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Abstract

Research Question

Recent discoveries have challenged the traditional view that the thalamus is the primary

source driving spike-and-wave discharges (SWDs). At odds, SWDs in genetic absence

models have a cortical focal origin in the deep layers of the perioral region of the somato-

sensory cortex. The present study examines the effect of unilateral and bilateral surgical

resection of the assumed focal cortical region on the occurrence of SWDs in anesthetized

WAG/Rij rats, a well described and validated genetic absence model.

Methods

Male WAG/Rij rats were used: 9 in the resected and 6 in the control group. EEG recordings

were made before and after craniectomy, after unilateral and after bilateral removal of the

focal region.

Results

SWDs decreased after unilateral cortical resection, while SWDs were no longer noticed

after bilateral resection. This was also the case when the resected areas were restricted to

layers I-IV with layers V and VI intact.

Conclusions

These results suggest that SWDs are completely abolished after bilateral removal of the

focal region, most likely by interference with an intracortical columnar circuit. The evidence

suggests that absence epilepsy is a network type of epilepsy since interference with only

the local cortical network abolishes all seizures.
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Introduction
The neurological syndrome epilepsy is characterized by the presence of recurrent spontaneous
seizures although they are manifested in different ways. Absence seizures are commonly, but
not exclusively, seen in children between 4 and 12 years old [1]; they are classified as generalized
and predominantly nonmotor with impaired responsiveness [2]. The electroencephalographic
(EEG) examination records bilateral, synchronous, and symmetrical spike-wave discharges
(SWDs) with a frequency of 3–4 Hz on a normal background activity, first described by Gibbs
et al. [3]. The search for mechanisms of generation, maintenance and abortion of SWDs typical
of absence seizures has been carried out for more than half a century [4], and is still emerging. It
is not possible as yet to have a clear picture about all processes and mechanisms involved, also
considering that most concepts and theories are gained from different animal models and/or in
vitro studies, and cannot be easily verified in humans. In general, the hypothesis that SWDs are
generated within the cortico-thalamo-cortical network is widely accepted [5,6,7,8,9,10].

A relatively new theory for the initiation and generalization of absence seizures has been
achieved in the genetic absence models with a detailed analyses of perictal local field potentials
of a cortical grid on the somatosensory cortex and thalamic depth recordings with a nonlinear
association analyses in the WAG/Rij rat and through intracellular recordings combined with
local field potentials in different layers of the somatosensory cortex in GAERS [7,11,12]. While
the former authors identified a cortical initiation zone in the peri-oral region of the somatosen-
sory cortex, the latter ones showed that cells located in deep layers (layer VI) of the somatosen-
sory cortex show a massive increase in firing already before SWDs onset. This introduced a
location refinement of the cortical focus to the subgranular layers.

Also results of recent studies inWAG/Rij rats are in line with the “cortical focus” theory
establishing that the deep somatosensory cortex of absence epileptic rat is more excitable than
the motor cortex and that this difference was not present in control rats [13]. Next, there is more
seizure related pre-SWD activity in the focal cortical region than in the thalamus [14]. Other evi-
dence (pharmacologic and neurochemical) for a cortical hyperexcitable region and network
analyses in children with absence seizures has been reviewed recently [8,10,15,16]. The presumed
focal origin of the “generalized” SWDs has already led to the exploration of a new experimental
therapy such as bilateral local transcranial electrical stimulation of the focal regions [15].

A second issue, relevant from a clinical perspective, is that focal epilepsies can be treated
with surgical resection. Surgical resection itself has been demonstrated to be sure and effective
for the treatment of patients resistant to pharmacotherapy where there is inadequate seizure
control [17]. Surgical treatment has never been considered in patients with refractory types of
absence epilepsy and a reference protocol does not exist. However, if cortical focal sites of ori-
gin can be identified unambiguously, and its locations allow resection, then the possibility can
be considered. Here, surgical resection of the epileptogenic zones on seizure occurrence is eval-
uated in WAG/Rij rats. By this, a property of focal epilepsies is investigated: if absence epilepsy
is considered to be a focal type of epilepsy, then it is hypothesized that unilateral and bilateral
surgical resection of the assumed focal region should decrease and abolish SWDs. The study
may therefore also contribute to the discussion whether absence epilepsy should be considered
as a focal, a generalized type of a network type of epilepsy [10, 11, 12, 15, 18].

