
F1000Research

Article Status Summary

Referee Responses

, Cornell College USASuzette Astley

, University of EdinburghMichael Mangan

UK

Latest Comments

No Comments Yet

2

1

WEB TOOL

Visualizing and quantifying movement from pre-recorded
 videos: The spectral time-lapse (STL) algorithm [v1; ref status:

indexed, http://f1000r.es/2qo]
Christopher R Madan, Marcia L Spetch
Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Abstract
When studying animal behaviour within an open environment,
movement-related data are often important for behavioural analyses.
Therefore, simple and efficient techniques are needed to present and analyze
the data of such movements. However, it is challenging to present both spatial
and temporal information of movements within a two-dimensional image
representation. To address this challenge, we developed the spectral
time-lapse (STL) algorithm that re-codes an animal’s position at every time
point with a time-specific color, and overlays it with a reference frame of the
video, to produce a summary image. We additionally incorporated automated
motion tracking, such that the animal’s position can be extracted and summary
statistics such as path length and duration can be calculated, as well as
instantaneous velocity and acceleration. Here we describe the STL algorithm
and offer a freely available MATLAB toolbox that implements the algorithm and
allows for a large degree of end-user control and flexibility.

 Christopher R Madan ()Corresponding author: cmadan@ualberta.ca
 Madan CR and Spetch ML (2014) How to cite this article: Visualizing and quantifying movement from pre-recorded videos: The spectral

 2014, :19 (doi:)time-lapse (STL) algorithm [v1; ref status: indexed,]http://f1000r.es/2qo F1000Research 3 10.12688/f1000research.3-19.v1
 © 2014 Madan CR and Spetch ML. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution

, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associatedLicence
with the article are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 This research was partly funded by a Discovery grant and a Canada Graduate Scholarship, both from the Natural Science andGrant information:
Engineering Research Council of Canada, held by MLS and CRM, respectively.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

 21 Jan 2014, :19 (doi:) First published: 3 10.12688/f1000research.3-19.v1
 24 Mar 2014, :19 (doi:)First indexed: 3 10.12688/f1000research.3-19.v1

Referees

v1
published
21 Jan 2014

 1 2

report report

 21 Jan 2014, :19 (doi:)First published: 3 10.12688/f1000research.3-19.v1
 21 Jan 2014, :19 (doi:)Latest published: 3 10.12688/f1000research.3-19.v1

v1

Page 1 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://f1000r.es/2qo
http://f1000r.es/2qo
http://dx.doi.org/10.12688/f1000research.3-19.v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.3-19.v1
http://dx.doi.org/10.12688/f1000research.3-19.v1
http://dx.doi.org/10.12688/f1000research.3-19.v1
http://dx.doi.org/10.12688/f1000research.3-19.v1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.3-19.v1&domain=pdf&date_stamp=2014-01-21

Introduction
Studies of animal behaviour in open environments yield rich data-
sets. While behaviour can often be summarized through simple
measurements (e.g., first target approached within an array,
sequence of targets approached, timings of these behaviours), these
measures are not always sufficient. A widely-used solution to this
problem was introduced three decades ago, with a methods paper
describing the use of video recordings to study animal behaviour
(Godden & Graham, 1983). Although some researchers use com-
mercial tracking equipment, movements are sometimes recorded
using standard video cameras without markers on the animal and
the data are manually scored. Using simple pre-recorded video
recordings, we sought to summarize both spatial and temporal
information of movements within a two-dimensional image rep-
resentation. Specifically, we developed spectral time-lapse (STL)
images that code the animal’s position with a time-specific color
and overlay them on a frame of the video to produce a summary
image (Figure 1A). We also incorporate automated tracking of the
animal’s path and provide summary statistics (Figure 1B), as well
as plotting velocity and acceleration over time (Figure 1C). Here,
we describe the algorithm and offer a MATLAB toolbox that imple-
ments it, while allowing for substantial end-user control.

The challenge of visualizing movements within a two-dimensional
image is not new. Although many solutions have been discussed
(Jensenius, 2012, 2013), none integrate both spatial and temporal
information to sufficiently characterize a path within a single image.
Time-lapse images (illustrated in Jensenius, 2013, Figure 1) con-
catenate a series of still images adjacently, and do not present the

images within the same spatial frame. Motion history and motion
average images (illustrated in Jensenius, 2013, Figure 4–Figure 7)
show movements within the same spatial frame, but lose temporal
information. Our solution was to color images of the target using
a time-specific color, and overlay these on the background, see
Figure 1A.

Our second goal was to obtain path data, specifically x- and y-
coordinates of the animal at each time point. While solutions for
this purpose already exist, many have drawbacks. EthoVision
(Noldus et al., 2001, 2002; Spink et al., 2001), a widely used
movement-tracking software package, needs to be adjusted for each
set-up (e.g., animal to track and type of arena). Other methodologi-
cal drawbacks include requiring markers on the animal during video
acquisition (e.g., Chen et al., 2008), specification of templates of
the animal’s shape (e.g., Kalafatić, 2003; Xu et al., 2009), or the
ability to only process low-resolution videos (reducing precision;
e.g., Crispim Junior et al., 2012). Although solutions exist that do
not have these limitations (e.g., Khan et al., 2006; Perner, 2001;
Tort et al., 2006; Tweed & Calway, 2002), our implementation of
the STL toolbox in MATLAB allows the end-user to easily extract
path data within the MATLAB environment (e.g., Figure 1B).
To glean additional information from the path, we also calculate
instantaneous velocity and acceleration (see Figure 1C).

