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Conductance-based models of neurons are used extensively in computational

neuroscience. Working with these models can be challenging due to their high

dimensionality and large number of parameters. Here, we present a neuron and network

simulator built on a novel automatic type system that binds object-oriented code written

in C++ to objects in MATLAB. Our approach builds on the tradition of uniting the speed

of languages like C++ with the ease-of-use and feature-set of scientific programming

languages like MATLAB. Xolotl allows for the creation and manipulation of hierarchical

models with components that are named and searchable, permitting intuitive high-level

programmatic control over all parts of the model. The simulator’s architecture allows

for the interactive manipulation of any parameter in any model, and for visualizing the

effects of changing that parameter immediately. Xolotl is fully featured with hundreds

of ion channel models from the electrophysiological literature, and can be extended to

include arbitrary conductances, synapses, and mechanisms. Several core features like

bookmarking of parameters and automatic hashing of source code facilitate reproducible

and auditable research. Its ease of use and rich visualization capabilities make it an

attractive option in teaching environments. Finally, xolotl is written in a modular fashion,

includes detailed tutorials and worked examples, and is freely available at https://github.

com/sg-s/xolotl, enabling seamless integration into the workflows of other researchers.

Keywords: code:MATLAB, code:C++, conductance-based, software, Hodgkin-Huxley

1. INTRODUCTION

Nervous systems process and transmit information using electrically excitable membranes.
Conductance-based models are a powerful biophysical simplification of an electrically excitable
compartment in a neuron (Hodgkin and Huxley, 1952a). Studies based on the Hodgkin-
Huxley formalism now contribute significantly to mainstream research in some circuits (Marder
and Abbott, 1995; Prinz, 2006, 2010). These models provide an approachable framework for
understanding many salient principles of electrophysiology, since they explicitly model cell
membranes and ion channels as electrical components in a circuit. However, several challenges
remain in working with biophysically-detailed conductance-based neuron models. First, these
models can be high-dimensional with many non-linear differential equations, each with several
parameters. Second, many or all equations in these models can be strongly coupled through
dynamical variables like the membrane potential. In multi-compartment models of spatially
extended neurons, membrane potentials in every compartment can be different, and are coupled

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00087
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00087&domain=pdf&date_stamp=2018-11-26
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srinivasgs@brandeis.edu
https://doi.org/10.3389/fninf.2018.00087
https://www.frontiersin.org/articles/10.3389/fninf.2018.00087/full
http://loop.frontiersin.org/people/602105/overview
http://loop.frontiersin.org/people/1175/overview
https://github.com/sg-s/xolotl
https://github.com/sg-s/xolotl


Gorur-Shandilya et al. Xolotl: Neuron and Network Simulator

to each other. Finally, the choice of programming language used
to implement the model imposes tradeoffs in designing and using
neuron and network simulators: simulators written in languages
like C++ or FORTRAN can integrate equations quickly, but
often lack the ease-of-use and interoperability of those written in
scientific programming languages like Python, Julia, or MATLAB
(Mathworks).

Two major approaches have dominated the design of neuron
simulators. One approach is to write the simulator in a fast
compiled language like C and allow for the construction and
simulation of neuron models using object-oriented paradigms.
This approach has been implemented in NEURON (Hines
and Carnevale, 1997). Simulators designed in this way tend
to perform fast computations with little overhead, but suffer
from a steep learning curve. Wrapping these simulators in a
more approachable language like Python or using graphical user
interfaces (GUIs) mitigates these drawbacks (Hines et al., 2009;
Gratiy et al., 2018) at the cost of obfuscating the underlying
algorithms and parameters (Brette et al., 2007; Hines et al.,
2009). In contrast, simulators designed from the ground up
in popular scientific computing languages can be easier to use
and benefit from interoperability with other commonly-used
tools. Simulators like DynaSim (Sherfey et al., 2018), ANNarchy
(Vitay et al., 2015), BRIAN (Stimberg et al., 2013), morphforge
(Hull and Willshaw, 2014), and PyNN (Davison et al., 2009)
allow the user to specify models with strings of equations or
components that are constructed using a special syntax, that
can then be translated into a faster implementation language
such as C or C++ (Stimberg et al., 2014). This approach permits
considerable flexibility for simulating systems of differential
equations. Because models need to be translated between the
two languages, the hierarchical nature of neuron models is not
naturally encapsulated by these tools, and the syntax can be
verbose. Neither approach facilitates the creation of tools that
simultaneously maintain efficiency, ease-of-use, and clarity.

To overcome these design limitations, we have developed
a novel automatic type system, that we call cpplab, which
binds MATLAB code to classes specified in C++ header files.
This architecture automatically creates objects in MATLAB that
represent the underlying object-oriented C++ code, allowing
the symbolic manipulation of C++ objects in the MATLAB
interface. In this paper, we introduce xolotl, an implementation of
the cpplab system specialized in integrating conductance-based
neuron and network models. Models can be easily constructed
from components of different types in a few lines of MATLAB
code using a hierarchical and intuitive syntax. Since models in
the MATLAB workspace are automatically linked to models in
the C++ implementation, configuring these objects in MATLAB
transparently configures the underlying C++ objects. Xolotl
comes packaged with hundreds of components that can be
used to assemble cells and networks; has built-in visualization
functions to inspect voltage time traces and activation functions;
and a GUI for real-time manipulation of model parameters.
Xolotl’s ease of use makes it an attractive option for pedagogical
applications, rapid prototyping of models, and primary research
use. Our software aims to simplify the investigation of the
dynamics of conductance-based network and neuron models,

facilitate collaborative modeling, and is intended to complement
other tools being developed in the computational neuroscience
community.