Materials and Methods

Animals
15 male WAG/Rij rats, age 12 months, body weight 320–370 g, were used as experimental sub-
jects. They were born and raised at the Department of Biological Psychology, Donders Centre
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for Cognition, Radboud University Nijmegen, The Netherlands. Prior to surgery the rats were
housed in pairs (High Makrolon cages with Enviro Dri bedding material and cage enrichment)
with free access to food and water and were kept under environmentally controlled conditions
(ambient temperature = 22°C, humidity = 40%) in a room with reversed light—dark cycle
(light on from 8:00 p.m. to 8:00 a.m.). The experiment, performed in accordance with Institu-
tional and ARRIVE guidelines, was approved by the Ethical Committee on Animal Experimen-
tation of Radboud University Nijmegen (RU-DEC). All efforts were done to keep the
discomfort of the animals as minimal as possible; therefore it was decided to do the experiment
in fully anesthetized animals.

Drugs
The experiments were carried out in anesthetized WAG/Rij rats: a combination of the mu opi-
oid receptor agonist Buprenorphine (Vetergesic Multidosis, Ecuphar, The Netherland, solution
0.3 mg/ml) diluted (1 to 5) in saline (0.9% NaCl) was given subcutaneous (s.c.) at a concentra-
tion of 0.05 mg/ml in a volume of 1 ml/kg and haloperidol (Haldol, Janssen-Cilag BV Tilburg,
Netherlands), at a concentration of 5 mg/ml also in a volume of 1 ml/kg was injected intraperi-
toneally (i.p.). A combination of a mu opioid receptor agonist and a D2 receptor antagonist
was shown to have SWD enhancing effects closely mimicking the physiological SWDs regard-
ing amplitude of the spikes, the intraspike frequency, and the morphology of the spike and
waves spontaneous in free moving WAG/Rij and GAERS [19, 20]. Moreover, the same drugs
do not elicit SWDs in non-epileptic rats.

Surgery and EEG recordings. The experiment was done while the rats were in the stereo-
tactic apparatus. EEG recordings were made with the aid of two tripolar stainless steel electrode
sets (Plastic One, Roanoke, VI, USA: MS 333/2). The electrode sets were kept in place by a cus-
tom made electrode holder; two out of four active electrodes were placed on the frontal region,
coordinates with the skull surface flat and from bregma zero—zero, (AP + 4.2 mm, LF ± 3
mm) and two in the parietal region (AP -6.5 mm, LF ± 4 mm). Ground and reference elec-
trodes were implanted symmetrically over both sides of the cerebellum. These and all following
stereotactic coordinates were relative to bregma and according to the atlas of Paxinos and Wat-
son [21]. Two differential EEG recordings were made, one from the right and one from the left
hemispheres. EEG signals were allowed to pass between 1 and 100 Hz, digitalized at 200 sam-
ples s-1, and stored for off-line analysis using Windaq system (DATAQ Instruments, Akron,
OH, USA). After the EEG electrodes have been epidurally placed (surgery lasted about 30 min-
utes), the EEG of the 2 groups was recorded for one hour as base-line (precraniectomy) control.
The wash-out period of isoflurane was about 30 minutes, therefore, only the data of the last
half an hour were compared between the various phases of the experiment.

Experimental protocol
The rats were divided in two groups: 9 experimental and 6 control rats. Both groups received
the general anesthetic isoflurane (Pharmachemie BV, Haarlem, the Netherlands) in combina-
tion with a mixture of the analgesic buprenorphine and the antipsychotic haloperidol during
the implantation of the electrode sets, during the removal of the cranium above the somatosen-
sory cortex (experimental and control groups), and during resection of the somatosensory cor-
tex. During the EEG recording isoflurane administration was stopped and rats were
anesthetized only via the neurolept-analgesic. The first injection with the analgesic buprenor-
phine occurred 30 min before the start of the surgery.

