novel immunostimulating
galactofucan from freshwater, Azolla filiculoides. Int. J. Biol. Macromol. 2018, 118, 2082–2091.

10. Leung, M.Y.K.; Liu, C.; Koon, J.C.M. Polysaccharide biological response modifiers. Immunol. Lett. 2006, 105,
101–114. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/30551527
http://dx.doi.org/10.1016/j.carbpol.2017.04.034
http://www.ncbi.nlm.nih.gov/pubmed/28504149
http://dx.doi.org/10.1016/j.carbpol.2011.01.052
http://dx.doi.org/10.3390/md15110338
http://www.ncbi.nlm.nih.gov/pubmed/29104211
http://www.ncbi.nlm.nih.gov/pubmed/28732888
http://dx.doi.org/10.1021/acs.jafc.7b03764
http://dx.doi.org/10.1016/j.imlet.2006.01.009


Mar. Drugs 2020, 18, 429 18 of 20

11. Ferreira, S.S.; Passos, C.P.; Madureira, P.; Manuel, V.; Coimbra, M.A. Structure–function relationships of
immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [CrossRef] [PubMed]

12. Schepetkin, I.A.; Quinn, M.T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic
potential. Int. Immunopharmacol. 2006, 6, 317–333. [CrossRef] [PubMed]

13. Wang, D.D.; Pan, W.J. Polysaccharide isolated from Sarcodon aspratus induces RAW264.7 activity via
TLR4-mediated NF-κB and MAPK signaling pathways. Int. J. Biol. Macromol. 2018, 120, 1039–1047.
[PubMed]

14. Yang, Y.; Zhao, X.L.; Li, J.; Jiang, H.; Shan, X.D.; Wang, Y.; Ma, W.B.; Hao, J.J.; Yu, G.L. A β-glucan from
Durvillaea Antarctica has immunomodulatory effects on RAW264.7 macrophages via Toll-like receptor 4.
Carbohydr. Polym. 2018, 191, 255–265. [CrossRef]

15. Wang, M.M.; Liu, Y.; Qiang, M.L.; Wang, J.H. Structural elucidation of a pectin-type polysaccharide from
Hovenia dulcis peduncles and its proliferative activity on RAW264.7 cells. Int. J. Biol. Macromol. 2017, 104,
1246–1253.

16. Ramesh, H.P.; Yamaki, K.; Tsushida, T. Effect of fenugreek (Trigonella foenum-graecum L.) galactomannan
fractions on phagocytosisinrat macrophages and on proliferation and IgM secretion in HB4C5 cells.
Carbohydr. Polym. 2002, 50, 79–83. [CrossRef]

17. Khan, B.M.; Liu, Y. Marine mollusks: Food with benefits. Compr. Rev. Food Sci. Food Saf. 2019, 18, 548–564.
18. Choresh, O.; Loya, Y.; Müller, W.E.; Wiedenmann, J.; Azem, A. The mitochondrial 60-kDa heat shock protein

in marine invertebrates: Biochemical purification and molecular characterization. Cell Stress Chaperone 2004,
9, 38–48.

19. Zhang, H.L.; Cui, S.H.; Zha, X.Q. Jellyfish skin polysaccharides: Extraction and inhibitory activity on
macrophage-derived foam cell formation. Carbohydr. Polym. 2014, 106, 393–402. [CrossRef]

20. Luo, L.; Wu, M.; Xu, L.; Lian, W.J.; Xiang, J.Y.; Lu, F.; Gao, N.Y.; Xiao, C.; Wang, S.M.; Zhao, J.H. Comparison
of physicochemical characteristics and anticoagulant activities of polysaccharides from three sea cucumbers.
Mar. Drugs. 2013, 11, 399–417.