2. DESIGN GOALS

Xolotl is designed to be easy-to-use and richly featured while
being fast enough to use in everyday research. Our focus was
on designing an approachable simulator of conductance-based
neurons and networks of these neurons; simulating arbitrary
dynamical systems is therefore beyond the scope of this software.
Specifically, the software was designed to simulate models of the
form

Ci
dVi

dt
= −

∑

j

Ij (1)

where Ci and Vi are the capacitance and membrane potential of
compartment i. Compartments can represent whole neurons or
parts of neurons. Ij is the current due to ion channel population j
and is given by

Ij = ḡjm
p
j h

q
j (V − Ej)Ai (2)

Here, ḡj is the maximal conductance, and Ej is the reversal
potential of the ion channel population j. Ai is the surface area
of compartment i that contains these ion channels. mj and hj are
activation and inactivation variables that change according to

τm
dm

dt
= m∞ −m and τh

dh

dt
= h∞ − h

Typically, τm, τh, m∞, and h∞ are functions of the membrane
potential Vi. The software uses integration schemes that have
been specifically developed to solve equations of this form (Hines,
1984; Dayan and Abbott, 2001; Oh and French, 2006), though
other schemes can be used if desired.

This software is designed to be used from within MATLAB,
a scientific programming language common amongst
neuroscientists and engineers for pedagogy and research.
Our goal was to make xolotl completely usable entirely from
within MATLAB. Models created using this simulator appear
in the MATLAB workspace as native objects, are thus fully
scriptable, and are fully compatible with the large library of
toolboxes that MATLAB provides, allowing the software to be
used as a component of other packages and tools. All parameters
of a model, and activation functions of any channel can be
inspected at any point. We designed several features of the
simulator to be easily extensible: adding custom conductances or
synapse types is possible by calling functions that generate new
C++ files on-the-fly. Finally, xolotl is fully auditable by design,
with several tools to verify model and parameter integrity and
aid in reproducibility.

2.1. Features
2.1.1. Object-oriented
Xolotl is designed to mirror the nested and hierarchical structure
of networks and neurons. Biological neuronal networks are made
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up of neurons that are connected to each other with synapses.
Each of these neurons contains within it a set of conductances
and synaptic currents that contribute to its electrical behavior.
Intracellular mechanisms can act within the cell, or parts of the
cell, to modify and regulate conductances, synapses, or other
dynamic properties of the cell. Similarly, a xolotl model can
contain a set of compartments that can represent individual
neurons. Each compartment can contain an arbitrary set of
conductances. Compartments, conductances and synapses can
contain mechanisms that can affect anything in the model. All
objects in the xolotl model tree (compartments, conductances,
etc.) are bonafide MATLAB objects with their own type
and properties. This object-oriented programming paradigm
naturally represents the hierarchical structure of biological
networks that contain neurons that contain populations of ion
channels, and makes constructing, integrating, and thinking
about these models easier.

2.1.2. A Rich Library of Network Components
Xolotl comes packaged with hundreds of pre-existing
components (compartments, synapses, conductances, and
mechanisms) that can be used as building blocks to construct
model neurons and networks. “Compartments” represent
sections of membrane with a single membrane potential,
intracellular Calcium concentration, and set of constituent
components; and can represent either entire cells or parts of
cells. Objects of type “conductance” represent populations of
ion channels in a compartment that produce transmembrane
currents. “synapse” objects connect two compartments together
by introducing a current in the postsynaptic compartment
that depends on the presynaptic compartment’s membrane
potential. Objects of type “mechanism” can represent any
intracellular mechanism and can read and modify any other
component in the cell, and can run arbitrary dynamical systems
within them. Parameters of any of these objects can be easily
inspected and modified at any time, either manually or through
a programmatic interface. Every compartment exists as a C++
file within the code repository, making it easy to browse these
components and edit them. For example, mechanisms are stored
under “c++/mechanism.”

2.1.3. Automatic Type System
To circumvent the tradeoff between high-performance but hard-
to-use languages like C++ and richly-featured but potentially
slow languages like MATLAB, we constructed an automatic type
system that links object oriented code in C++ to object oriented
code in MATLAB. This architecture lets us construct the core of
the simulator in C++, leveraging features of C++ like pointers
that are not readily available in MATLAB. A rudimentary way
to make this C++ code useable in MATLAB would be to re-
write that code in MATLAB so that MATLAB objects can be
bound to their C++ implementations. However, this approach is
cumbersome and inefficient, and can introduce errors. Instead,
our automatic type system creates objects in MATLAB on-the-fly
from C++ class specifications, obviating the need to rewrite code
in MATLAB while preserving a tight coupling between objects
in the MATLAB workspace and their C++ implementation.

Crucially, this method makes developing new code much easier
and simplifies the task of constructing complex frameworks that
span these two languages.

2.1.4. Automatic Hashing and Compiling
Because every model requires a compiled binary to run, a
potential stumbling block is the problem of unambiguously
linking a model to a binary executable. Xolotl solves this
problem by hashing (Rivest, 1992) the C++ header files of
every component in the model recursively, allowing a model,
no matter how complex, to be compactly represented by a
short alphanumeric identifier (its “hash”). Compiled binaries
are named using this hash, ensuring both that the correct
binary is run to integrate the model, and that compilation
occurs only as needed. This powerful feature enables the user
experience to remain entirely within the MATLAB workspace,
with compilation and selection of the correct binary occurring
silently in the background.

2.2. Limitations
Our focus on xolotl’s ease-of-use and speed imposed some
limitations on its feature set.

2.2.1. Limited to Conductance-Based Models
Xolotl has been developed specifically for conductance-based
models. It does not currently support rate- or current-based
models, or arbitrary dynamical systems.

2.2.2. Limited Numerical Integration Strategies
Most components in the software are integrated using the
exponential Euler method, which has been used in integrating
neuronal models (Dayan and Abbott, 2001; Oh and French,
2006). Single compartment models may also be integrated
using the 4th order Runge-Kutta method. Unbranched multi-
compartment models are automatically integrated using an
implicit Crank-Nicholson method (Dayan and Abbott, 2001).
However, it may be desirable to use other methods under
certain conditions. It is possible to introduce new components
that implement other integration schemes, or to modify the
integration schemes of existing components, but that requires
writing new C++ code. Currently, xolotl can only implement
integration schemes with fixed step size.