The skull was removed (craniectomy) in both the rats of the experimental and control
group, cortical resection only in the rats of the experimental group.
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Craniectomy. The dorsal part of the skull was exposed. A piezosurgery device (Mectron,
Carasco, Italy, rounded/straight tip, mode power high; pump 2; frequency 25 kHz) was used to
remove part of the cranium on the right and left side. The piezosurgery tip was constantly irri-
gated with ACSF. Special care was taken in order to avoid perforation of the dura or to cause
any mechanical injury to brain tissue.

The coordinates used for craniectomy are indicated in Fig 1; they enclose the cortical region
with the assumed focal area in the somatosensory cortex, as was earlier established in this
model [11]. The coordinates of the resected cranium were (with bregma at 0,0) from AP 3.0,
L ± 2.4 till 5.4 mm to AP -4, L ± 3.2 mm till 6.2 mm. First the right cranium was removed, in
the experimental group this was followed by removal of a trench of the ipsilateral somatosen-
sory cortex. This was followed by craniectomy of the left hemisphere and a similar trench of
the left hemisphere.

Cortical resection. Fig 1 shows the resected part of the somatosensory cortex superim-
posed on the graph of Meeren et al [11] in which the foci were found as was determined in 8
individual rats in a mapping study with a cortical grid. The aim was to resect grey matter until
the corpus callosum was visible. The removed area is the region in which local injections of
phenytoin and ethosuximide reduce SWDs [22,23,24], with an increased expression of a sub-
type of Na+ channels [25], a reduction of HCN channels [26] and a high cortical excitability
established in vivo in free moving WAG/Rij rats [13].

The injection and recording times of both the experimental and control groups are pre-
sented in Figs 2 and 3. Subsequent injections of haloperidol (half-life 2 hours [27]) and bupre-
norphine (half-life 2–4 hours [28]) were given in order to maintain an appropriate depth of
anaesthesia, which was regularly monitored via toe pinch reflexes. After the end of the day, the
rats were still anesthetized, they were given an overdose of ketamine (100mg/ml)/xylazine (20
mg/ml), systemically administered, without any sign of adverse reaction. Next the brains were
quickly removed.

The resection of the somatosensory cortex was performed under a binocular stereo micro-
scope (Euromex, Arnhem, Holland); the dura was incised by a sharp steel blade (length = 3
mm) to expose the cortical zone. A flat steel blade with a cutting surface 2 mm length × 1.5
mm width was used to make cortical incisions, next cortical tissue within the target area was
removed by a steel curved blade, while contemporarily blooding was stanched with cotton. The
depth of the incisions was determined by the coordinates above described. Considering the
poor discriminability between grey matter of the cortex and white matter of the corpus callo-
sum, the size of the lesioned area including its depth was subsequently verified by histological
verifications. Body temperature was monitored and kept at 37°C via a heating pad, other vital
parameters such as respiration were monitored continuously.

EEG recordings and analyses. Rats of the experimental group were recorded for 5 hours
(Fig 2). In the 10 min of the first hour of recording, rats were still given isoflurane anaesthesia,
they had received buprenorphine 30 min before starting the surgery, after successful implanta-
tion of the EEG electrodes haloperidol was administered (i.p.), and isoflurane was stopped 3
minutes after haloperidol injection. Isoflurane induced an EEG with burst suppression without
any SWDs, the combination of the neurolept analgesic anaesthesia mixture allowed the occur-
rence of SWD after isoflurane was washed-out. The combination of high dose of haloperidol (5
mg/kg) with buprenorphine increases immobile behaviour but it also increases the analgesic
effects of buprenorphine [29]. The second hour was recorded following right side craniectomy
at the right side under influence of the mixture while isoflurane anaesthesia was stopped 1 min
after the beginning of recording. The third hour of EEG recording followed the resection of
somatosensory cortex right side under influence of the mixture while isoflurane anaesthesia
was stopped 1 min after the beginning of recording. The fourth hour of EEG recording was

Intact Cortical Network Is Imperative for Absences

PLOS ONE | DOI:10.1371/journal.pone.0133594 August 11, 2015 4 / 20



after left sided craniectomy and left-side cortical resection and under influence of the mixture.
The fifth hour was an extra hour, to make sure that SWDs did not return, again no isoflurane
was administered and rats were still anesthetized by the mixture. The behaviour of the rats was
constantly monitored by a biotechnician (SMH).