21. Yuan, Y.; Kanno, M.; Kijima, A. Genetic diversity of wild populations of Chlamys farreri in Japan and their
genetic relationship with cultured stocks in China. Aquaculture 2012, 370–37, 109–122. [CrossRef]

22. Liu, B.; Liu, H.M.; Ai, C.Q.; Zhu, Z.J.; Wen, C.G.; Song, S.; Zhu, B.W. Distribution of uronic acid-containing
polysaccharides in 5 species of shellfishes. Carbohydr. Polym. 2017, 164, 195–199. [CrossRef] [PubMed]

23. Song, Z.Y.; Hu, Y.D.; Qi, L.K.; Xu, T.T.; Yang, Y.S.; Xu, Z.C.; Lai, X.P.; Wang, X.L.; Zhang, D.Y.; Li, S.J.
An effective and recyclable deproteinization method for polysaccharide from oyster by magnetic chitosan
microspheres. Carbohydr. Polym. 2018, 195, 558–565. [CrossRef] [PubMed]

24. Shi, F.L.; Yan, X.L.; Cheong, K.L.; Liu, Y. Extraction, purification, and characterization of polysaccharides from
marine algae Gracilaria lemaneiformis with anti-tumor activity. Process Biochem. 2018, 73, 197–203. [CrossRef]

25. Ren, Y.L.; Zheng, G.Q.; You, L.J.; Wen, L.G.; Li, C.; Fu, X.; Zhou, L. Structural characterization and macrophage
immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis. J. Funct. Foods. 2017,
33, 286–296. [CrossRef]

26. Wu, M.Y.; Li, X.; Zhao, L.Y.; Xiao, C.; Gao, N.; Luo, L.; Yang, L.; Li, Z.; Chen, L.Y.; Zhao, J.H. Structural
analysis and anticoagulant activities of the novel sulfated fucan possessing a regular well-defined repeating
unit from sea cucumber. Mar. Drugs. 2015, 13, 2063–2084.

27. Wang, W.; Zou, Y.; Li, Q.; Mao, R.W.; Shao, X.J.; Jin, D.; Zheng, D.H.; Zhao, T.; Zhu, H.F.; Zhang, L.; et al.
Immunomodulatory effects of a polysaccharide purified from Lepidium meyenii Walp. on macrophages.
Process Biochem. 2016, 51, 542–553. [CrossRef]

28. Wang, L.J.; Yao, Y.; Sang, W.; Yang, X.S.; Ren, G.X. Structural features and immunostimulating effects of three
acidic polysaccharides isolated from Panax quinquefolius. Int. J. Biol. Macromol. 2015, 80, 77–86. [CrossRef]

29. Li, C.; Huang, Q.; Fu, X. Characterization, antioxidant and immunomodulatory activities of polysaccharides
from Prunella vulgaris Linn. Int. J. Biol. Macromol. 2015, 75, 298–305.

30. Falch, B.H.; Ryan, L.; Stokke, B.T. The cytokine stimulating activity of (1→ 3)-beta-D-glucans is dependent
on the triple helix conformation. Carbohydr. Res. 2000, 329, 587–596. [CrossRef]

31. Ohno, N.; Miura, N.N.; Chiba, N. Comparison of the immunopharmacological activities of triple and
single-helical schizophyllan in mice. Biol. Pharm. Bull. 1995, 18, 1242–1247. [CrossRef] [PubMed]