Materials and methods
Animal research was conducted in accordance with Canadian
Council on Animal Care guidelines and with approval from the
University of Alberta Animal Welfare Policy Committee. Pigeons

Figure 1. Visualizing and quantifying movement data from a single trial of a pigeon navigating an arena with four food cups. (A)
Spectral time-lapse (STL) image of the trial, sampled at 1 pps. First bar in bottom left corresponds to 10 seconds; second bar illustrates which
frames highly overlapped with adjacent frames; third bar shows time-color mapping used. (B) Path overlaid on the STL image, sampled at
6 pps. (C) Velocity-acceleration plot of same movement data.

0.8C
0.6

0.4

Ve
lo

ci
ty

 (m
s–1

)

0.2

0
0 5 10 15

Time (s)
20 25 30

–0.2

0.2

–0.1

0.1

0

A
cc

el
er

at
io

n
(m

s–2
)

Page 2 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

To allow the STL images to be based on only a portion of a video,
start and end frames can be specified, (startFrame, endFrame). An
additional MATLAB function called showFrameK is included to
facilitate in determining start and end frames.

In this stage, the reference frame is also defined, which is often
either the first or last frame of the video, or a ‘moving average’
(refFrame). The reference will be subtracted from all other frames
to isolate the target animal, i.e., the change in the video frame, in
the next stage. A moving average is useful when the background
changes over time (e.g., lighting, bedding materials; refSmooth).

B. Pre-processing
The STL algorithm implements a pre-processing stage to isolate
movement data and reduce noise. Here, five pre-processing calcula-
tions were done for each frame:

First, the reference is subtracted from the given frame, to isolate
changes in the frame that corresponds to the target.

Second, the difference image is spatially smoothed to reduce noise.
This is implemented by convolving a two-dimensional Gaussian
kernel with the given frame. Ideally, the user will calibrate the
kernel size to the image, based on the animal’s size, as viewed by
the camera, and video resolution (smooth).

Third, if the animal is lighter colored than the background, inten-
sity values are negative. To produce consistent color mapping in the
next stage, we reverse these values so that intensity of the target is
always positive.

Fourth, irrelevant portions of the frame are masked out to improve
the signal-to-noise ratio and later target detection. Two approaches
are used to do this, a pre-made static mask (doMask) and a dynamic
detection of an overlay (cleanWhite). For the pre-made mask, the
filename to the mask image must be provided (maskName). For the
overlay, any pixels with an intensity value above a set threshold are
ignored (white). This is useful if a timestamp or other overlay is
hard-coded into the video, as in Figure 1A.

Fifth, we trim frames from the start and end of the video that did
not contain the target; this feature can be disabled by the end user
(disableTrim). Frames are only retained if they are sufficiently different
from the reference, based on thresholds (threshMask, threshTrim).
At this point, only frames containing temporal information about
the movement are retained.

Figure 2 shows example images of the frames after these
calculations.

C. Colorizing the frames
A mapping of time-to-color is created for each of the retained
frames. This mapping is adjustable, but usually corresponds to one
or two color cycles (cmap). A mask is then created such that only
pixel intensities that surpass a threshold are retained (threshMask),
further removing noise. At this point, the spatial information

(Columba livia) were kept on a 12:12 h light:dark cycle with light
onset at 6 AM. Birds were housed individually in metal cages and
kept at 85% of their free feeding weight on a diet of Kee Tee pigeon
pellets and vitamin supplement. Water and grit were available ad
libitum.

Here we present a spectral time-lapse (STL) image and describe the
algorithm used to create the image. Figure 1A illustrates a single
trial of a pigeon (Columba livia) entering an arena, moving to and
eating from four food cups, and returning to the starting box. The
STL image allows the researcher to observe the behaviour (e.g.,
sequence of cups visited, efficiency of path taken) without needing
to watch the video. This is particularly useful as videos are often
longer in duration than the movement; in this particular trial, the
raw video lasts 45 sec., while the pigeon is only visible for 25 sec.
The STL image in Figure 1A was generated to show one position-
per-second (pps), in other words, one colored position (i.e., pigeon)
is plotted for each second. The raw video for this particular trial is
included as Data File 1.

Video data was acquired using a standard video camera connected to
a PC running Microsoft Windows 7 (Redmond, WA) and recorded
as a MPEG-2 transport stream file using the WinTV hardware and
software package (Hauppauge Computer Works Inc., Hauppauge,
NY). (Note: It is not necessary for the STL method that the videos
be recorded with WinTV or that the videos be saved as MPEG-2
transport stream files, this was just how we chose to digitize our
video recordings). We converted the video to an uncompressed AVI
format using MPEG Streamclip (Squared 5 S.R.L., Rome, Italy),
but other software could be used as well. These uncompressed AVI
files can be read directly into the STL toolbox.

Data File 1. Raw video used in Figure 1 and Figure 2

1 Data File

http://dx.doi.org/10.6084/m9.figshare.900359

The STL algorithm
The steps comprising the STL algorithm are illustrated in Figure 2.
Settings that can easily be adjusted by the end user are noted in
parentheses and italicized throughout. These names refer to the
variable names within the STL toolbox and are found within the
configuration file (config.m, see Supplementary Materials).

