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Systemic antibody light chains (AL) amyloidosis is character-
ized by deposition of amyloid fibrils derived from a particular
antibody light chain. Cardiac involvement is a major risk factor
for mortality. Using MAS solid-state NMR, we studied the fibril
structure of a recombinant light chain fragment corresponding
to the fibril protein from patient FOR005, together with fibrils
formed by protein sequence variants that are derived from the
closest germline (GL) sequence. Both analyzed fibril structures
were seeded with ex-vivo amyloid fibrils purified from the
explanted heart of this patient. We find that residues 11-42 and
69-102 adopt b-sheet conformation in patient protein fibrils.
We identify arginine-49 as a key residue that forms a salt bridge
to aspartate-25 in the patient protein fibril structure. In the
germline sequence, this residue is replaced by a glycine. Fibrils
from the GL protein and from the patient protein harboring the
single point mutation R49G can be both heterologously seeded
using patient ex-vivo fibrils. Seeded R49G fibrils show an
increased heterogeneity in the C-terminal residues 80-102,
which is reflected by the disappearance of all resonances of
these residues. By contrast, residues 11-42 and 69-77, which are
visible in the MAS solid-state NMR spectra, show 13Ca chemi-
cal shifts that are highly like patient fibrils. The mutation R49G
thus induces a conformational heterogeneity at the C terminus
in the fibril state, whereas the overall fibril topology is retained.
These findings imply that patient mutations in FOR005 can sta-
bilize the fibril structure.

Antibody light chain (AL) amyloidosis is a rare disease affect-
ing about 9–14 new cases per one million inhabitants per year
(1). The disease is caused by formation of amyloid fibrils from
immunoglobulin light chains (LCs) (2–4). An underlying
plasma cell dyscrasia causes over-production and secretion of a
monoclonal LC. Some multiple myeloma patients develop AL
amyloidosis as a secondary disease, in which LCs can assemble
via oligomeric intermediates into fibrils which deposit in the
inner organs, such as heart and kidney. Heart involvement is a
major risk factor of mortality and the survival rate is on the

order of 7 month in patients with advanced cardiac amyloidosis
(5). Because of recombination and somatic hypermutation of
LC gene segments, the potential number of sequence variants
of antibody LCs is enormous (6). This variability makes the
identification of aggregation hotspots within a particular
sequence a challenging undertaking (7–9). LCs in AL amylo-
idosis show an increased use of certain VL germline donor
genes (10, 11). In particular, the germline donors l-I 1c, l-II
2a2, l-III 3r, l-VI 6a for the l isotype and k-I O18/O8 for the
k- subtype are overrepresented (8, 12, 13). These five germline
donor sequences constitute 60% of all amyloidogenic LCs,
whereas at the same time they represent only 7% of the entire
repertoire of VL gene segments (14). In AL patients, l and k iso-
types occur at a ratio of l:k = 3:1, whereas for healthy or multi-
ple myeloma patients the ratio is rather l:k = 1:2 (15). It is of
fundamental importance to identify the sequence elements or
residues that are causative for fibril formation and stability (7,
8). However, a correlation between sequence and amyloidoge-
nicity remains elusive.
All antibody LCs consist of a variable light (VL) and a con-

stant light (CL) domain which both adopt an immunoglobulin
fold. This structural conservation in the LC native state raises
the question whether AL fibrils adopt also a common amyloid
structure in the aggregated state. So far, only two structures
have been determined using cryo-EM (16, 17), that differ signif-
icantly from the native LC fold as well as from one another,
indicating that multiple fibril topologies can be involved in this
disease. Using magic angle spinning (MAS) solid-state NMR,
chemical shift assignments from three additional LC derived
fibrils have been reported so far, including fibrils of the murine
k-IV MAK33 (18), the patient derived k-I LC AL09 (19, 20),
and the l-VI model germline LC 6aJL2_R25G (21). All fibril
structures differ profoundly with respect to their amyloido-
genic cores.
We focus here on the structural characterization of recombi-