Rats of the control group (Fig 3) were recorded under identical anaesthetic conditions; in
the 10 min of the first hour of recording the rats were still given isoflurane, they had received
buprenorphine 30 min before starting the implantation of the EEG recording electrodes, after
successful implantation of the EEG electrodes haloperidol was administered, and isoflurane

Fig 1. Cortical lesions. Top, left: Representation of the cortical resected regions in the right hemisphere, against the location of established focal zones of 8
WAG/Rij rats (after Meeren et al., 2002) and Bottom-left an example of a WAG/Rij brain with a global impression of the bilateral resected areas supposedly
containing the bilateral focal regions. Right side: Example of different cortical lesions. Top: left hemisphere lesion restricted to layer I, II/III. Middle: right
hemisphere lesion of layer I, II/III and some damage in layers IV/V. Bottom: right hemisphere lesion layers I-VI.

doi:10.1371/journal.pone.0133594.g001
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was stopped 3 minutes after haloperidol injection, similar as rats from the experimental group.
The second and third hour of EEG recording in this group was after the right and left side cra-
niectomy respectively, and again always under the influence of the neurolept mixture.

SWDs were marked at visual inspection of the EEG of the right and left hemisphere inde-
pendently (differential recordings between frontal and parietal cortex) based on commonly

Fig 2. EEG recordings of experimental group. Black rectangle = EEG recording; Grey diagonal striped rectangle = time surgery; B = Buprenorphine;
H = Haloperidol; ISO = Isoflurane; min = minutes; L-CR = removal of left cranium; R-CR = removal of right cranium; L-CRX = removal of left cortex;
R-CRX = removal of right cortex.

doi:10.1371/journal.pone.0133594.g002

Fig 3. EEG recording of control group. Black rectangle = EEG recording; Grey diagonal striped rectangle = time surgery; B = Buprenorphine;
H = Haloperidol; ISO = Isoflurane; min = minutes; L-CR = removal of left cranium; R-CR = removal of right cranium.

doi:10.1371/journal.pone.0133594.g003
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used criteria: trains of sharp spikes and slow waves lasting minimally 1 s, an amplitude of the
spikes at least twice the background, frequency of the SWDs between 7 and 10 Hz and an
asymmetric appearance of the SWDs [30, 31]. In case of doubt, i.e. after craniectomy or after
cortical resection the monopolar recordings were used in order to decide whether a SWD was
present or not. The same criteria were used for the monopolar and bipolar recordings. The
SWDs seen under the neurolept-analgesic mix were visually identical to the spontaneous
SWDs commonly seen in WAG/Rij rats, although the mean duration of the SWDs was longer
than commonly observed [30, 32].

Histological verification. Immediately after euthanasia the brains of the animals were
removed and fixated in formaldehyde 3% for 30 days and 30% sucrose/PBS for 4 days. Coronal
slices (100 μm) were made with a microtome and stained with Cresyl violet. Three slices per
animal were inspected: one from the frontal, one from the middle and one from the posterior
part of the resected cortex.

Statistical analysis. The incidence of SWDs was determined per 30 min EEG recording.
The EEG recordings in the base-line of the experimental and control group were only 24 min-
utes considering the duration of the first wash out period of isoflurane.

All data were statistically analyzed with SPSS 19.0. For the data of the unilateral lesion, a
general linear model repeated measures ANOVA with side (left vs right) and time (baseline,
post craniectomy and post unilateral lesion) as within subjects factors was used to determine
the statistical significance of the main effects and their interaction. SWDs were no longer pres-
ent following the removal of the second (left) focal region, and therefore statistical tests are not
meaningful for these (4th and 5th) recording hours.

Paired and unpaired t-tests were used to establish changes in the amplitude of the spike of
the SWDs in both hemispheres after right craniectomy and whether these changes were differ-
ent for the right and left hemisphere.

A p value of 0.05 was chosen as the threshold level for significance. Additionally, t-tests for
dependent groups were used as post-hoc tests to compare side differences at different time
points and differences within a hemisphere between different time points. The data of the con-
trol group were similarly analyzed as the experimental group with side (left vs. right) and time
as within subjects factors.