A. Loading the raw video
The raw video file is read in and only every i-th frame is sampled
(sampling), as video is often acquired at higher rates than needed
for the STL image. For instance, the animal’s position might be
sampled at 1 pps, whereas video cameras often record at 24 or
30 frames-per-second (fps). If the original video speed has been
adjusted, such as videos originally from a high-speed camera, then
this can be accommodated and calculations adjusted (videospeed).
The STL toolbox reports the video’s original acquired fps and the
STL’s pps. The sampled video frames are converted to grey-scale,
as color will be used to code for time. The folder containing the raw
video must be specified in the configuration file (path_raw).

Page 3 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://dx.doi.org/10.6084/m9.figshare.900359

Figure 2. Illustration of the STL algorithm, the component stages, and examples of images at each stage. (A) Loading the raw video.
(B) Pre-processing. (C) Colorizing the frames. (D) Creating the STL image. (E) Outputting the STL image. (F) Path analysis method.
(G) Velocity-acceleration plot.

corresponding to the target has been isolated. The color specific to
the given frame is then applied, see Figure 2.

D. Creating a spectral time-lapse (STL) image
All colorized frames are averaged to produce a single frame that is
essentially the STL image. To improve color visibility after averag-
ing, the saturation of the averaged frame is amplified (oversatCol).

E. Outputting the spectral time-lapse (STL) image
To produce the final STL image, we overlay the averaged frame
on the reference (refFrame). To further improve visibility of the
colors, we increase the saturation of the reference (oversatRef).

Legend bars are added to the image to show (a) actual time,
(b) indicate overlapping frames as would occur if the target pauses,
and (c) time-specific color mapping. The actual time bar denotes
the length, relative to the other bars, of a fixed amount of time,
e.g., 1 second (timeBar). The overlap bar is white if the frames
overlapped more than a threshold amount (threshAdjac), and is
otherwise black. The size of all three bars can also be adjusted
(barSize).

The final STL image is exported as an image file to the specified
folder (path_out). The image can also be viewed immediately
(showSTL).

sample every i-th frame
read frame contents
set reference frame

difference from reference
spital smoothing
spatial masking

temporal trimming

threshold masking
applying colormap

combine with reference
time legend bar

color-time legend bar
adjacent frame overlap bar

(optional)
re-analyze video for path detection
can use different sampling rate than STL
measure total path length and time

(optional)
plot velocity and acceleration vs. time
color-time bar to align with STL image

Raw Video

Reference

Frames

Frames

Frames

Remaining Frames

Pre-processing

Colorize

Path Analysis

Velocity-Acceleration
Plot

Spectral
Time-Lapse (STL)
average colorized frames

increase saturation

Output STL image

A

B

C

D

E

F

G

0.8

0.6

0.4

Ve
lo

ci
ty

 (m
s–1

)

A
cc

el
er

at
io

n
(m

s–2
)

0.2

0
0 5 10 15

Time (s)
20 25 30

–0.2

0.2

–0.1

0.1

0

Page 4 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

The second video was of an ant in a simple open environment dem-
onstrating scanning behaviour, where the ant is searching for visual
landmarks (http://www.youtube.com/watch?v=u7LaPjMtmYM).
The video was also downloaded from YouTube and converted.
Note that this video was recorded using a high-speed camera and
had been slowed down by a factor of 10 (as stated in the video’s
description). Settings were customized for differences in the video
resolution and speed, as well as target size. Here we sampled the
ant’s position at 10 pps, for the STL image and 100 pps for the path
image. The resulting images are presented in Figures 3D–3F.

Results and discussion
Here we presented a novel method of visualizing and quantifying
animal movement from pre-recorded videos acquired with stand-
ard video equipment. The STL images accurately summarize an
animal’s position at a given time, within a single two-dimensional
image representation, and allow researchers to observe movement
patterns without needing to watch full videos for every trial. We
incorporated a simple but efficient path analysis method into the
algorithm to quantify properties of the movement, including instan-
taneous velocity and acceleration. The STL toolbox implementing
the STL algorithm in MATLAB is available freely from the authors.
(For an introductory guide to MATLAB, see Madan, 2014).

As the path analysis method implemented in the STL toolbox is
fairly simple, it has a few limitations: the method can only be used
for a single target and it cannot correct for partially occluded tar-
gets or lens distortions. Several methods could be incorporated to
allow for the tracking of multiple targets, such as placing unique
markers on each target (e.g., Sakiyama et al., 2006), identifying
separable targets and calculating movement vectors or “limited-
radius” searches for each (e.g., Perner, 2001; Tort et al., 2006; Xu
et al., 2009), using shape templates (e.g., Kalafatić, 2003; Xu et al.,
2009), or using a particle-based approach (e.g., Khan et al., 2006;
Tweed & Calway, 2002). Future versions could use methods to cor-
rect for occlusions (e.g., Perner, 2001), which can include video
artifacts such as timestamps embedded in the video (as in Figure 1).
Estimates of path length may also be affected by lens distortions,
e.g., if a fish-eye lens was used. These distortions can be corrected
by combining manually-acquired known distances (i.e., a calibra-
tion grid) with the observed video data. (Lind et al., 2005) provide
equations to compensate for lens distortions. Nonetheless, the path
analysis method implemented here efficiently tracks a single target
and requires no markers or shape templates.