nant FOR005 protein fibrils using primarily MAS solid-state
NMR. Patient FOR005 showed a dominant heart involvement
(22). whereas the presently analyzed protein corresponds to the
main fibril protein in this patient. This protein is a fragment of*For correspondence: Bernd Reif, reif@tum.de.
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its LC precursor and almost identical to the VL domain.
Refolded from the heart it crystallizes as a dimer with a canoni-
cal dimer interface (22, 23), whereas it is mainly monomeric in
solution. The fibril protein contains the disulfide bond that is
already present in the native LC with no other post-transla-
tional modifications within the VL domain. We used fibrils
extracted from patient tissue to seed the formation of fibrils in
vitro, aiming to imprint the patient fibril structure onto the in
vitro prepared protein. We assigned the core of the fibrils and
identified several electrostatic interactions in the fibril core
thatmay be important for fibril stability. In addition, we investi-
gated fibrils formed by the germline (GL) sequence, as well as
of patient protein harboring the single point mutation R49G.
We find that both FOR005-R49G and GL fibrils can be seeded
using ex vivo material and adopt a similar conformation as
patient fibrils. The spectroscopic results are discussed to
address the role of mutations and cross-seeding on the confor-
mation and stability of an amyloid fibril.

Results

The primary structure of the fibril protein precursor of
FOR005, a l-III LC, was obtained previously by cDNA
sequencing (22). For reference, we determined the respective
GL sequence (FOR005_GL), using the web tools abYsis (http://
www.abysis.org/) and IMGT (http://www.imgt.org/). Consist-
ent with previous analyses of GL sequences (24, 25), we
assumed that the germline sequence of FOR005 has a lower
aggregation propensity compared with the patient sequence.
FOR005 and FOR005_GL differ in five amino acids in the vari-
able GL segment, namely at residues S31Y, F48Y, R49G, S51N
and A94G (mutations indicate transitions from patient to GL
protein). All mutations are located within, or near to the hyper-
variable complementarity determining regions (CDRs). In addi-
tion to the GL protein, we analyzed the fibrils formed by the
recombinant patient protein FOR005 as well as by the patient
protein carrying the single point mutation R49G. This muta-
tion is the least conservative mutation, and we find it to be par-
ticularly important for fibril formation and stability (see below).
All proteins were recombinantly expressed and purified, as
described in the Materials section. We employed MAS solid
state NMR spectroscopy, thioflavin T (ThT) fluorescence, CD
(CD) spectroscopy and transmission EM (TEM) to characterize
the aggregation properties of the soluble LC protein, as well as
its structure in the fibril state.

The fibril core of FOR005

For solid-state NMR, polymorphism in fibril sample prepara-
tions is a severe obstacle, as it results in sample heterogeneity
and in the loss of spectral resolution. At the same time, repro-
ducibility of fibril growth impedes a more detailed structural
analysis and prevents the derivation of general principles. To
overcome this problem, seeds are employed to prepare homo-
geneous fibrils (26). Seeding with ex-vivo fibrils results in a
reduction of the lag phase of the fibril kinetics and allows us to
obtain highly reproducible NMR spectra (26). This finding
agrees with previous observations made for different amyloid
preparations investigated by MAS solid-state NMR (18, 27–29).

TEM experiments (Fig. 1A) show relatively homogeneous fibrils
with no indication of polymorphism.
For solid-state NMR experiments, we prepared in total seven

fibril samples. Two samples were identical replicates contain-
ing recombinant FOR005 fibrils, using ex-vivo fibrils as seeds to
confirm that spectra are reproducible (26). Two fibril samples
were prepared from FOR005 protein grown in the presence of
in vitro seeds (26) as well as without seeding. Further, we pro-
duced fibrils of the germline protein (GL) employing ex-vivo
seeds, as well as a sample of fibrils formed by the patient protein
carrying the single point mutation R49G (FOR005_R49G)
using ex-vivo seeds. Except from the employed protein and
seeds, the preparation conditions for each sample were identi-
cal. All samples were uniformly 13C,15N isotopically enriched
and were packed after fibril growth into a 3.2 mm MAS rotor
(see Experimental Procedures).
The assigned 2D 13C,15N correlation spectrum of fibrils grown