2.2.3. Inefficient Tools For Handling Large Networks
Xolotl was designed to work with small but complex networks
andmodels, where every compartment and component is named,
rather than numbered. It is more therefore suited toward
simulating small, heterogeneous networks rather than large,
homogenous networks. While the software can integrate large
networks (> 1, 000 compartments), other tools are presumably
more suited to this task, offering more natural frameworks for
dealing with a large number of identical units. Similarly, xolotl
is not optimized to solve coupled ODEs on complex branched
morphologies, that other simulators like NEURON (Hines and
Carnevale, 1997) are specialized for.
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2.2.4. New Mechanisms Require New C++ Code
Adding new network components requires writing new C++
code. A new conductance in the Hodgkin-Huxley formalism
(Hodgkin and Huxley, 1952a,b; Hodgkin et al., 1952; Dayan and
Abbott, 2001) requires creating a new C++ header file, though
this is generally trivial. Implementing a new integration scheme
or component type requires much more in-depth knowledge of
the underlying C++ core code.

3. USAGE EXAMPLES

In this section, we illustrate how xolotl can be used to generate,
inspect, and simulate a variety of models. These examples have
been chosen to demonstrate various features of xolotl, and are
intended to serve as templates upon which researchers and
educators can build. In every example, we assume that a new
xolotl object has been initialized using

x = xolotl;

3.1. Simulating a Hodgkin-Huxley Model
The axon of the giant squid contains a fast inactivating sodium
conductance (“NaV”), a slower non-inactivating potassium
conductance (“Kd”), and a passive leak current (“Leak”). Seminal
work by Hodgkin and Huxley showed that depolarizations of the
membrane could lead to an activation of the voltage-sensitive
“NaV” channels, which led to a run away depolarization that
was terminated by the inactivation of “NaV” channels and
the activation of “Kd” channels that repolarized the membrane
(Hodgkin and Huxley, 1952b; Hodgkin et al., 1952). As one of
the simplest models of excitable neural membranes, theHodgkin-
Huxley model often serves as a the first model introduced in
pedagogical literature (Dayan and Abbott, 2001; Trappenberg,
2010; Sterratt, 2011).

In this example, we demonstrate how to simulate the spiking
activity of a Hodgkin-Huxley-like model, and how the tools built
into xolotl make it easy to set up and integrate the model and gain
insight into the underlying biophysical mechanisms. This simple
model consists of a single electrical compartment with three types
of conductances (Figure 1A). This hierarchical organization of
the neuron is mirrored in the structure of the model in the
simulator: an object of type “compartment” is used to represent
the cell body, and three objects of type “conductance” are used
to model the three populations of ion channels (Figure 1B).
These models of ion channels were obtained from Liu et al.
(1998) based on electrophysiological recordings from the lobster
stomatogastric ganglion (Turrigiano et al., 1995), and are part of
the simulator. The code to set up this model is terse, idiomatic,
relies on no special markup, and preserves the hierarchical nature
of the model (Figure 1C).

Adding an injected current and calling the built-in “plot”
function plots the time series of membrane voltage. In the
absence of injected current, the model is quiescent. When 0.2 nA
is injected, the model tonically spikes (Figures 1A,B). The plot
function displays a voltage trace colored by the dominant current
(Figure 1A). Colors in the voltage trace indicate the strongest
instantaneous inward current when the voltage is increasing,

and strongest instantaneous outward current when the voltage
is decreasing. This built-in feature reveals that the dominant
current during the upswing of every action potential is the
sodium current, and the dominant current immediately after the
peak of the action potential is the potassium current, but that
the leak current contributes to depolarization following an action
potential. This feature could be useful in quickly understanding
the contributions of a number of ion channel types in a complex
voltage trace from a more complicated neuron model.

Integrating the model returns the voltage time series for every
compartment:

V = x.integrate;

The model can be integrated for various amplitudes of injected
current to determine its F-I (frequency current) curve (Kispersky
et al., 2012). Figure 1E shows the F-I curve of this model,
obtained by repeated integration of the model. Finally, the built-
in show function can plot activation (m) and inactivation (h)
curves and voltage-dependent timescales of any channel type in
the simulator (Figures 1D–G). These plots reveal that activation
kinetics of the “NaV” channels are much faster than that of
the “Kd” channels (Figure 1F), which facilitates the transient
depolarization in an action potential. In summary, the simulator
allows the user to construct and integrate this model in a few lines
of code, and provides rich visualization of the dynamics of the
model.

3.2. Performing a Voltage Clamp
Experiment in-silico
Voltage clamping is an experimental technique where a amplifier
is configured to inject the appropriate amount of current
through a electrode to maintain the voltage of a cell at a
desired value. Under this paradigm, the membrane voltage is
“clamped” or fixed to a desired value, permitting the study of
voltage-dependent ion channels, since the sum of all currents
through the population of ion channels in the cell is equal
and opposite to the current injected by the clamp (Figure 2A).
By combining voltage clamp with the use of pharmacological
agents to block all channels but the one of interest, the voltage-
sensitivity of an ion channel population can be characterized
(Hodgkin and Katz, 1949; Hodgkin and Huxley, 1952a; Hodgkin
et al., 1952; Cole, 1955; Cole and Moore, 1960; Turrigiano et al.,
1995).

Xolotl can reproduce such a voltage clamp experiment in-
silico. Figure 2B illustrates how a simple model with a single
compartment and a single ion channel type can be set up and
clamped to a desired voltage. Integrating the model yields the
current required to clamp the cell at that voltage. Here, we use
a delayed-rectifier potassium conductance (Liu et al., 1998) and
simulate a voltage-clamp experiment whose goal is to infer the
activation function of this channel. First, the cell is clamped to a
number of different voltages (Figure 2C) and the resultant clamp
currents are measured by integrating the model (Figure 2D).
Since the compartment is being voltage clamped, integrating the
model returns the clamping current:

I_clamp = x.integrate;
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FIGURE 1 | Simulating a single-compartment Hodgkin-Huxley spiking neuron model. (A) Schematic representation of a single-compartment neuron with three

populations of ion channels (colored rectangles). (B) In xolotl, the soma is represented using an object of class “compartment” and populations of ion channels are

represented by “conductance” objects contained within the compartment object. (C) The code snippet shown sets up this neuron model, injects current, integrates

and plots the voltage, and displays activation functions, all in a few lines of code. (D) Simulated voltage trace of a Hodgkin-Huxley model with three conductances and

0.2 nA of injected current. Colors indicate the dominant current [gold is fast sodium (NaV), blue is delayed rectifier (Kd), red is Leak]. (E) firing rate vs. current (f–I) curve

of this neuron. (F,G) Steady-state gating functions for activation (m) and inactivation (h) gating variables. (H,I) Voltage-dependence of time constants for activation (m)

and inactivation (h) gating variables. Every panel in this figure can be reproduced using built-in methods of xolotl.