Other fields have also demonstrated interest in movement-tracking
methods. Most notably, many papers outlining methods for track-
ing movements have been published in the Journal of Neuroscience
Methods, driven by interest in how neurological lesions or pharma-
cological manipulations influence movement. Our methods offer a
simple, readily-available tool to complement existing techniques.
These methods may also prove useful in other domains such as
tracking humans from stationary surveillance cameras (e.g., Buono,
2011) or tracking vehicles over large areas (e.g., van Dommelen
et al., 2013).

F. Path analysis method
If path analysis is enabled (doPath), the STL toolbox uses a simple
but efficient method to obtain x- and y-coordinates of the target at
regular intervals (pathSampling), which is often a higher sampling
frequency than used for the STL image. In our example (Figure 1B)
we used 6 pps. These positions are plotted in a separate path image,
which can either be overlaid on the STL image or the reference
frame (pathBack).

The path analysis method takes advantage of the same thresholds
used in the STL algorithm to isolate the target and remove spatial
and temporal noise. The coordinates of the target are determined by
calculating the x- and y-coordinates for the center of the largest cen-
troid, after the image has been intensity thresholded (threshTrim).
A minimum area for the largest centroid (areamin) is also used to
re-determine the start and end frames for the path analysis.

The obtained x- and y-coordinates for the target across all retained
frames can be plotted over the STL or reference image. A color
map is applied, along with the STL image, and the marker’s border
and arrows can be modified in the configuration (pathCol; usually
black or white, depending on the background). The path image is
saved in the same folder as the STL image (path_out). Along with
the x- and y-coordinates for each frame, two summary statistics are
calculated: total path length and duration. If the pixels-to-meters
conversion is specified (px2m), coordinates and path length will be
outputted in meters.

G. Velocity-acceleration plot
Using the distances travelled between time points, as calculated for
the path analysis, we can readily also calculate the instantaneous
velocity and acceleration (doVel). To reduce noise in these measures,
a weighted average is taken across adjacent values (velSmooth).
The plot is saved in the same folder as the STL image (path_out).

Generalizability of the STL algorithm
So far we have described the STL algorithm (Figure 2) and pre-
sented images for one trial of a pigeon study (Figure 1). To demon-
strate the generalizability of the method, we tested it on videos of
other animals.

The first video, of a mouse in a radial-arm maze (http://www.you-
tube.com/watch?v=y7zQgz0vmWo), was downloaded as a MPEG-4
file from YouTube and converted to an uncompressed AVI with
MPEG Streamclip. We cropped the video to isolate the maze. As the
video represented multiple trials, we chose a video segment from
after the mouse had been trained, spanning from 1 min 46 sec to
1 min 59 sec; this temporal trimming was done through the STL
toolbox by specifying the start and end frames (3178 and 3568,
respectively). Several settings were modified to suit the video, such
as the smoothing kernel size, color map cycles, and the target
being lighter than the background. We sampled the mouse’s posi-
tion at 3 pps for the STL image and 30 pps for the path analysis. We
plotted the path over the reference frame. The resulting images are
presented in Figures 3A–3C.

Page 5 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://www.youtube.com/watch?v=u7LaPjMtmYM
http://www.youtube.com/watch?v=y7zQgz0vmWo
http://www.youtube.com/watch?v=y7zQgz0vmWo

Figure 3. Application of the STL algorithm to videos of other animals. (A) STL image of a mouse in a radial arm maze (available from http://
www.youtube.com/watch?v=y7zQgz0vmWo, with permission of Anže Starič (University of Ljubljana)), sampled at 3 pps. First bar in bottom left
corresponds to 1 second; second bar illustrates which frames highly overlapped with adjacent frames; third bar shows time-color mapping
used. (B) Path of same movement data as shown in panel A, overlaid on the reference frame, sampled at 30 pps. (C) Velocity-acceleration
plot of same movement data as panels A and B. (D) STL image of an ant in an open environment, sampled at 10 pps (after adjusting for use
of high-speed camera; available from http://www.youtube.com/watch?v=u7LaPjMtmYM with permission of Antoine Wystrach, Paul Graham,
and Andrew Philippides (University of Sussex)). First bar in bottom left corresponds to 10 seconds; second bar illustrates which frames highly
overlapped with adjacent frames; third bar shows time-color mapping used. (E) Path of same movement data as panel D, overlaid on the STL
image, sampled at 100 pps. (F) Velocity-acceleration plot of same movement data as panels D and E.

0.2

0.15

0.1

0.05

0

2

1

0

Ve
lo

ci
ty

 (m
s–1

)
Ve

lo
ci

ty
 (m

s–1
)

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2 4 6 8 10 12

5

0

–5

–2

–1

0

2

1

A
cc

el
er

at
io

n
(m

s–2
)

A
cc

el
er

at
io

n
(m

s–2
)

C

F

Time (s)

Time (s)

Page 6 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://www.youtube.com/watch?v=y7zQgz0vmWo
http://www.youtube.com/watch?v=y7zQgz0vmWo
http://www.youtube.com/watch?v=u7LaPjMtmYM

Competing interests
The authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Grant information
This research was partly funded by a Discovery grant and a Canada
Graduate Scholarship, both from the Natural Science and Engineering
Research Council of Canada, held by MLS and CRM, respectively.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Acknowledgements
We would like to thank Ariel Greiner for feedback while develop-
ing the STL algorithm. We would also like to thank Anže Starič
(University of Ljubljana) for allowing us to use his video of the
mouse in the radial arm maze and Antoine Wystrach, Paul Graham,
and Andrew Philippides (University of Sussex) for allowing us to
use their video of ant behaviour.