32. Xu, X.F.; Yan, H.D.; Zhang, X.W. Structure and immuno-stimulating activities of a new heteropolysaccharide
from Lentinula edodes. J. Agr. Food Chem. 2012, 60, 11560–11566. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.carbpol.2015.05.079
http://www.ncbi.nlm.nih.gov/pubmed/26256362
http://dx.doi.org/10.1016/j.intimp.2005.10.005
http://www.ncbi.nlm.nih.gov/pubmed/16428067
http://www.ncbi.nlm.nih.gov/pubmed/30171950
http://dx.doi.org/10.1016/j.carbpol.2018.03.019
http://dx.doi.org/10.1016/S0144-8617(01)00377-0
http://dx.doi.org/10.1016/j.carbpol.2014.01.041
http://dx.doi.org/10.1016/j.aquaculture.2012.10.010
http://dx.doi.org/10.1016/j.carbpol.2017.01.099
http://www.ncbi.nlm.nih.gov/pubmed/28325317
http://dx.doi.org/10.1016/j.carbpol.2018.04.108
http://www.ncbi.nlm.nih.gov/pubmed/29805012
http://dx.doi.org/10.1016/j.procbio.2018.08.011
http://dx.doi.org/10.1016/j.jff.2017.03.062
http://dx.doi.org/10.1016/j.procbio.2016.01.003
http://dx.doi.org/10.1016/j.ijbiomac.2015.06.007
http://dx.doi.org/10.1016/S0008-6215(00)00222-6
http://dx.doi.org/10.1248/bpb.18.1242
http://www.ncbi.nlm.nih.gov/pubmed/8845814
http://dx.doi.org/10.1021/jf304364c
http://www.ncbi.nlm.nih.gov/pubmed/23106232


Mar. Drugs 2020, 18, 429 19 of 20

33. Huang, Z.P.; Zhang, L.N.; Duan, X.B. Novel highly branched water-soluble heteropolysaccharides as
immunopotentiators to inhibit S-180 tumor cell growth in BALB/c mice. Carbohydr. Polym. 2012, 87, 427–434.
[CrossRef]

34. Deng, C.; Fu, H.T.; Teng, L.P.; Hu, Z.; Xu, X.; Chen, J. Antitumor activity of the regenerated triple-helical
polysaccharide from Dictyophora indusiate. Int. J. Biol. Macromol. 2013, 61, 453–458.

35. Satitmanwiwat, S.; Ratanakhanokchai, K.; Laohakunjit, N. Improved purity and immunostimulatory activity
of β-(1→3) (1→6)-Glucan from Pleurotus sajor-caju using cell Wall-Degrading Enzymes. J. Agr. Food Chem.
2012, 60, 5423–5430. [CrossRef]

36. Luo, Q.; Sun, Q.; Wu, L.S.; Yang, Z.R. Structural characterization of an immunoregulatory polysaccharide
from the fruiting bodies of Lepista sordida. Carbohydr. Polym. 2012, 88, 820–824.

37. Zhao, G.H.; Kan, J.Q.; Li, Z.X.; Chen, Z.D. Characterization and immunostimulatory activity of an
(1→6)-a-d-glucan from the root of Ipomoea batatas. Int. Immunopharmacol. 2005, 5, 1436–1445. [CrossRef]

38. Yan, J.K.; Wang, W.Q.; Li, L.; Wu, J.Y. Physiochemical properties and antitumor activities of two α-glucans
isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr. Polym. 2011, 85,
753–758. [CrossRef]

39. Feng, H.B.; Fan, J.; Qiu, H.; Wang, Z.H.; Yan, Z.H.; Yuan, L.H.; Guan, L.; Du, X.G.; Song, Z.H.; Han, X.F.; et al.
Chuanminshen violaceum polysaccharides improve the immune responses of foot-and-mouth disease vaccine
in mice. Int. J. Biol. Macromol. 2015, 78, 405–416. [CrossRef]

40. Gordon, S. Phagocytosis: An Immunobiologic Process. Immunity 2016, 44, 463–475. [CrossRef]
41. Wang, Y.F.; Tian, Y.Q.; Shao, J.J. Macrophage immunomodulatory activity of the polysaccharide isolated

from Collybia radicata mushroom. Int. J. Biol. Macromol. 2018, 108, 300–306. [CrossRef] [PubMed]
42. Holderness, J.; Schepetkin, I.; Freedman, A.B. Polysaccharides isolated from Açaí Fruit induce innate immune

responses. PLoS ONE 2011, 6, 255–264. [CrossRef] [PubMed]
43. Karnjanapratum, S.; Tabarsa, M.; Cho, M.L. Characterization and immunomodulatory activities of sulfated

polysaccharides from Capsosiphon fulvescens. Int. J. Biol. Macromol. 2012, 51, 720–729. [CrossRef] [PubMed]
44. Maeda, R.; Ida, T.; Ihara, H.; Sakamoto, T. Immunostimulatory activity of polysaccharides isolated from