from FOR005 fibril protein seeded with ex-vivo fibrils is shown in
Fig. 1B The sequential assignment of this sample yields one set of
resonances. None of the recorded spectra shows any indication of
structural heterogeneity or polymorphism of the fibril sample.
TheNMR chemical shift differences (DdCa-DdCb) which are in-
dicative for secondary structure (30) suggest that virtually all
assigned residues adopt b-sheet conformation (Fig. 1C). The first
12 N-terminal residues, the 7 last C-terminal residues, as well as
residues 48–68 are not observable and cannot be assigned (Fig.
1D). We therefore conclude that these residues may not be part
of the fibril core and conformationally heterogeneous or disor-
dered. Out of the five residues which are mutated in FOR005
with respect to the GL sequence, only residues S31 and A94
which are located near CDR1 and in CDR3, respectively, could be
assigned to the fibril core.

Heterologous seeding

Previous studies have shown that seeds with a substantially
different primary sequence are able to accelerate fibril forma-
tion of non-homologous proteins (31). We therefore wanted to
test whether seeding is effective as well for the different germ-
line variant proteins. Using ex-vivo seeds, we find that fibril for-
mation is significantly accelerated with a reduced lag phase for
the VL domains of the patient LC protein FOR005, of the single
point mutant R49G and of the germline LC protein (Fig. 2A).
The catalyzed conversion into fibrils suggests that the mono-

meric germline and themutant R49G protein are recruited into
fibrils by seeding. To validate this hypothesis further, we car-
ried out MAS solid-state NMR experiments using fibrils
formed by germline protein. Seeded germline fibrils yield spec-
tra with a significantly decreased sensitivity (Fig. 2B). Germline
fibrils seem overall less homogeneous. Aggregation is quantita-
tive in both cases and no protein is left in the supernatant after
sedimentation of the fibril preparation into the MAS rotor.
Nevertheless, clear spectral patterns can be recognized indicat-
ing that a fraction of the protein adopts a preferred conforma-
tion. The linewidth of 13C and 15N resonances of germline
fibrils are comparable with the linewidth observed in the spec-
tra of fibrils from FOR005 fibril protein, indicating a similar
degree of order for the two fibril preparations.

MAS solid state NMR studies of light chain fibrils
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Next, we wanted to identify the residues that stabilize the
fibril fold. We therefore performed 2D 13C,15N Transferred
Echo Double resonance (TEDOR) experiments using fibrils
prepared from FOR005 patient protein (Fig. 3A). Long range
contacts between isolated spins were previously found to be im-
portant restraints to characterize the fold of an amyloid (32,
33). Lysine and arginine side chains yield distinct peaks in 2D
15N,13C correlation spectra with 15N chemical shifts of 80 ppm
(for ArgNe) and 30 ppm (for LysNz), respectively. The primary
structure of FOR005 contains three lysines, that are all visible
in the spectra (Fig. 3A). K38 is sequentially assigned and observ-
able in the 2D NCACX experiment (red contours in Fig. 3A). If
the mixing time of the TEDOR experiment is increased to 15
ms (cyan contour lines), additional cross-peaks become visible
at 13C chemical shifts of around 180 ppm corresponding to car-
boxylic acid groups of aspartate or glutamate. We assigned the

long-range cross-peak at a 15N chemical shift of around 30 ppm
to an electrostatic interaction between the amino group of K50
and the carboxylic acid group of D81. The Nz chemical shift of
K38 is not in agreement with the observed long-range TEDOR
cross-peak and is therefore excluded. Three out of six arginine
residues are observed using a short TEDOR contact time of 1.9
ms. The long-range cross-peak involving an arginine guanidine
group is assigned to a salt bridge between R49 and the carbox-
ylic acid group of D25. The assignment of R49 is confirmed by
mutagenesis (see below).
The observed salt bridges should have a large stabilizing

effect on the fibril structure. The sensitivity of GL fibrils was
generally too low to pursue chemical shift assignments and a
more detailed structural analysis (Fig. 2B). From the five muta-
tions from patient to germline (S31Y, F48Y, R49G, S51N and
A94G), R49G is the least conservative mutation. We therefore