Results

Experimental group
The rats were under the influence of buprenorphine throughout the whole experiment. During
isoflurane anesthesia all rats showed an EEG with burst suppression and no SWDs were
noticed. The bursts appeared bilateral synchronized (Fig 4A). After the injection of haloperidol
and the washout of isoflurane WAG/Rij rats exhibited bilateral normally, with respect to fre-
quency and amplitude of the spikes, appearing SWDs (Fig 4B). However, the incidence of
SWDs was higher than what can be seen in freely moving drug free rats [13, 30]. The SWD
inhibiting effect of isoflurane was also present at the subsequent periods when this inhalation
anesthesia was repeated at surgical intervention periods.

In all rats of the experimental group, unilateral resection of somatosensory cortex affected
SWDs but differentially for the two hemispheres, an example is depicted in Fig 4C. The data on
the incidence of SWDs in the various phases of the experiment are given in Fig 5A. Post lesion
(resection), the incidence of SWDs was unchanged in the intact hemisphere compared to post
craniectomy recording period of the resected hemisphere. In contrast, SWD were rare in the
resected hemisphere. The ANOVA showed significant effects for the incidence of SWDs for
time (F = 11.10, df 2,26, p< .001, η2 = .58), left-right (F = 7.06, df 1,8, p< .03, η2 = .47) and
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Fig 4. Examples of EEG recording in various phases of experiment in the two hemispheres. After systemic administration of isoflurane plus
buprenorphine (A), buprenorphine plus haloperidol (B), Post unilateral right lesion (RH) buprenorphine plus haloperidol (C), and Post bilateral lesion
buprenorphine plus haloperidol (D). LS = left side, RS = right side. Calibrations: vertical bar 125μV, horizontal bar: 0.625 sec.

doi:10.1371/journal.pone.0133594.g004
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Fig 5. A: Incidence of SWDs (mean ± S.E.M.) per 30 min in various phases of the experiment. During base-line, after right-sided unilateral craniectomy,
right-sided unilateral cortical lesions, and bilateral lesion on EEG recordings in Experimental group. The decrease from base-line to after B: Incidence of
SWDs (mean ± S.E.M.) per 30 min during base-line, after right-sided unilateral craniectomy, and after left-side craniectomy in Control group. LS = left side,
RS = right side.

doi:10.1371/journal.pone.0133594.g005
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their interaction (F = 10.30, df 2,16, p< .001, η2 = .56), post hoc t-tests showed there were no
differences between left and right hemisphere before and after craniectomy, that unilateral cra-
niectomy reduced the incidence SWDs at both sides (p< .05), while the unilateral resection of
the cortex reduced SWD at the lesioned hemisphere (p< .05), but not at the intact hemisphere.
Subsequent lesions of the previously intact hemisphere completely abolished all SWDs for the
entire (2 hour) recording period in both hemispheres; an example of an EEG epoch following
bilateral resection can be found in Fig 4D.

SWDs were no longer present, in neither the right nor left hemisphere after resection of pre-
viously intact hemisphere. The incidence of SWDs (mean ± S.E.M.) decreased from 52.8 ± 7.3
(left) and 52.6 ± 7.0 (right side)/per 30 min pre lesion to 0 on both sides.

Pearson correlation coefficients between the depth of the lesions in the frontal, middle and
posterior part and the number of SWDs on both sides after the unilateral lesions were made.
All correlations were small (between .33 and .03) and non significant, supporting the hypothe-
sis that it is not the amount of resected cortical material, but the fact that lesions perse were
made is a likely explanation for the diminishment of SWDs.

The amplitudes of the all SWDs as recorded in the right and left hemispheres in the lesioned
animals were calculated in the different phases of the experiment. Examples of SWDs and their
powerspectra as detrmined by a Fast Fourier analyses are presented in Fig 6. It was found that
right side craniectomy reduced the amplitude of SWD on the left and right side (t-tests for
paired observations, n = 9, both p’s< .05) in the experimental group by 28 and 43% respec-
tively. Similar changes were found in the control group. However, as can be seen in Fig 6,
SWDs keep their charactertistic morphology albeit with a smaller amplitude and they seem to
be less regular as expressed on more peaks in the spectrogram. The size of this decrease in
amplitude in the left and right side was not statistically different. Next it was found that lesions
on the right side did not further decrease the amplitude on either the left (n = 9) or right
(n = 5) side.