Caulerpa lentillifera on macrophage cells. Biosci. Biotech. Bioch. 2012, 76, 501–505. [CrossRef] [PubMed]
45. Mueller, A.; Raptis, J.; Rice, P.J.; Kalbfleisch, J.H.; Stout, R.D.; Ensley, H.E.; Browder, W.; Willams, D.L.

The influence of glucan polymer structure and solution conformation on binding to (1,3)-β-D-glucan receptors
in a human monocyte-like cell line. Glycobiology 2000, 10, 339–346. [CrossRef]

46. Wang, J.G.; Zhang, L.; Yu, Y.H. Enhancement of antitumor activities in sulfated and carboxymethylated
polysaccharides of Ganoderma lucidum. J. Agr. Food Chem. 2009, 57, 10565–10572. [CrossRef]

47. Li, G.Y.; Chen, S.G.; Wang, Y. A novel glycosaminoglycan-like polysaccharide from abalone Haliotis discus
hannai Ino: Purification, structure identification and anticoagulant activity. Int. J. Biol. Macromol. 2011, 49,
1160–1166. [CrossRef]

48. Tripathi, P.; Kashyap, L. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Mic. 2007,
51, 443–452. [CrossRef]

49. Kim, H.S.; Kim, Y.J.; Lee, H.K.; Ryu, H.S.; Kim, J.S.; Yoon, M.J.; Hoon, J.T.; Kim, Y.S.; Han, S.B. Activation of
macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4. Food Chem.
Toxicol. 2012, 50, 3190–3197. [CrossRef]

50. Jones, E.; Adcock, I.M.; Ahmed, B.Y.; Punchard, N.A. Modulation of LPS stimulated NF-kappa B mediated
Nitric Oxide production by PKCε and JAK2 in RAW macrophages. J. Inflam. 2007, 4, 23–27. [CrossRef]

51. Wang, C.W.; Liu, J.T.; Huang, Y.C.; Zhang, X.H. In vitro polysaccharide extraction from Cipangopaludina
cathayensis and its pharmacological potential. J. Environ. Biol. 2016, 37, 1069–1072. [PubMed]

52. Mack, D.; Fischer, W.; Krokotsch, A. The intercellular adhesin involved in biofilm accumulation of
Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: Purification and structural
analysis. J. Bacteriol. 1996, 178, 175–183. [PubMed]

53. Li, C.; Fu, X.; Huang, Q. Ultrasonic extraction and structural identification of polysaccharides from Prunella
vulgaris and its antioxidant and antiproliferative activities. Eur. Food Res. Technol. 2015, 240, 49–60.

http://dx.doi.org/10.1016/j.carbpol.2011.08.001
http://dx.doi.org/10.1021/jf300354x
http://dx.doi.org/10.1016/j.intimp.2005.03.012
http://dx.doi.org/10.1016/j.carbpol.2011.03.043
http://dx.doi.org/10.1016/j.ijbiomac.2015.04.044
http://dx.doi.org/10.1016/j.immuni.2016.02.026
http://dx.doi.org/10.1016/j.ijbiomac.2017.12.025
http://www.ncbi.nlm.nih.gov/pubmed/29222012
http://dx.doi.org/10.1371/journal.pone.0017301
http://www.ncbi.nlm.nih.gov/pubmed/21386979
http://dx.doi.org/10.1016/j.ijbiomac.2012.07.006
http://www.ncbi.nlm.nih.gov/pubmed/22796642
http://dx.doi.org/10.1271/bbb.110813
http://www.ncbi.nlm.nih.gov/pubmed/22451391
http://dx.doi.org/10.1093/glycob/10.4.339
http://dx.doi.org/10.1021/jf902597w
http://dx.doi.org/10.1016/j.ijbiomac.2011.09.017
http://dx.doi.org/10.1111/j.1574-695X.2007.00329.x
http://dx.doi.org/10.1016/j.fct.2012.05.051
http://dx.doi.org/10.1186/1476-9255-4-23
http://www.ncbi.nlm.nih.gov/pubmed/29989737
http://www.ncbi.nlm.nih.gov/pubmed/8550413