Figure 1. MAS solid-state NMR investigations of fibrils formed from recombinant FOR005 fibril protein and seededwith ex-vivo fibrils. A, TEM image
of seeded FOR005 fibrils. B, 2D 13C,15N correlation spectrum with a focus on the Ca spectral region. C, Secondary chemical shifts as a function of the residue.
For glycines, only the 13Ca chemical shift values were considered. Asterisks indicate residues for which only amino acid type assignments are available. D, Pri-
mary structure of the expressed fibril protein of patient FOR005. Assigned residues are color coded in red. Residues marked in green represent the five muta-
tions with respect to the closest germline sequence. Asterisks again indicate residues for which only amino acid type assignments are available.
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decided to introduce the single point mutation R49G to study the
effects that are induced by this side chain. This is supported by
the finding that R49G has a large effect on the thermodynamic
stability of the immunoglobulin fold (data not shown). In fact,
TEDOR experiments for germline or R49G fibrils do not yield
any long-range cross-peaks (Fig. 3B), suggesting that the salt
bridge involving the guanidine group is caused by R49. The R49-
D25 cross-peak is lost in both preparations, whereas the interac-
tion K50-D81 is weak in germline and absent in R49G fibrils.
To more closely analyze the structural changes between

FOR005 and R49G fibrils, we assigned the chemical shifts of
the R49G fibril sample (Fig. 4). The assignment of the core resi-
dues of R49G fibrils was achieved using a 3D NCACX experi-
ment. The obtained chemical shifts were compared with the
assignments of FOR005 fibrils. To confirm the assignments, a
2D NCOCX experiment was analyzed. We observe the largest
chemical shift differences for residues 11-42 and 69-77 (Fig.
4D). This is consistent with the picture that both salt bridges
are lost in R49G fibrils. Fig. 4E shows a correlation for the Ca
chemical shift between patient fibrils and fibrils formed by the
single point mutant protein R49G. The R-value is on the order
of 0.76, indicating that the fibril structures of FOR005 and
R49G are in fact rather similar. In addition, we find that the C-
terminal residues are not any more visible in the spectra
recorded for R49G fibrils, indicating that this part of the pro-
tein becomes conformationally disordered or dynamic in R49G
fibrils. Surprisingly, we also find that the C terminus of FOR005
fibrils is missing in the spectra of the non-seeded FOR005 fibril
preparation (Fig. 4F). This suggests that the template is equally
important as the amyloid substrate to enable the formation of a
stable fibril structure.

Discussion

Using MAS solid-state NMR, we could identify the residues
in FOR005 fibrils that form the rigid core of the fibril. Fig. 5
shows a sequence comparison of the FOR005 fibril core with
the core identified for other AL fibrils studied to-date either by

cryo-EM or MAS solid-state NMR. The experimental amyloi-
dogenic core is indicated in green and yellow for MAS solid-
state NMR and cryo-EM experiments, respectively. For the
analysis, the proteins AL09 (k-I, AL patient) (19), MAK33
(k-IV, murine) (18), Alabama (l-I, cardiac AL patient) (16),
FOR005 (l-III, cardiac AL patient), AL55 (l-VI, cardiac AL
patient) (17), and 6aJL2-R24G (l-VI, model-GL protein) (21)
have been employed. Comparison of the different sequences
suggests that residues 11-42 and 64-102 are always contained
in the amyloidogenic core, involving strands B, CDR1 and C, as
well as E, F and CDR3. For fibrils formed by the l-VI subtype,
the N terminus of the LC is buried in the core (17). This is
agreement with a study that suggests that mutations in the N-
terminal b-strand accelerate fibril formation (34). Interestingly,
the amyloidogenic core for AL55 and 6aJL2-R24G (both l-VI)
are rather similar, suggesting that these two proteins fold into a
similar amyloid fibril structure. k-type sequences, on the other
hand, seem to behave differently as the amyloidogenic core
involves either the C-terminal or the N-terminal part of the
protein sequence. Except for l-VI, only one EM or NMR study
is available for each GL gene segment so far. It remains to be
seen whether the fold of the fibril proteins that share a common
gene segment are related.
Themechanistic and structural aspects of seeding of amyloid