By repeating the integration at a number of clamp voltages,
we observe that the asymptotic clamp currents depend on the
clamp voltage in a non-linear manner (Figure 2E), since the
open probabilities of the channel are functions of the membrane
voltage. Assuming the reversal potential is known, Equation
(2) can be used to solve for the total conductance of the
channel as a function of the clamp voltage (Figure 2F). Finally,
a sigmoid can be fit to the normalized conductance-voltage
curves to obtain the activation function of the ion channel
population (Figures 2G,H). Xolotl can therefore be used to
describe graphically the theoretical underpinnings of ion channel
characterization through voltage clamp and can serve as an
effective pedagogical tool in computational neuroscience.

3.3. Intracellular Mechanisms
So far, the models we described only considered the voltage
dynamics of a cell (the solution to Equation 1). However, real
neurons possess several dynamical features, arising from a variety
of intracellular mechanisms. Xolotl makes it possible to model
and include arbitrary intracellular mechanisms. In xolotl, these
intracellular mechanisms are represented by the “mechanism”
object, and can be bound to compartments, conductances, and
other object types.

A key intracellular mechanism is the cytosolic buffering of
Calcium and its influx through voltage-gated Calcium channels.
Figure 3A shows a model of a single-compartment model with
8 populations of ion channels (Liu et al., 1998). Without
any explicit mechanism for Calcium influx or buffering, the
intracellular Calcium levels in this model do not change

(Figure 3B) and the model tonically spikes (Figure 3C). Calcium
buffering and influx can be modeled by a differential equation
that increases intracellular Calcium with the current through
Calcium channels and relaxes back to a baseline value (Liu
et al., 1998; Dayan and Abbott, 2001; Prinz et al., 2003)
(Figure 3D). This mechanism exists in the xolotl library as
CalciumMech1 and can be added to the model using a simple
add statement (Figure 3E). The intracellular Calcium in the
model now oscillates periodically (Figure 3F), synchronized to
bursts in action potentials in this cell (Figure 3G).

Neurons can regulate their electrical activity by controlling the
spectrum of ion channels they express (Turrigiano et al., 1995;
MacLean et al., 2003; Schulz et al., 2006). Here, we will show
how xolotl can be used to represent a recently proposed model
of a homeostatic feedback system that controls the transcription
rates of ion channels with the integral of an error signal derived
from the intracellular Calcium concentration (O’Leary et al.,
2013, 2014) (Figure 3H). Since this mechanism affects each
ion channel population individually, an object corresponding
to this mechanism is added to each conductance object in the
neuron (Figure 3I). Setting all maximal conductance densities
to some low value and integrating the model shows that the
intracellular Calcium levels rise over time and approach the
target Calcium concentration (Figure 3J), while all conductance
densities increase and then remain bounded (Figure 3K).
Examining the voltage dynamics of the cell reveal that it
transitions from quiescence to truncated bursts of action
potentials to periodic bursting as this mechanism regulates the
neuron’s ion channel spectrum. In summary, xolotl can be
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FIGURE 2 | Simulating a voltage-clamp experiment. The diagram shows a cell with delayed rectifier potassium conductance (Liu et al., 1998) that is being recorded

from in two-electrode voltage clamp (A). The code snippet shown here sets up a model with a single compartment and a single channel type, and clamps the cell to a

constant voltage and integrates it (B). Voltage steps that the cell is clamped to (C). Clamp currents as a function of time (D). Asymptotic clamped current vs. clamped

voltage for this cell (E). Accounting for the reversal potential of Potassium ions yields the conductance-voltage curve of this channel type (F). Normalized

conductance-voltage curves, with sigmoid fits with various exponents (G). An exponent of n = 4 yields the best fit, allowing for the characterization of the activation

function of this channel type (H).

used to construct neuron models with intracellular mechanisms
such as Calcium influx and buffering, and homeostatic
regulation.

3.4. Using Snapshots to Explore Model
Dynamics and Parameters
Switching back and forth points in parameter space and
state space of a neuron model is a common occurrence in
working with neuron models, and a significant fraction of
a modeler’s time is spent in a feedback loop of running
simulations, viewing the output, changing parameters, and re-
running simulations (De Schutter, 1992). Xolotl makes it easy

to bookmark configurations of a model and return to them at
will. Internally, xolotl uses the serialize method to gather
all parameters and dynamic variables into a vector of values
that is passed to the underlying C++ implementation. A paired
deserialize method is used to update all parameters and
variables in the object tree from this vector. This architecture
provides a natural framework for representing the state of any
model, no matter how complex, using a vector of numbers.
The snapshot method built into xolotl leverages this schema
to save the entire state of the model in a named variable,
that can be accessed using another built-in method called
reset.
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FIGURE 3 | Modeling intracellular mechanisms. A single-compartment neuron model with 8 channel types (A). Because there is no mechanism for changing

intracellular Calcium in this model, the Calcium level stays constant (B), and the cell tonically spikes (C). Intracellular Calcium buffering and influx through voltage

gated Calcium channels (VGCCs) can be modeled using a simple differential equation (D). Code snippet shows how this mechanism can be added to the neuron

model (E). The cell now bursts periodically, with synchronized oscillations in intracellular Calcium (F,G). Schematic of Calcium-dependent integral control homeostasis

(O’Leary et al., 2013, 2014) (H). In this feedback system, the rates of mRNA synthesis depend on the Calcium level in the cell, which depends on the membrane

voltage, which in turn depends on the conductance density of all channel types, which, through translation, depends on the mRNA abundance. (I) The code snippet

shows how these integral controllers are implemented as mechanism objects, and can be added to conductances. (J) On integrating the model, intracellular calcium

levels rise and approach the target (red dashed line). This is accompanied by an increase in the conductance densities of all channels being controlled by this

homeostatic mechanism (K). The voltage behavior of the cell changes from silence to bursting with truncated spikes to regular bursting.