Mar. Drugs 2020, 18, 429 20 of 20

54. Wu, J.J.; Chen, M.M.; Shi, S.S.; Wang, H.J.; Li, N.; Su, J.; Huang, Z.L.; Jin, H.; Ji, X.Q.; Wang, S.C. Hypoglycemic
effect and mechanism of a pectic polysaccharide with hexenuronic acid from the fruits of Ficus pumila L. in
C57BL/KsJ db/db mice. Carbohydr. Polym. 2017, 178, 209–220. [CrossRef] [PubMed]

55. Abdelnasser, S.M.; Yahya, S.M.M.; Mohamed, W.F. Antitumor exopolysaccharides derived from novel
marine bacillus: Isolation, characterization aspect and biological activity. Asian Pac. J. Cancer Prev. 2017, 18,
1847–1854.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.carbpol.2017.09.050
http://www.ncbi.nlm.nih.gov/pubmed/29050587
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Isolation and Purification of CFPs 
	Optimization of Extraction Conditions 
	Removal of Proteins from Crude Polysaccharides 
	Separation of Deproteinized Polysaccharide 

	Chemical-Physical Properties of Polysaccharides 
	The Molecular Weight of CFP-1 and CFP-2 
	Chemical Composition Analysis 
	Fourier Transform Infrared (FT-IR) Spectrum and UV Scanning Spectrum of CFP-1 and CFP-2 
	The Congo-Red Testing for Crude CFP, CFP-1 and CFP-2 
	GC-MS of Alditol Acetate Derivatives from the Methylated Product of CFP-1 and CFP-2 

	Immunostimulatory Activity 
	Effects of Polysaccharides on RAW264.7 Cell Proliferation 
	Effects of Polysaccharides on Phagocytic Activity of RAW264.7 Cells 
	Effects of Polysaccharides on NO Production 
	Effects of Polysaccharides on the Cytokines Secretion by RAW264.7 Cells 
	Effects of the Polysaccharides on mRNA Expression of iNOS and Cytokines 
	Effects of Inhibitors on the Cytokines Secretion by RAW264.7 Cells 


	Materials and Methods 
	Materials 
	Isolation and Purification of Polysaccharides from Chlamys farreri 
	Optimization of Extraction Conditions 
	Removal of Proteins from Crude Polysaccharides 
	The Separation of Polysaccharide from Chlamys farreri 

	Chemical-Physical Properties of Polysaccharides 
	Determination of Glucuronic Acid Content 
	Determination of Homogeneity and Molecular Weight 
	UV and FT-IR Analyses 
	Congo Red Analysis 
	Analysis of Monosaccharide Composition 
	Methylation Analysis 

	Immunostimulatory Activity of CFPs 
	Cell Culture 
	Determination of Proliferation of RAW264.7 Cells 
	Macrophages Phagocytosis Assay 
	Measurement of NO Production 
	Measurement of TNF-, IL-1, IL-6 and IL-10 
	Quantification of Messenger RNA (mRNA) (Bejing Solarbio Science & Technology Co., LtD. Beijing, China) 
	Related Signal Path Experiment 

	Statistical Analyses 

	Conclusions 
	References