fibrils are not well understood. Linse, Knowles and coworker
have shown that Ab (1–26, 31, 32, 35–46) and Ab(1–28, 31, 32,
35–46) fibril formation involve a differential amount of primary
or secondary nucleation processes (47). Seeding of Ab (1–26,
31, 32, 35–46) with Ab (1–28, 31, 32, 35–46) does not promote
conversion of monomeric Ab (1–26, 31, 32, 35–46) into fibrils,
although the fibril formation kinetics is accelerated in a con-
centration dependent manner (48–50). On the other hand,
Ramirez-Alvarado and coworker have reported that LCs can be
recruited by homologous and heterologous seeding (31). Fur-
ther, it has been shown that both AL and MM proteins can be
recruited by LC fibrils (51). AL protein recruitment, however,
has a much higher efficiency compared with recruitment of
MMLCs. These findings agree with our observations.We show

Figure 2. Biophysical and NMR characterization of FOR005 VL variants. A, Seeded ThT aggregation kinetics of patient protein FOR005, protein containing
the single point mutation R49G and for protein coding for the germline sequence. In all cases, 5% seeds were added to the monomeric protein and incubated at
37 °C. B, Comparison of germline and patient fibrils both seededwith ex-vivo seeds. Superposition of the 2DNCACX correlation spectra for patient (black) and germ-
line (red) fibrils. In both cases, ex-vivo seeds have been employed. For G102 and A13/A94, 1D traces were extracted along the 13C dimension (right). Fibrils formed by
the germline protein show significantly reduced sensitivity and have increased linewidth (FWHM= 187Hz for germline, FWHM= 155Hz for patient fibrils).
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here that GL protein can be incorporated into VL fibrils using
ex vivo fibril seeds. The efficiency of fibril formation is, how-
ever, reduced. At the same time, we find that the structure of
the fibril core is rather similar.
Strikingly, non-seeded FOR005 patient fibrils show similar

spectral patterns as (seeded) R49G or GL fibrils (Fig. 4D). In
both preparations, many of the 13C,15N correlation peaks
originating from the C terminus (such as G100, G102) are

missing. Seeding in turn stabilizes the C-terminal part of the
patient protein in the FOR005 patient fibrils and catalyzes a
well-defined adherence of monomeric protein to the fibril
core. The single point mutant R49 apparently has a similar
effect on fibril structure as seeding and destabilizes the C
terminus of the protein. This suggests that the template is
equally important as the amyloid substrate to form a stable
fibril structure.

Figure 3. Electrostatic interactions between charged side chains in FOR005 patient, germline and R49G fibrils probed by TEDOR experiments. A,
FOR005 patient fibrils. Superposition of 2D TEDOR spectra obtained with short (black, tmix= 1.9 ms) and longmixing times (cyan, tmix= 15ms), focusing on the
side chain resonances of arginine and lysine. The spectra are superimposed onto a 2D 13C,15N NCACX spectrum (red, tmix= 50ms). We observe long-range con-
tacts between lysine/arginine and aspartic acid side chains. The assignment of the carboxylic acid groups is indicated with a red dashed line in the 2D 13C,13C
PDSD spectrum. B, Comparison of 2D TEDOR fibril spectra for FOR005 sequence variants. Patient fibril spectra are represented in black, germline fibrils in green
and R49G fibrils in red. On the right, 1D rows extracted from the 2D TEDOR experiments are shown, illustrating the peak intensities for the different protein var-
iants. In all cases, experiments were recorded under identical conditions with an equal number of scans and increments. Apparently, only fibrils formed by the
patient protein FOR005 contain the salt bridges, whereas no cross-peaks are observed in R49G. For germline fibrils, a very weak peak seems to indicate a
strongly reduced interaction involving K50-D81.
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Interestingly, only two out of the five residues which are
mutated in FOR005 with respect to the germline sequence
could be assigned to the fibril core. Germline mutations that
are part of the amyloidogenic core are S31 and A94 which are
located near CDR1 and in CDR3, respectively. On the other
hand, the backbone resonances of F48, R49 and S51 in CDR2
could not be assigned, suggesting a high structural heterogene-
ity for these residues. For R49, only side chain resonances are
visible which could be assigned by mutagenesis. The absence of
sequential assignments at mutational sites was observed previ-
ously for other LCs. For AL09 (k-I), three out of seven mutated
residues could not be assigned, H87Y which was found to be
important for the transition to the altered dimer structure (19,
24). Similarly, the l-I and l-VI VL proteins investigated by
Radamaker et al. (16) and Swuec et al. (17) contain 10 and 12
mutations with respect to the closest germline sequence (S25R,
S31R, T33L, N35K, L40F, N53D, I76V, D94A, S95T, G98A;
V18L, R24G, G27A, N32H, S43G, S44A, V48L, D52N, N53D,