Data and software availability
Data
figshare: Data File 1. Raw video used in Figure 1 and Figure 2. doi:
http://dx.doi.org/10.6084/m9.figshare.900359 (Madan & Spetch, 2014).

Copies of the YouTube videos have been deposited with F1000Research
for archival purposes. Should the videos no longer be available from
the respective YouTube links provided in the article, please contact
F1000Research.

Software
ZENODO: Spectral time-lapse (STL) Toolbox. doi: 10.5281/
zenodo.7663 (Madan & Spetch, 2014).

Author contributions
Both authors developed the approach. CRM implemented the
method within MATLAB. Both authors read and approved the final
version of the manuscript.

Page 7 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://dx.doi.org/10.6084/m9.figshare.900359
http://dx.doi.org/10.5281/zenodo.7663
http://dx.doi.org/10.5281/zenodo.7663

Sample text feedback from running the STL toolbox (stltool) on video file
‘‘S-Video-20110718-1132.avi’’, the video of the single trial from the pigeon study.
The outputted images are shown in Figure 1. (Output is text wrapped to fit on page.)

 1	 >> data = stltool('S−Video-20110718-1132.avi');

 2	

 3	 Processing video file "S−Video-20110718-1132.avi"

 4	 Reading from raw video (46 Frames)

 5	 ..

 6	 Video is being sampled at one position per 1.00 seconds (1.0 pps)

 7	 Checking frames for motion (46 Frames)

 8	 ..

 9	 Colorizing frames (25 Frames)

10	

11	 Calculating spectral timelapse (STL) image

12	 STL generated ("STL-S−Video-20110718-1132.tif")

13	 STL summarizes 25.02 seconds of video

14	 Processing video file "S−Video-20110718-1132.avi"

15	 Reading from raw video (228 Frames)

16	 ...

17	 ...

18	 ...

19	

20	 Video is being sampled at one position per 0.20 seconds (5.0 pps)

21	 Checking frames for motion (228 Frames)

22	 ...

23	 ...

24	 ...

25	

26	 Detecting path

27	 Path calculated ("STLpath-S−Video-20110718-1132.tif")

28	 Total path length measured at 5.5423 m

29	 Total path took 24.22 s

30	 Velocity−acceleration plot generated

31	 ("STLvel-S−Video-20110718-1132.pdf")

Supplementary materials

Page 8 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

Data output from same example.

Legend of the outputted data’s structure.

 1	 >> data

 2	 data =

 3	 config: [1x1 struct]

 4	 fname: 'S−Video-20110718-1132.avi'

 5	 framesPathKept: 121

 6	 framesPathSampled: 228

 7	 framesSTLKept: 25

 8	 framesSTLSampled: 46

 9	 pathLength: 5.5423

10	 pathTime: 24.2239

11	 ppsPath: 4.9951

12	 ppsSTL: 0.9990

13	 trackXY: [121x2 double]

14	 velAcc: [1x118 double]

15	 velVel: [1x119 double]

16	 vidCDepth: 1

17	 vidFPS: 29.9704

18	 vidHeight: 480

19	 vidWidth: 640

 1	 config: backup of all config settings

 2	 (from config.m and configCustom.m)

 3	 fname: file name of video

 4	 framesPathKept: number of frames retained in path analysis

 5	 framesPathSampled: total number of frames sampled for path analysis

 6	 (framesPathKept will always be a subset of this)

 7	 framesSTLKept: number of frames retained in STL image

 8	 framesSTLSampled: total number of frames sampled for path analysis

 9	 (framesSTLKept will always be a subset of this)

10	 pathLength: total length of path (in pixels or meters)

11	 pathTime: total duration of path (in seconds)

12	 ppsPath: positions−per−second for path analysis

13	 ppsSTL: positions−per−second for STL image

14	 trackXY: x– and y−coordinates of path at each

15	 sampling point (in pixels or meters)

16	 velAcc: instantaneous acceleration

17	 (from velocity−acceleration plot)

18	 velVel: instantaneous velocity

19	 (from velocity−acceleration plot)

20	 vidCDepth: color depth of video

21	 (1 = grayscale; 3 = color [rgb])

22	 vidFPS: frames−per−second of video

23	 vidHeight: height of video

24	 vidWidth: width of video

Page 9 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

Example configuration settings code (config.m).

 1	 % Config settings for spectral time−lapse generation code (stltool)

 2	 % Written by Christopher R Madan

 3	 % Last edited 20131102 [CRM]

 4	 % Requires Statistics Toolbox (nanmean,normpdf)

 5	 % Requires Image Processing Toolbox (imresize,regionprops)

 6	

 7	 %% general settings

 8	 % debug on? (activates ‘ i nteractive ’ mode at end of STL code)
 9	 debugOn	 = 0;

10	 % is the target lighter or darker than the background area?