Control group
Fig 5B depicts mean ± S.E.M of the incidence of SWDs. SWDs occurred bilaterally symmetrical
and simultaneously in both hemispheres. The baseline of the incidence of SWDs as determined
in 30 min before removal of the cranium was 66.3 ± 22 (left side) and 65.2 ± 22 (right side).
SWDs tended to reduce gradually over time or as a consequence of craniectomy. Statistical
evaluation showed neither a time effect (F = 2.24, df 2,10, p> .05, η2 = .31), nor a side effect
(F = 3.15, df 1,5, p> .05, η2 = .39), although the effect sizes were rather large. This suggests that
a larger sample size would yield significant main effects.

Histological Evaluation
The extent of the cortical lesions included most of the layers of the cortex but it showed some
variation between animals, details about the size of lesions in the resected animals are presented
in Table 1. Photographs of lesions with different depth are presented in Fig 1C. Also there were
some differences between the left and right side. In three rats (nrs 4, 5 and 6) the bilateral resec-
tion was restricted to cortical layers II-III and IV of the frontal, middle and posterior part,
while the other layers of the cortex were fully intact. In four rats (nrs 1, 2, 7 and 8), the bilateral
resection of the somatosensory cortex was larger, layer V was removed at least in one location,
in rat nrs 3 and 9 the resection was extensive until layer VIa in at least one of the three sections.
The corpus callosum did not show any damage in any of the rats, as could be inferred from
microscopic inspection.
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Discussion
The major outcomes of this acute study in neurolept anesthetized WAG/Rij rats are that a uni-
lateral lesion of the assumed focal region decreased the incidence of SWDs and this reduction
was different in the two hemispheres. Bilateral resection completely abolished all SWDs.

Removal of foci or interference with a network
It is generally assumed that SWDs in rodents take place in an interconnected intact cortico-
thalamo-cortical network, although the exact interactions between the cortex and different tha-
lamic nuclei necessary for the generation and maintenance of SWDs are not fully understood
[9, 14, 33]. It is clear that SWDs in WAG/Rij rats are initiated in the perioral region of the
somatosensory cortex (S1po) [11,15], most likely by neurons located in the deep cortical layers,
as was established in GAERS [12]. From this point the early appearance of SWD-activity can
be easily visualized by local field potentials from the depth of the somatosensory cortex [15,

Fig 6. Spike-wave discharges in acute neurolept anesthetizedWAG/Rij rats. Example of bilateral differential LPF recording of the left and right
hemisphere and spectral plot (1–25 Hz) of a SWD in an acute neurolept anesthetizedWAG/Rij rat (for details on electrode position see accompanying text)
after the electrodes have been implanted (top). After removal of the right cranium, SWDs with clear spikes and slow waves are seen, albeit with a smaller
amplitude both during background and during SWD (middle). The characteristic peak frequency of the SWDs in both hemispheres remains unchanged, as
well the presence of its characteristic harmonics. The diminishment of the amplitude at both sides can be best appreciated from the spectral plots, the
reduction is largest at the lesioned hemisphere, although the left-right difference was not statistically significant. Bottom: SWD post removal right cortex
shows that SWDs are clearly visible in the intact (left) hemisphere, their identification in the right hemisphere is doubtful since they no longer fulfill the criteria
of SWDs (van Luijtelaar and Coenen, 1986).

doi:10.1371/journal.pone.0133594.g006
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34]. Our present data demonstrate that removal of the cortical regions which contain the initia-
tion site of the SWDs (the foci) reduces SWDs in both hemispheres. Even when the focal layers,
i.e. the cortical layers V and VI, are still intact, SWDs are reduced, suggesting that a decreased
intactness of the cortical columns, part of the neural circuits in which SWDs are initiated,
spread and maintained is responsible for a reduction or complete abolishment of SWDs. This
conclusion is also supported by the lack of significant correlations between SWD incidence and
the depth (size) of the cortical lesions.