Figure 4 illustrates how these features can be used to
explore the dynamics of the model presented in the previous
section. First, the current state of the model is saved using
the snapshot method into a state called “initial”. In this
state, the model exhibits periodic bursting activity due to
a particular configuration of maximal conductance densities
(Figure 3, orange). On setting the maximal conductances of the
Calcium-permissive channels to 0, the model switches to a tonic
spiking activity (Figure 3, purple). Integrating the model for a
longer duration allows the homeostatic control mechanism in the
cell to restore the conductance profile and bursting activity to
a state close to the original state (Figure 3, green). This state is
saved using the name “final.”

The initial state can be returned to using the reset method,
and a new manipulation to the model can be explored. Here,
the intracellular Calcium target is modified, and the model is re-
integrated, to yield a different voltage activity (Figure 3, blue).

At the end of this numerical exploration, any of the saved states
can be quickly returned to using the resetmethod, making the
process of re-initializing models to desired states and parameters
both error-free and efficient.

3.5. Simulating Network Models
Neurons communicate and interact using synapses,
electrochemical junctions between cells (Hua and Smith, 2004;
Gjorgjieva et al., 2016). In chemical synapses, the presynaptic
neuron releases packets of neurotransmitter across the synaptic
cleft, which activate receptors on the postsynaptic neuron. In
electrical synapses, no chemical intermediary is involved. New
patterns of activity can emerge from the characteristics of the
connecting synapses (Nadim et al., 1999; Gutierrez and Marder,
2013; Gutierrez et al., 2013; Li et al., 2018).

Network models in xolotl consist of compartment objects
that can be connected by synapse objects. Two compartments
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FIGURE 4 | Snapshots allow the user to bookmark points in parameter and state space of the model and return to them ad arbitrium. The initial state (orange node)

of the single compartment model in the previous example is saved using the snapshot method. This method saves all parameters and dynamic variables of the

model in a named state. The first column (orange plots) shows the profile of conductances and the voltage dynamics of the model at this point at this time. The

maximal conductances of the Calcium channels are then set to zero (purple node), changing the voltage dynamics of the neuron (purple plots). After evolving the

model for some time (green node), the conductance profile and voltage dynamics returns to a state similar to the initial state (green plots). This configuration is now

saved in a state called final and the initial configuration is returned to using the reset method (backwards arrow from green to orange). Another parameter is now

changed (the Calcium target), and the model is integrated to reach a new state (blue node) where the voltage dynamics are different from the initial state. In summary,

any state can be bookmarked using a descriptive name using the snapshot method, and can be returned to using the reset method.

representing different neurons can be connected using synapses
using the built-in connect method. For example, in the well-
studied pyloric circuit in the crustacean stomatograstic ganglion,
a cell called LP synapses onto PY cells using several synapses,
that together have an effective combined maximal conductance
of around 30 nS. This can be modeled in xolotl by using single
compartments to represent the LP and PY cells, and connecting
the LP cell to the PY cell using a chemical synapse of type
Glutamatergic with strength 30 nS using

x.connect('LP','PY','Glutamatergic','gbar',

30);

Xolotl has several types of synapses built-in, and other
synapse classes can be easily added using templates. Figure 5
demonstrates the implementation of a model of the triphasic
pyloric rhythm in the stomatogastric ganglion of crustaceans
(Prinz et al., 2004). The pyloric model contains three
compartments (AB, LP, and PY) and seven synapses
(Figure 5A). This structure is recapitulated in the hierarchy
of the xolotl object, where conductances are contained within
compartments (Figure 5B). The membrane potentials show
triphasic rhythmicity in the three compartments (Figures 5C–E).
When the PY is depolarized, the dynamical variable mediating

the glutamatergic (Glut) synapse model between PY and LP

is close to 1 and LP is inhibited (Figure 5F). Conversely, when
PY is hyperpolarized, the dynamical variable is close to 0. In this
model, when PY spikes, IPSPs can be seen in the LP voltage trace
(Figures 5D,E).

3.6. Using the GUI to Manipulate
Parameters
Conductance-based neuron models are typically high
dimensional and contain many parameters. Changing a
single parameter monotonically can cause non-monotonic
changes in behavior of the model, and certain dynamical features
may only emerge in specific non-convex regions of parameter
space (Golowasch et al., 2002). It is often challenging to build
intuition about what effect a parameter has on the model
under these conditions. Traditionally, the technique used by
computational neuroscientists in building intuition about these
models is to iteratively run simulations, view outputs and change
parameters. In practice, this meant writing a script, running it,
inspecting the output, changing parameters in the script, and
repeating this process. It can be cumbersome, and every step in
this process involves “mode” changes: switching between a text
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FIGURE 5 | Simulating a network of conductance-based model neurons, coupled by voltage-dependent dynamic chemical synapses. A three-compartment model of

the pyloric network in the crustacean stomatogastric ganglion (Prinz et al., 2004) (A). Each neuron is modeled with a single compartment with 7–8 intrinsic

conductances and 1–3 post-synaptic conductances. Synapses can be one of two types [Cholinergic (dashed lines) or Glutamatergic (solid lines)] and have different

kinetics. The code snippet shows how neurons can be created, wired together using synapses, and how the model can be integrated to return voltages and

intracellular calcium levels in every compartment, and the state of every synapse (B). Simulated voltage trace of a model network for the three compartments obtained

from this simulation (C–E) . Time series activation variable of the Glutamatergic synapse between PY and LP (red connection in diagram) shows how the synapse

becomes active every time the PY neuron spikes (F).

editor, viewing a graphical output, and the command line that
can frustrate the researcher.

Xolotl is designed to streamline this process and allows for
any parameter in any model to be manipulated using graphical
sliders, with immediate, real-time feedback of its behavior. Any
model in the simulator can be manipulated using

x.manipulate

This method creates a GUI element with sliders for every
parameter, and also creates a set of plots that shows the dynamical
behavior of the model (Figure 6). By default, time series of the
voltage and the calcium of every compartment are shown, though
this can be modified. Moving any of the sliders updates the value
of that parameter in the model, and also triggers a function call
that reintegrates the model and updates the output plots. This
function call can also update custom plots, like the one shown in
(Figure 6B). Any model can be manipulated in this way without
writing any additional code.