G58E, S96G, S97N). In the cryo-EM structure presented by
Swuec et al., 6 out of 12 mutations are occurring in residues 38-
65 which are not refined in the structural model (17). In Rada-
maker et al., all mutations are found in well-defined regions of
the electron densities (16). However, no detailed analysis has
been performed yet to find out whether a particular residue
plays an important role in fibril formation. Two explanations
can account for this behavior: First, mutated residues stabilize
aggregation intermediate states, and this way catalyze fibril for-
mation. This assumption would be supported by the fact that
R49 is solvent exposed in the native state. It seems likely that
differences in thermodynamic stability between the native pro-
tein and the R49G variant are caused by a stabilization of an
unfolding intermediate state, which in turn is in agreement
with the observation that the fibril formation kinetics is much
faster for the patient protein containing the single point muta-
tion R49G compared with germline protein. The observed salt
bridge cross-peaks would thus imply a tertiary contact

Figure 4. Comparison of fibril spectra obtained from FOR005 patient protein and FOR005 R49G. A, B, Superposition of 2D 13C,13C and 13C,15N correla-
tion spectra obtained for FOR005 and R49G fibrils. Residues from the C-terminal part of the protein are not observed in R49G. The yellow circles indicate resi-
dues that undergo large chemical shift changes. C, Assigned residues in FOR005 and R49G are indicated in red and blue, respectively. Blue boxes highlight the
residues that are not observed in fibrils of the point mutant R49G. Residuesmarked with an asterisk indicate mutations from germline to patient. D, Ca chemi-
cal shift differences for FOR005 and R49G fibrils as a function of residue. E, Correlation plot of the secondary Ca chemical shift (experimental shifts-random coil
shifts) for patient FOR005 and the point mutation R49G. Correlations highlighted with a green circle represent residues that are close to the salt bridge R49-
D25. F, Comparison of non-seeded FOR005 and seeded R49G fibrils. The spectra are almost identical, suggesting that the fibril structures are similar. (Left) 2D
PDSD 13C,13C correlation spectra, focusing on the Ile and Ser/Thr spectral region. Non-seeded patient fibril spectra and seeded R49G fibril spectra are repre-
sented in red and black, respectively. (Right) Superposition of 2D 15N,13C correlation spectra focusing on the Ca spectral region. Non-seeded patient fibril spec-
tra and seeded R49G fibril spectra are again represented in red and black, respectively.