11	 % set to 1 for lighter, −1 for darker

12	 target	 = −1;

13	 % plot position from every i−th frame

14	 % most videos are at 30 frames per second (30 Hz; NTSC)

15	 sampling	 = 30;

16	 % video speed

17	 % has the video frame rate been adjusted relative to the original

18	 % recording?

19	 % set to 1 if not

20	 % set to .1 if used high−speed camera and slowed down by 10x

21	 videospeed	 = 1;

22	 % threshold for detecting change in frame

23	 % if this is too low, there will be lots of ‘ speckle ’ (random noise)
24	 % if this is too high, too few/no usable frames will be detected

25	 threshMask	 = 50;

26	 % block size of legend bars (height/width of each block, in px)

27	 barSize	 = 8;

28	 % length of time bar (in seconds)

29	 timeBar	 = 1;

30	 % display STL image? (will be saved regardless)

31	 showSTL	 = 0;

32	 % paths for input raw videos and output ot STL images

33	 path-raw	 = '../raw/';

34	 path-out	 = '../output/';

35

36

37	 %% frame range

38	 % starting frame, used to manually remove the first i frames

39	 % must be in quotes

40	 startFrame	 = '1';

41	 % last frame, use ‘ lastFrame ’ for the last frame of the video

42	 % must be in quotes

43	 endFrame	 = 'lastFrame';

44	 % reference frame for subtraction (usually '1' or 'end')

45	 % must be in quotes

46	 % use ‘ move’ for a moving average, can be a bit slow
47	 refFrame	 = 'end';

48	 % if using moving average, how should frames be weighted

49	 % (temporal smoothing)

50	 % list of values should be odd in length

51	 % middle value should be 0, so weight for ‘ current’ frame is 0

Page 10 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

 52	 % absolute values don't matter, will be normalized to sum to 1

 53	 refSmooth	 = [4:–1:1 repmat(0,1,5) 1:1:4];

 54

 55

 56	 %% frame spatial (masking)

 57	 % mask out a region of the frame if desired

 58	 doMask	 = 1;

 59	 % if using doMask, specify mask filename (within path-raw)

 60	 maskName	 = 'mask.tif';

 61	 % auto−mask white?

 62	 % E.g., if there was a hard−coded timestamp

 63	 cleanWhite = 1;

 64	 % lower end of what to trim as ‘ w hite ’
 65	 white	 = 120;

 66

 67

 68

 69	 %% frame temporal settings (trimming, change detection)

 70	 % disable auto−trimming of start and end frames

 71	 disableTrim = 0;

 72	 % threshold for automatically trimming start and end frames

 73	 % checks for differences between start/end frames and reference frame

 74	 % if there little difference, removes the frames

 75	 % (proportion of total frame)

 76	 threshTrim = .004;

 77	 % threshold for detecting changes between adjacent frames

 78	 % used for the white/black bar to detect differences between adjacent

 79	 % frames

 80	 threshAdjac = 0.4;

 81	

 82	

 83	 %% STL colorization settings

 84	 % set color map

 85	 % ‘hsv’ − recommended, one color cycle
 86	 % ‘dhsv’ − custom colormap for two cycles of hsv
 87	 % (dhsv = double hsv)

 88	 cmap	 = ‘dhsv’;
 89	 % increase brightness of reference image (refFrame) by x

 90	 oversatRef = 2;

 91	 % increase saturation of colorized frames by x

 92	 oversatCol = 20;

 93	 % smoothing kernel range

 94	 % improves detection of change, reduces effects of random noise

 95	 smooth	 = −1:1;

 96	

 97	

 98	 %% path analysis settings

 99	 % calculate path image?

100	 doPath	 = 1;

101	 % background image for path

102	 % ‘stl’ or ‘ref’
103	 pathBack	 = ‘stl’;
104	 % color for arrows and marker circles

105	 % usually ‘k’ or ‘w’ (black or white)

Page 11 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

106	 pathCol	 = 'k';

107	 % different sampling rate for path analysis?

108	 % for same rate just type: 0

109	 % for double the STL sampling frequency: sampling/2

110	 pathSampling = 30/5;

111	 % minimum area for tracked

112	 % set to 0 for no minimum

113	 areamin	 = 200;

114	 % path output units

115	 % how many px in a meter

116	 % set to 0 to report as pixels

117	 px2m	 = 0;

118	

119	

120	 %% velocity−acceleration plot settings

121	 % calculate velocity−acceleration plot?

122	 doVel	 = 1;

123	 % smooth instantaneous velocity/arousal with a kernel

124	 velSmooth = −3:.2:3;

Page 12 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

 1 % put custom settings for specific videos here

 2	

 3 if strcmp(fname,'ant.avi')

 4	 threshMask	 = 80;

 5	 cmap	 = 'hsv';

 6	 sampling	 = 30;

 7	 pathSampling	 = 3;

 8	 px2m	 = 100/(5/393); % 393 px == 5 cm

 9	 videospeed	 = .1;

10	 timeBar	 = 1;

11	 doMask	 = 0;

12	 cleanWhite	 = 0;

13 elseif strcmp(fname,'radial.avi')

14	 target	 = 1;

15	 cmap	 = 'hsv';

16	 startFrame	 = '3178';

17	 endFrame	 = '3530';

18	 sampling	 = 10;

19	 refFrame	 = '1';

20	 smooth	 = –2:2:2;

21	 threshMask	 = 30;

22	 pathSampling	 = 1;

23	 pathBack	 = 'ref';

24	 pathCol	 = 'w';

25	 px2m	 = 100/(100/330.5); % 330.5 px == 100 cm

26	 timeBar	 = 1;

27	 doMask	 = 0;

28	 cleanWhite	 = 0;

29 elseif strfind(fname,'S–Video')

30	 timeBar	 = 10;

31	 px2m	 = 100/(32/68.56); % 68.56 px == 32 cm

32 end

Example custom configuration code (configCustom.m).