This feature was only possible due to our architectural
decision to split the code base across two programming
environments. A rich scientific programming environment like
MATLAB makes it possible to easily generate user interface
elements and to bind them to data in plots, while the sheer speed
of compiled languages like C++ allow for the immediate, real-
time feedback and updating of plots. By default, any parameter
in the model can be manipulated, including parameters in user-
defined mechanisms that do not exist in the base simulator. The
GUI can be constrained to arbitrary subsets of model parameters

using wild card matching (as shown in Figure 6) or by manually
specifying the parameters of interest.

4. BENCHMARKS

Our goal in designing xolotl was to create an easy-to-use neuron
and network simulator that was fast enough and accurate enough
for routine use by computational neuroscientists. In this section,
we benchmarked the speed and accuracy of xolotl in simulating
single and large numbers of Hodgkin-Huxley-like neuronmodels
(as in Figure 1) and bursting neuron models based on the
bursting neurons in the lobster stomatogastric ganglion (STG)
(Prinz et al., 2004). For each type of neuron model, we compared
our software to NEURON (Hines and Carnevale, 1997), a
high-performance and powerful neuron simulator specialized in
simulating neurons with complex morphologies and DynaSim
(Sherfey et al., 2018), a general-purpose simulator that can
solve coupled differential equations numerically. All simulators
were run on the same hardware using fixed time-step solvers:
xolotl used the Exponential Euler method (Dayan and Abbott,
2001), NEURON used the implicit Euler solver (Hines and
Carnevale, 1997) and DynaSim used C-compiled 2nd-order
Runge-Kutta integration scheme as recommended for high-
performance (Sherfey et al., 2018). We measured the speed of
each simulator by dividing the time simulated by the time it took
the simulator to complete integration. For example, if a simulator
could simulate 10 seconds of model data in 1 second, its speed
would be 10X. We measured the speed of every simulator as a
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FIGURE 6 | Manipulating neuron parameters in real time. Any set of parameter in the model can be manipulated; here, the maximal conductance of every

conductance type in the model from Figure 1 is being manipulated using the code snippet shown here. The screenshot shows a GUI with sliders for every parameter

of interest that is created by the manipulate method. These sliders can be linked to an arbitrary number of visualization functions. In this example, two visualization

functions are used: the built in plot method (A) and a custom function that computes the firing-rate-vs.-injected current curve for this neuron (B). Both plots refresh

themselves with every movement of any slider, allowing the user to build intuition about how every parameter controls the dynamical behavior of the model. A screen

recording of this model being manipulated in real time is included in Supplementary Material.

function of simulation time step, total length of simulation, and
system size.

All three simulators were faster with larger time steps,
since fewer iterations were needed (Figures 7A,B), and were
approximately linear in the region tested. Xolotl compared
favorably to NEURON and DynaSim in this task. We also
measured the quality of the simulated output by comparing it
to the simulated output at the smallest time step. Simulation
error was measured using the LeMasson cost (LeMasson and
Maex, 2000), and was comparable amongst the three simulators
(Figures 7C,D). Since xolotl sets up and runs the simulation
in C++, it needs to transfer parameters and data to and from
the underlying implementation. To measure the performance
cost of this overhead, we repeated these benchmarks on all
three simulators at a fixed time step of 0.1 ms and varied the
length of time simulated for. Speed increased with simulation
duration up to a point, and then saturated, indicating a
fixed performance cost to the overhead (Figures 7E,F, black
lines). Simulations using DynaSim, which also used a similar
architecture and need to move data between C implementations
and the MATLAB workspace, showed a similar increase in
speed with simulation length (Figures 7E,F, red lines). However,
simulations using NEURON ran at a constant speed irrespective
of simulation length, presumably due to differences in the
underlying implementation (Figures 7E,F, blue lines).

Many simulators have been designed with a focus on
simulating large numbers of compartments, either as networks
with many identical neurons or in a large multi-compartment
neuron model (Delorme and Thorpe, 2003; Brette et al., 2007;
Vitay et al., 2015; Sherfey et al., 2018). While our software is not
designed for this task per se, we measured its performance as a
function of the number of compartments simulated. Xolotl can
quickly create a number of identical copies of a compartment
using the “replicate” method:

x.replicate('compartment_to_replicate',

n_copies);

We used the replicate method to create and run models
with varying numbers of neurons (either Hodgkin-Huxley-like or
bursting neurons) and measured the speed of all three simulators
as a function of system size. Plotting the speed normalized by
the system size vs. the system size, we observed that the speed
of integration of xolotl is linear with system size (Figures 7G,H,
black lines), for up to 1,000 single-compartment neurons (up
to 13,000 ODEs). Its performance compares favorably with
that of NEURON and DynaSim as a function of system size
(Figures 7G,H).

5. DISCUSSION

We set out to design a neuron and network simulator that
could be useful in the classroom setting, especially for students
of computational neuroscience, while also being powerful, fast,

and extensible enough to be used for research. By using a novel
architecture that permits the symbolic manipulation of C++

objects in a intuitive MATLAB interface, we demonstrated some
of the features of xolotl using simulations of single-compartment
models of Hodgkin-Huxley like neurons (Figure 1), voltage

clamp experiments to recover activation functions of single
channel types (Figure 2), a neuron model where intracellular
mechanisms can control the dynamics of Calcium and can
regulate the maximal conductance of ion channel types in an

activity-dependent manner (Figure 3), and a network of neurons
with multiple synapse types (Figure 5). We also illustrated how
built-in features of the simulator make it easy to bookmark and

jump between model configurations (Figure 3, purple), and how
parameters of the model can be changed using sliders and their
effect can be viewed in real time (Figure 6).