Other studies aiming to test the role of various parts of the network in their contribution to
the occurrence of SWDs have shown that SWDs are suppressed by a functional inactivation of
the whole neocortex by inducing a spreading depression in GAERS [35] or by micro-infusion
of local inactivating drugs such as phenytoin in the subgranular layers and Lidocaine at the sur-
face of the S1po in WAG/Rij rats [23, 36]. Moreover, micro-infusion of ethosuximide in the
region S1po, again in GAERS, causes a full and immediate decrease in SWD number, compara-
ble to that tested after systemic administration of the same drug, supporting the involvement
of this area as a crucial and specific area in the initiation or occurrence of SWDs [22, 24, 37].
Similarly, inactivation studies of various parts of the lateral thalamus including the rostral RTN
abolished SWDs both in GAERS, as in WAG/Rij rats [38, 39, 40, 41, 42], suggesting that an
interference with the intactness of this circuitry is crucial for the diminishment of the occur-
rence of SWDs.

Unilateral lesions: a differential reduction in the ipsilateral and
contralateral hemisphere
The corpus callosum is the principal anatomical structure, necessary for the bilateral synchro-
nous cortical and thalamic SWDs in intact brains since callosal transsections reduced the left
right co-occurrence. It seems that each hemisphere is able to initiate SWDs independently [35]
and that SWDs quickly appear bilateral symmetrically through the interhemispheric monosyn-
aptic projections of the callosal projecting neurons [43]. The interhemispheric connections of
the homotopic regions of the somatosensory cortex are constituent part of the corpus callosum
[44]. Both a network analyses and Diffusion Tension Imaging study showed the relevance of
the cortico-cortical interhemispheric connections for SWDs between the left and right

Table 1. Histological verification of the bilateral resected areas in 9 WAG/Rij rats. The numbers I to VIa
represent the cortical layers that were removed constituting the somatosensory cortex. LS = left side,
RS = right side.

HISTOLOGICAL VERIFICATIONS

RAT SOMATOSENSORY CORTEX

Frontal Part Middle Part Posterior Part

LS RS LS RS LS RS

Rat 1 II-III IV/V II-III V/VIa II-III IV

Rat 2 IV IV V IV V IV

Rat 3 V/VIa V/VIa V V V V

Rat 4 II-III IV II-III IV II-III IV

Rat 5 II-III IV II-III IV II-III IV

Rat 6 IV IV IV IV II-III IV

Rat 7 IV V IV V IV V

Rat 8 IV V IV V II-III IV

Rat 9 V/VIa V/VIa V/VIa V V V

doi:10.1371/journal.pone.0133594.t001
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somatosensory cortices in these absence epileptic rats [45, 46]. About 80% of the cell bodies of
these callosal projecting neurons in rodents principally reside in cortical layers II/III, about
20% in layer V and a small fraction in layer VI [47]. Layers I through III are the main target of
interhemispheric cortico-cortical afferents, and layer III is the main source of cortico-cortical
efferents [48]. The unilateral resected focal region is no longer able to initiate SWDs. However,
information transfer from the intact hemisphere via the corpus callosum to the partial resected
hemisphere is still possible. This allows the presence of some SWDs in the resected hemisphere.
It is also possible that SWDs, initiated at the intact hemisphere involve the contralateral hemi-
sphere via interhemispheric thalamic projections. The reticular thalamic nuclei are known to
project to the contralateral thalamus through bilateral connections with the ventro medial
nuclei of the thalamus and intralaminar nuclei and can influence the activity of wide territories
of the cerebral cortex and basal ganglia of both hemispheres [49]. It is clear that callosal and
interthalamic transsections studies are necessary to establish the role of the contralateral hemi-
sphere after ipsilateral lesions.

The differential effects of unilateral lesions, as revealed by the significant interaction
between left-right and pre-post lesion shows that the occurrence of SWDs in the left and right
hemispheres should not be considered as completely independent processes. Instead, our data
show that the effects of an unilateral lesion exert a larger effect at the ipsilateral than on the
contralateral side. Although it seems logical that SWDs generated in one hemisphere quickly
involve the other hemisphere through the excitatory pathways of the callosal projecting neu-
rons interconnecting the focal regions in the left and right hemisphere [43, 45, 50], it also
seems that the intact hemisphere is no longer inhibited by the resected hemisphere and that
the number of SWDs are higher at the intact side as compared to the number at the lesioned
side. This proposal would not be against the view that the function of interhemispheric transfer
of information could be both inhibitory and excitatory in the same corpus callosum [51].