Page 13 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

References

	 Buono P: Analyzing video produced by a stationary surveillance camera. In
Proceedings of the International Conference on Distributed Multimedia Systems
(DMS 2011). 2011; pp. 140–145.
Reference Source

	 Chen YJ, Li YC, Huang KN, et al.: Video tracking algorithm of long-term
experiment using stand-alone recording system. Rev Sci Instrum. 2008; 79(8):
085108.
PubMed Abstract | Publisher Full Text

	 Crispim Junior CF, Pederiva CN, Bose RC, et al.: ETHOWATCHER: Validation of a
tool for behavioral and video-tracking analysis in laboratory animals. Comput
Biol Med. 2012; 42(2): 257–264.
PubMed Abstract | Publisher Full Text

	 Godden DH, Graham D: ‘Instant’ analysis of movement. J Exp Biol. 1983; 107:
505–508.
PubMed Abstract

	 Jensenius AR: Evaluating how different video features influence the visual
quality of resultant motiongrams. In Proceedings of the Sound and Music
Computing Conference. 2012; pp. 467–472.
Reference Source

	 Jensenius AR: Some video abstraction techniques for displaying body
movement in analysis and performance. Leonardo. 2013; 46(1): 53–60.
Publisher Full Text

	

Khan Z, Blach T, Dellaert F: MCMC data association and sparse factorization
updating for real time multitarget tracking with merged and multiple
measurements.

IEEE Trans Pattern Anal Mach Intell. 2006; 28(12): 1960–1972.

PubMed Abstract |

Publisher Full Text

	

Kalafatić Z: Model-based tracking of laboratory animals. In Proceedings of
EUROCON 2003: Computers as a Tool. 2003; 2: pp. 175–178.
Publisher Full Text

	 Lind NM, Vinther M, Hemmingsen RP, et al.: Validation of a digital video tracking
system for recording pig locomotor behaviour. J Neurosci Methods. 2005;
143(2): 123–132.
PubMed Abstract | Publisher Full Text

	 Madan CR: An Introduction to MATLAB for Behavioral Researchers. Thousand
Oaks, CA: Sage. 2014.
Reference Source

	 Madan CR, Spetch ML: Data File 1. Raw video used in Figure 1 and Figure 2
F1000Research. Figshare. 2014.
Data Source

	 Madan CR, Spetch ML: Spectral time-lapse (STL) Toolbox. ZENODO. 2014.
Data Source

	 Noldus LP, Spink AJ, Tegelenbosch RA: EthoVision: A versatile video tracking
system for automation of behavioral experiments. Behav Res Methods Instrum
Comput. 2001; 33(3): 398–414.
PubMed Abstract | Publisher Full Text

	 Noldus LPJJ, Spink AJ, Tegelenbosch RAJ: Computerised video tracking,
movement analysis and behaviour recognition in insects. Comput Electron
Agric. 2002; 35(2–3): 201–227.
Publisher Full Text

	 Perner P: Motion tracking of animals for behavior analysis. In Proceedings of the
International Workshop on Visual Form (IWVF-4). 2001; pp. 779–786.
Publisher Full Text

	 Sakiyama Y, Sujaku T, Furuta A: A new automated method to estimate the
behavioral responses of a small animal using a multicolor detection
technique. In Proceedings of the SICE (Society of Instrument and Control
Engineers)–ICASE (Institute of Control, Automation, and Systems Engineers)
International Joint Conference. 2006; pp. 2905–2910.
Publisher Full Text

	 Spink AJ, Tegelenbosch RAJ, Buma MOS, et al.: The EthoVision video tracking
system—A tool for behavioral phenotyping of transgenic mice. Physiol Behav.
2001; 73(5): 731–744.
PubMed Abstract | Publisher Full Text

	 Tort ABL, Neto WP, Amaral OB, et al.: A simple webcam-based approach for
the measurement of rodent locomotion and other behavioural parameters. J
Neurosci Methods. (2006); 157(1): 91–97.
PubMed Abstract | Publisher Full Text

	 Tweed D, Calway A: Tracking multiple animals in wildlife footage. In Proceedings
of the International Conference on Pattern Recognition. 2002; 2: pp. 24–27.
Publisher Full Text

	 van Dommelen W, van de Laar P, Noldus LPJJ: Extending track analysis from
animals in the lab to moving objects anywhere. In Situation Awareness with
Systems of Systems. 2013; pp. 89–103. Springer: New York.
Publisher Full Text

	 Xu J, Yu H, Liu Y: A method to quantify movement activity of groups of animals
using automated image analysis. In Proceedings of the International Conference
on Photonics and Image in Agriculture Engineering (PIAGENG 2009). 2009;
pp. 74891C.
Publisher Full Text