Figure 5. Sequence alignment and amyloidogenic cores of VL fibrils. FOR005 fibrils investigated in this study are highlighted with a black rectangle. For
the sequence alignment, amyloid fibril studies involving AL09 (k-I, AL patient) (19), MAK33 (k-IV, murine) (18), Alabama (l-I, cardiac AL patient) (16), FOR005
(l-III, cardiac AL patient), AL55 (l-VI, cardiac AL patient) (17), and 6aJL2-R24G (l-VI, model-germline protein) (21) are employed. Sequence alignment was per-
formed using the CLUSTALW web tool. The FOR005 primary sequence shares a 40.74% sequence identity with AL09, 37.38% with MAK33, 59.81% for
6aJL2_R25G, 54.72% with AL, and 57.01% with AL55, respectively. The amyloidogenic core regions observed by MAS solid-state NMR and cryo-EM are indi-
cated in green and yellow, respectively. Conserved residues among these sequences are highlighted in red. Germline mutations are marked in bold. The sec-
ondary structure of the native protein (22) is shown below the sequences in dark blue.
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involving the aggregation intermediate state and not the
mature fibril. However, given that the MAS solid-state NMR
spectra do not contain any other intermediate state resonances,
we do not favor this interpretation. Alternatively, important
germline mutations might act as a plug and stabilize the fibril
structure in a non-canonical way. Consequently, only side
chain resonances of e.g. R49 are prominently visible in theMAS
solid-state NMR spectra, whereas the backbone resonances are
not readily assigned. A detailed analysis of the structural
changes between FOR005 patient fibrils and germline fibrils
require a structural model with atomic level resolution. Because
of sensitivity issues, we were not able so far to collect a greater
number of long-range distance restraints using e.g. PAR or
PAIN type experiments (52, 53). Very recently, the AL-fibril
structure obtained from patient tissue has been solved using
cryo-EM (54). There, fibrils have been extracted from heart tis-
sue and analyzed after purification.Whereas the residues which
constitute the amyloid core are rather similar, we find a differ-
ent topology byMAS solid-state NMR.We observe salt bridges
involving residues R49-D25 and K50-D81. These interactions
are not observed in the cryo-EM structure. Currently, research
is going on in our laboratory to identify the factors that contrib-
ute to stabilize the different topologies.

Conclusion

Our results shed light on the fibril core, polymorphism, and
the effect of mutations in AL amyloid fibrils.We have identified
the core of the amyloid fibrils formed by the patient sequence
FOR005. We find that R49 is an important residue that stabil-
izes the fibril structure via electrostatic interactions. In fibrils
formed by protein containing the single point mutation R49G
and by the GL sequence, these interactions are lost which yields
a destabilization of the C-terminal part of the protein sequence
(residues 80-102). By contrast, the N-terminal part of the fibril
remains conformationally homogeneous. Analysis of the Ca
secondary chemical shifts suggests that R49G fibrils adopt a
similar fold as patient protein fibrils. Heterologous seeding
experiments indicate that native LC protein can be recruited
into pathogenic AL fibrils, which contributes to structural het-
erogeneity in AL amyloidosis.

Experimental Procedures

Source of AL fibrils

AL amyloid fibrils were extracted from the heart of a patient
suffering from advanced heart failure because of AL amyloido-
sis. The AL protein sequence (FOR005) corresponds to “AL
case 1” reported by Annamalai et al. (22). Fibrils employed for
seeding are extracted from heart tissue as described there and
are referred to as ex-vivo seeds. The work was conducted based
on a valid ethical clearance of the “Ethikkommission der TU
München”, project 406/18-AS, and abide by the Declaration of
Helsinki principles. Informed consent was obtained from
patient FOR005.

In vitro prepared fibrils

To prepare in vitro seeds, first non-seeded fibrils were pre-
pared. These preformed fibrils were subsequently sonicated for
3 min, and added to the purified, monomeric protein. This step
was repeated two times. In all iterative steps, 5% w/v seeds were
added to monomeric protein to finally select for the fastest
growing polymorph.

Protein expression and purification

Recombinant protein production were purified as described
previously (18, 35). Briefly, E. coli BL21 with a pET28(b1) vec-
tor containing the FOR005 gene were grown in minimal me-
dium. Expression was induced with 1 mM IPTG at OD 0.6–0.8.
After overnight expression at 37˚C, cells were harvested, and
inclusion bodies were isolated. The dissolved protein from
inclusion bodies was subjected to anion exchange chromatogra-
phy followed by refolding using a 3.5 kDa dialysis tube and a
buffer containing redox agents. Finally, pure protein was obtained
using gel filtration chromatography. Total yield was on the order
of 20–30 mg protein per liter of culture. To produce isotopically
labeled protein, 15NH4Cl and 13C-glucose were employed as
nitrogen and carbon sources, respectively. All mutants were puri-
fied in the sameway as the patient protein.