5.1. A Focus on Usability
“About half the time spent on a typical simulation project
involves creating and tuning the model. Thus, a good user
interfacemay contributemore to the overall efficiency of a project
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FIGURE 7 | Comparison of speed and accuracy of xolotl, NEURON, and DynaSim. The top row shows simulations of a tonically-firing Hodgkin-Huxley model with

three conductances with constant injected current (as in Figure 1). The bottom row shows simulations of a bursting stomatogastric ganglion neuron model with 8

conductances (as in Figure 5). Ratio of run-time to simulation time (relative speed) as a function of simulation time step (A,B). Simulation error as a function of the

step size (C,D). Relative speed of integration as a function of the simulation length (E,F). Relative speed of integration, normalized by system size, as a function of the

number of compartments simulated simultaneously (G,H). All benchmarks were performed on the same computer, and all simulators using fixed time-step integration

methods. NEURON was run using the Python wrapper. Figures similar to this can be generated using the built-in benchmark() method.

than pure computation speed” (De Schutter, 1992). Xolotl is
designed primarily with ease-of-use in mind. This includes the
time it takes to install, setup, and learn how to use the software,
the time to write and debug scripts, and the time to perform
the simulations (Rudolph and Destexhe, 2007). An easy-to-use
simulation environment must minimize time spent in all these
domains, especially during human engagement with the software.
Complicated software remains broadly inaccessible and time-
consuming even to perform single-compartment simulations,
though the actual simulation time may be very small.

We have focused on making our software as easy to use as
possible, without sacrificing performance or extensibility. For
example, the installation includes worked example scripts that
demonstrate various features of the simulator, that can be run
without any configuration. We decided to built the the front-end
interface to xolotl in MATLAB to facilitate interoperability with
existing tools for time series analysis, optimization, and parallel
computing. This allowed us to build rich tools for visualization
and to interact with the simulation.

5.2. The cpplab Architecture
A common theme in the architecture of many simulators and
high-performance software is the union of user-facing code
written in a scientific programming or user-friendly language
and performance-critical code written in a fast, compiled
language like C++. The reasons for splitting the codebase
across two languages are often pragmatic: user interfaces and
second-order tools are often easier to implement in richer

programming environments, but performance requirements
often mean that code needs to be written in a language like
C++ or FORTRAN. While newer projects like Julia aim to
merge ease of use and performance in a single language, a
number of simulators and software projects embrace this division
across languages. For example, DynaSim, a general purpose
dynamical systems simulator, allows for models specified in
MATLAB to be compiled into C and executed, speeding up
execution (Sherfey et al., 2018). NEURON similarly presents a
more user-friendly Python interface, while integration is carried
out in compiled code (Hines and Carnevale, 1997). MATLAB’s
built in codegen command allows MATLAB functions to be
automatically translated into C code and compiled, which can
then be run instead of the MATLAB version. The SWIG project
(Beazley et al., 1996) offers tools to connect programs written
in C or C++ to a variety of scripting languages like Python and
Ruby.

Our approach in developing cpplab, our bridge between
C++ code and MATLAB, was conceptually different from many
of these architectures. Unlike MATLAB’s codegen function,
which assumes the primacy of MATLAB code and makes C
code that mirrors the MATLAB code, cpplab places C++
code first, and only aims to mimic the structure of objects
specified in C++ header files, but not their functionality.
Thus, cpplab is able to create a bonafide MATLAB object
whose properties reflect that of the C++ object, but not its
methods. This simpler task can be easily achieved without
the construction of an intermediate interface file, as used in
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more powerful solutions like SWIG (Beazley et al., 1996).
For the purposes of a neuron and network simulator, this
architecture is more robust since only simple parsing of the C++
code is needed. This architecture can be easily used in other
applications, and it is trivial to remove some restrictions that the
cpplab architecture currently imposes, like lack of support for
vectors.

5.3. Comparison With Other Simulators
Over the years, several simulators have been developed to
integrate systems of coupled differential equations that model the
spiking activity of neurons (Hines and Carnevale, 1997; Bower
et al., 2003; Delorme and Thorpe, 2003; Brette et al., 2007;
Vitay et al., 2015; Sherfey et al., 2018). A critical architectural
choice in designing a simulator is how much “scaffolding”
a user is provided with to construct a model; whether a
model is specified by equations or by components, or by some
combination of the two. In an equation-oriented architecture,
the user starts with a blank slate and the primary method of
specifying a model is to write out its differential equations
(Stimberg et al., 2014). In contrast, in a component-oriented
architecture, the primary method of specifying a model is
to assemble it from pre-existing components, each of which
include differential equations, parameters, and solvers. Both
approaches have advantages and disadvantages that are discussed
below.

An equation-oriented simulator can be more transparent
and allows the user to know exactly what is being solved,
but equations can be cumbersome to write out, read, or to
debug. In most commonly used programming environments,
these equations have to be entered as strings, and complex
parsing has to be carried out by the simulator to check
that these strings constitute valid equations. In addition,
parameters have to be written explicitly into equations,
and it is usually not trivial to change parameters after
initial specification. In contrast, components are easy to
assemble into a model, but it can be hard to know what
they contain, where they are physically located on the
user’s computer, and how they can be changed. NEURON
is primarily a component-oriented neuronal simulator, and
new components are specified in special model files that
can be “inserted” into a model. BRIAN is an equation-
oriented neuronal simulator meant to be used from within
Python (Goodman and Brette, 2009). XPP is a general
purpose dynamical system simulator that is equation-oriented
(Ermentrout, 2002). DynaSim is an equation-oriented simulator
with some component-oriented capabilities. Models can be
specified by both strings of equations or components, but since
models do not exist as objects in the workspace, parameters and
variables have to be reinitialized when changed (Sherfey et al.,
2018).

Xolotl is a purely component-based simulator, and all
equations need to be included in a C++ header file that
specifies an object. Since our automatic type system binds
MATLAB objects to the underlying C++ header files,
objects can be inspected and parameters can be modified
in the MATLAB workspace. To mitigate some of the

drawbacks of the component-oriented paradigm, we have
implemented an architecture that allows the user to access
the underlying C++ code of any object by simply clicking on
the object tree in the MATLAB command line. This feature
removes the uncertainty inherent in other component-
oriented simulators of the equations underlying each
component, and allows the user to modify these equations
if needed.