Page 14 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://www.bibsonomy.org/bibtex/2ad6cdc11f0c9244c8f534d8eb183be16/dblp
http://www.ncbi.nlm.nih.gov/pubmed/19044381
http://dx.doi.org/10.1063/1.2976035
http://www.ncbi.nlm.nih.gov/pubmed/22204867
http://dx.doi.org/10.1016/j.compbiomed.2011.12.002
http://www.ncbi.nlm.nih.gov/pubmed/6668462
http://smcnetwork.org/node/1713
http://dx.doi.org/10.1162/LEON_a_00485
http://www.ncbi.nlm.nih.gov/pubmed/17108370
http://dx.doi.org/10.1109/TPAMI.2006.247
http://dx.doi.org/10.1109/EURCON.2003.1248176
http://www.ncbi.nlm.nih.gov/pubmed/15814144
http://dx.doi.org/10.1016/j.jneumeth.2004.09.019
http://www.sagepub.com/books/Book239284?q= Perspectives on Psychological Science &subject=L00&status=New&pageTitle=productsSearch
http://dx.doi.org/10.6084/m9.figshare.900359
http://dx.doi.org/10.5281/zenodo.7663
http://www.ncbi.nlm.nih.gov/pubmed/11591072
http://dx.doi.org/10.3758/BF03195394
http://dx.doi.org/10.1016/S0168-1699(02)00019-4
http://dx.doi.org/10.1007/3-540-45129-3_72
http://dx.doi.org/10.1109/SICE.2006.314909
http://www.ncbi.nlm.nih.gov/pubmed/11566207
http://dx.doi.org/10.1016/S0031-9384(01)00530-3
http://www.ncbi.nlm.nih.gov/pubmed/16701901
http://dx.doi.org/10.1016/j.jneumeth.2006.04.005
http://dx.doi.org/10.1109/ICPR.2002.1048227
http://dx.doi.org/10.1007/978-1-4614-6230-9_6
http://dx.doi.org/10.1117/12.837187
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1717456
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1248176

F1000Research

 Current Referee Status:

Referee Responses for Version 1
 Michael Mangan

Neuroinformatics and Computational Neuroscience, University of Edinburgh, Edinburgh, Scotland, UK

Approved: 24 March 2014

 24 March 2014Referee Report:
Overview
This paper describes a MatLab toolbox for tracking single animals in video data, quantifying basic
movement properties (path-length, velocity profile, etc), and then displaying overall movement pattern in a
single figure using colours to encode animal position at different times.

The animal tracker presented comprises an elementary background subtraction approach augmented
with masking, thresholding, and filtering methods to extract the location of the animal. As the parameters
for these techniques are manually defined, and then held constant across the video, this method seems
best suited to laboratory recordings where the environment changes little. For outdoor recordings, where
there are likely illumination changes, occlusions etc a more robust tracking method is required e.g. TLD
tracker (Z. Kalal, K. Mikolajczyk, and J. Matas, “ ,” Tracking-Learning-Detection Pattern Analysis and

 2011). Machine Intelligence,

The authors summarise the movement of the animal in a "spectral-time-lapse" image. The STL overlays
the animal position, colour coded with respect to time, on a reference image. I believe the primary benefit
of this method is rapid visualisation of the position and orientation of the animal across its path. Although
personally, I do not see the benefit of displaying the entire animal shape - I deduced more from the higher
resolution track shown in Fig 1B for example. I also suspect that on longer or overlapping paths the STL
would become cluttered and confusing.

The techniques used are mostly technically sound (see specific comments below). I foresee this work
being of some use to behavioural researchers tracking animals in laboratory settings. Specifically: as the
code is available as a Matlab toolbox, it can be easily installed, the parameters tuned for the specific
case, and data visualised easily.

Specific Comments
The authors describe a "moving average" reference frame, but do not describe how this is
generated exactly. I think expanding upon this point to make it clear to a reader is important.

The 3rd step in the Pre-processing algorithm inverts the negative pixel intensities. I think this step
could be omitted by taking either a sum-squared or root-mean-square difference between
reference and current frame in step 1.

In the 4th step in the Pre-processing algorithm it is stated that the masking method "is useful if

Page 15 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

http://epubs.surrey.ac.uk/713800/1/Kalal-PAMI-2011%281%29.pdf

F1000Research

In the 4th step in the Pre-processing algorithm it is stated that the masking method "is useful if
". I would have thought this would be removed intimestamp or overlay is hard-coded in the video

the background subtraction step as it is constant across frames?

The mouse data tracks the animal from 1 min 46 seconds until 1 min 59 seconds. Was there a
reason for using this specific portion of the video?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 Suzette Astley
Department of Psychology, Cornell College, Mount Vernon, IA, USA

Approved: 27 February 2014

 27 February 2014Referee Report:
In this article, Madan and Spetch describe a tool for monitoring animal movement in an open field that will
be extremely useful to many researchers. Not only does the software monitor the animal's path through
the environment, it also offers time-based information, and can provide information about velocity and
acceleration of the movement over time. MATLAB software is in wide use in behavioral research, and
Madan and Spetch have made the STL algorithm freely available in MATLAB. This is the sort of new tool
that can lead researchers to ask new questions and to look in new directions to answer current questions.
This algorithm will undoubtedly make a significant contribution to our understanding of animal behavior.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Page 16 of 16

F1000Research 2014, 3:19 Last updated: 24 MAR 2014