Fibril sample preparation for solid-state NMR

Fibrils were prepared using an initial protein concentration
of 50 mM in PBS buffer, pH 6.5 at 37°C. Protein solutions were
incubated in a shaker (Thermo Scientific) at 120 rpm. 2.5–5%
seeds were added to yield seeded fibrils. In addition, 0.05% so-
dium azide was used to prevent bacterial growth. Samples were
incubated for 1 or 2 weeks to yield seeded and non-seeded
fibrils, respectively. For all solid-state NMR samples, approx. 15
mg of protein have been employed. Protein aggregates were
first centrifuged to reduce the volume to approx. 500 ml. Subse-
quently, the fibril slurry was sedimented for 1 h into a 3.2 mm
thin wall ZrO2 MAS rotor (Bruker, Biospin), using a rotor fill-
ing tool (Giotto Biotech) and a L-100 XP ultracentrifuge (Beck-
man Coulter) equipped with an SW 32 Ti swinging bucket
rotor operating at 28,000 rpm. The volume of the MAS rotor
has been restricted to the active volume of the NMR coil using
teflon spacers.

Transmission EM (TEM)

To confirm that fibrils have been formed, we performed
TEM experiments. Formvar/Carbon 300 mesh copper coated
carbon grids (Electron Microscopy Sciences) was exposed first
to an argon atmosphere for 10 s. Five microliters of sample was
then added to the grids and incubated for 1 min. Grids were
subsequently washed with water and dried in filter paper. For
staining, 10 ml of uranyl acetate (2%) was added for up to 30 s.
Extra stain was removed from the grid using filter paper. Grids
were visualized in TEM employing a Zeiss EM 10 CR or a LI-
BRA 120 plus microscope (Zeiss, Germany).
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ThT kinetics assay

Fibril formation kinetics was monitored by standard ThT
assay (31, 36, 37). Triplicates were performed for all samples.
0.02% sodium azide was added to avoid bacterial growth. The
50 mM VL protein samples (with or without 2.5%–5% seeds)
were incubated with 25 mM ThT, using a 96-well plate (Ther-
mofisher scientific) andmeasured in fluorescence spectrometer
(PHERAstar plus, BMG LABTECH) with fluorescence excita-
tion and emission wavelength of 440 nm and 480 nm, respec-
tively. The ThT experiments have been carried out at a temper-
ature of 37°C. During incubation, the samples were agitated at
500 rpm using thermoshaker (PST-60HL-4, Biosan).

Solid state NMR experiments

All solid-state NMR experiments are carried out at an exter-
nal magnetic field of 17.6 T (corresponding to a 1H Larmor fre-
quency of 750 MHz). 2D 13C,13C correlation experiments were
acquired using either PDSD or DARR for mixing. Experiments
involving aliphatic carbons were performed at a MAS fre-
quency of 10 kHz with using a 13C,13C mixing time of 50 ms.
Experiments involving aromatic residues were performed at a
MAS frequency of 16.5 kHz to avoid interference with rotation
side bands. To assign the fibril NMR chemical shifts, conven-
tional 3D NCACX and 3D NCOCX were recorded (38, 39).
For 13C,15N transfers, specific CP based experiments were
employed (40). In addition, 3D CONCA and 3D CANCO
experiments were performed to confirm and assign ambiguous
residues (41, 42). In these experiments, optimal control CP
(OC-CP) were used to gain sensitivity (43). The effective sam-
ple temperature was adjusted to 0 °C. To characterize salt
bridges, 2D 13C,15N TEDOR experiments (32, 44) have been
recorded. In these experiments, the MAS rotation frequency
has been adjusted to 16.5 kHz MAS, using short (1.9 ms) and
long (15.0 ms) TEDOR mixing times. In 3D experiments, 25%
NUS (45) was used to gain sensitivity and to reduce experimen-
tal time. NUS spectra were reconstructed using the mdd algo-
rithm in TOPSPIN employing the NUS plugin (46). The sec-
ondary chemical shifts were calculated according to the
formula: [Ca (observed) - Ca(random coil)] – [Cb(observed) –
Cb(random coil)].

Data Availability

Solution-state and MAS solid-state NMR chemical shift
assignments for native FOR005 and FOR005 VL fibrils can be
accessed on the BioMagResBank (BMRB) under entry number
50211 and 50192, respectively. All other data are contained
with this article.
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