Another architectural choice in designing simulators is
the syntax required for specifying models. Equation-oriented
simulators specify models as strings of equations, so must invent
a new syntax to specify derivatives, variables, and other common
elements in coupled differential equations. Some component-
oriented simulators like NEURON also specify their own syntax,
or have invented their own language to specify components
and write out equations. While this allows for powerful features
such as support for units in NEURON, the user is required
to learn a novel syntax and vocabulary, hindering ease of
use. In general, the syntax for model specification in different
simulators can be different. For example, DynaSim, BRIAN,
XPP, and NEURON all use different, incompatible formalisms
to represent equations, increasing the cognitive load on users
using more than one simulator. Here, we have elected not
to specify a domain-specific “middleware” layer, and instead
specify and implement models and equations in idiomatic C++.
This greatly decreases the learning curve and allows users with
a general familiarity with programming languages to quickly
acquaint themselves even with the most technical parts of the
simulator.

Finally, we walk through a typical workflow to compare xolotl
to other neuron simulators. The first step is to initialize a xolotl
object, e.g., using x = xolotl. This is similar to importing
the NEURON package from within Python. Compartments
can be created and added to the object tree using x.add(

...), and channels and mechanisms can be added to these
compartments using further add commands. This workflow
is similar to NEURON, where conductances are “inserted”
into compartments. In both xolotl and NEURON, the tree
of objects can be inspected and individual properties like
maximal conductances or reversal potentials can be changed
from the command line. The setup phase of the workflow is
thus similar to that in NEURON, but differs from equation-
oriented environments like Brian or DynaSim, where a set of
equations has to be explicitly written out. Xolotl differs from
NEURON at this stage in that it is possible to “click through”
the object tree all the way to view the underling C++ code for
a particular component, and thus to view the ODE being solved,
and the numerical method used to solve it. Since NEURON uses
several intermediate files, that may have to be compiled, it is not
trivial to identify and view the file that matches an object in the
workspace.

5.4. Auditability and Reproducibility
The use of computational tools is increasingly central to the
scientific method; yet, the lack of auditability and accountability
in their use has led to a crisis of credibility affecting many
scientific fields (Baker, 2016; Stodden et al., 2016). Unlike
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in experimental research, where a lack of reproducibility can
manifest due to meaningful reasons like uncharted differences
in experimental protocols or intrinsic variability, the reasons
for irreproducibility in computational research are often trivial
and include: (a) typographical errors from transcribing model
parameters and equations, (b) obscure software design that
leads to users not knowing precisely what equations the
software is solving, or what parameters it is using, (c)
incompatibility with version control systems and rolling software
development that leads to ambiguity in which the version of
the software that was used to generate a particular result is
unclear, and (d) convoluted architectures that make it too
complex for non-experts to understand the inner workings
of the software (Vikstrm, 2009; Sedano, 2016; Xu et al.,
2017).

Our software was designed with this threat model in mind,
and has features that allow the user to answer the following
questions in the affirmative: “Can I be sure that I am doing
what I think I am doing?” and “Is it possible for others to
reproduce exactlywhat I have just done?.” Our goal was to design
software that would allow the user to verify for herself that the
software was running as she intended, and to be able to reproduce
results from others quickly and unambiguously. The primary
design choice in our software that enables auditability and
reproducibility is that every simulation is tied to an alphanumeric
checksum, or hash, using the MD5 algorithm (Rivest, 1992).
The hash is computed from every C++ file that is part of
the model, and any changes in any C++ file included in the
model will trigger a recompilation of that model. Thus, the hash
guarantees that a given model is derived from a set of source
files, obviating any ambiguity about the code used to generate
a model. In addition, every parameter and state variable in
the model can also be hashed together with underlying code,
allowing the user to generate a short checksum that guarantees
with high probability that every aspect of the model—code,
parameters, and initial conditions—are exactly as they should
be.

Typographical errors from transcribingmodel parameters and
equations can also be detected using hashes, and the component-
oriented architecture of our software makes it easy to debug
code and spot errors. Our software has been designed so that it
is possible to explore the model interactively in the command
line, and it is possible to “click through” from the highest
level of the model in the command line all the way down
to the underlying code of any component in the model. This
design allows the user to know precisely the equations being
solved, and view the code that numerically integrates them.
Finally, the core of our software is written in a few hundred
lines of code and contains just four classes: compartments,
conductances, synapses, and mechanisms. This architectural
simplicity lets a motivated user understand the entirety of our
code quickly.

5.5. Outlook and Future Directions
In its current form, xolotl is an efficient and easy to use
neuron and network simulator that is actively being used
in research. Results from an early version of this simulator

guided intuition in the modeling of a recently characterized
Calcium-dependent Potassium channel found in Drosophila
neuromuscular presynaptic terminals (Bronk et al., 2018).
Work on the simulator continues in the open at a publicly
accessible repository (https://github.com/sg-s/xolotl/), and the
library of conductances, synapses and mechanisms that xolotl
ships with grows continuously. While this simulator was
intended as a research tool, the many worked examples that
are built into it demonstrate how it could also be used as
a teaching tool. We intend to continue development of this
software as we add new features and improve performance.
We have developed an automatic testing and deployment
framework that routinely tests the publicly available repository
and packages a MATLAB toolbox for redistribution. As
the user base grows, we intend to transition to finding
maintainers who will ensure its continued availability and
functionality.

Because xolotl models are bonafide MATLAB objects, they
are compatible with most of the powerful tools that exist
within MATLAB. For example, it is possible to write simple
scripts that run xolotl models in parallel using MATLAB’s
parallel processing toolbox, speeding up large simulations.
Xolotl models are also compatible with the global optimization
toolbox in MATLAB, allowing parameters in xolotl models
to be optimized, enabling the creation of toolboxes that
efficiently tune parameters in neuron models to satisfy arbitrary
constraints (Keren et al., 2005; Achard and De Schutter,
2006; Van Geit, 2007; Druckmann et al., 2008; Carlson et al.,
2014).

Care has been taken to reduce the amount of technical
debt (Suryanarayana et al., 2014) associated with this project,
with all parts of the simulator and dependencies written in
a modular, objected oriented fashion. As a result, many of
the key features and architectures of xolotl can be reused
by others in their own applications. For example, cpplab,
the automatic type system that binds C++ code to MATLAB
objects, is independent of this simulator, and exists as a distinct
repository that has been made freely available (https://github.
com/sg-s/cpplab); and the framework for generating a GUI
with sliders for each parameter that is hooked up to function
callbacks also exists as an independent repository (https://github.
com/sg-s/puppeteer) that can be easily integrated into other
applications.
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