Bilateral lesions abolish all SWDs
The third main finding is that bilateral resection of the assumed cortical foci in the somatosen-
sory cortex abolished all SWDs, although the lesions were not always extended to the deepest
cortical layers. The histological examination of the size of the resections in the current experi-
ment showed that in rats of the experimental group the resection has been done till layers III-V
of the S1po and, and in only 2 animals until layer VI.

The sensory cortex including the somatosensory cortex with its S1Po is not only part of a
larger cortico-thalamo-cortical and inter hemispheric network for information transfer, it is
also columnar organized with many connections between various layers within the thickness of
the cortex. In every layer morphological subtypes of cells are present [52, 53], which project to
various cortical regions [54]. Next, excitatory inputs from layer IV to supra granular layers III
and II regulate and even amplify the sensory information transcolumnar [55], whereas projec-
tions from layer III to layer V and VI are also involved in intracolumnar circuits [56].

Our results suggest that interference of inter or intra layer communication of only the
superficial cortical layers and thereby altering the normal cortical signal processing is sufficient
to interfere with the occurrence of SWDs. Layers IV, V and VI are responsible for the commu-
nication between cortex and thalamus, layer IV is the main target of the thalamo-cortical affer-
ents, as well as intra-hemispheric cortico-cortical afferents [56]. The infragranular layers V and
VI establish a very precise reciprocal interconnection between the cortex and the first order
thalamic neurons and higher order nuclei [57, 58, 59, 60]. Interestingly, lesions of the cortex
that communicated most directly with the thalamus and of cell layers that contain the most
hyperexcitable cortical cells [12] involved in SWD generation, are not necessary for
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interference with SWD occurrence. More precise, our study points out that lesioning of the
superficial layers is sufficient to prevent the occurrence of SWDs. Some support for the view
that also the superficial cortical layers are also involved in the occurrence of SWDs is obtained
from the Kandel and Buzsáki study [61]. These authors found sinks and sources during SWDs
in all cortical layers, suggesting that also inter layer communication is necessary for the occur-
rence of SWDs. In addition, the basically different types of neurons present in every single col-
umn of the cortex are involved in the communication between cortical layers [53, 55, 62, 63].
In all, it does not seem necessary to resect the cortical tissue completely to abolish the SWDs in
these genetic epileptic rats.

Control group
The control group was added to our protocol in order to demonstrate the presence of SWDs
during the various regimes of anesthesia both before and after unilateral and bilateral craniect-
omy. The analyses of the EEG recordings of control WAG/Rij rats showed that SWDs were
abundantly present in all phases of the experiment and that there were no differences in
parameters of SWDs between left and right side. The apparent decrease of SWDs over the
recording hours as seen in the experimental and control group (Figs 5 and 6) is due craniect-
omy, and or to the cumulative effects of isoflurane over time or both. It has been demonstrated
that craniotomy reduces the brain’s excitability for an extended period [64]. and physical stim-
ulation of the cortex in the form of pinpricks induces a spreading depression suppressing
SWDs for 1 to 2 hours [65]. It is thought that even a careful brain operation might have short
term consequences on cortical excitability causing SWDs to diminish. Isoflurane anesthetic
was used repeatedly and intermittently (drilling holes, removal of cranium, removal of cortical
tissue) and SWDs were never seen under isoflurane anesthesia. We noticed that the recovery
time of isoflurane as measured by the reappearance of the SWDs increases from about 23 min
from the first discontinuation of anesthesia, to about 35 min from the 2nd period of isoflurane
anesthesia. It is therefore thought that both factors, craniectomy and isoflurane, contribute to
the simultaneous reduction of SWDs in the left and right hemisphere over time. However,
SWDs remained present in our anesthesia regime on either side.

Is the site of the lesion crucial?
It would be interesting to make similar resections, or to make small lesions in other parts of the
cortex in order to establish whether cortical lesions in different parts of the cortico-cortical net-
work are also sufficient to prevent seizure occurrence since it might be thought that the
decrease after the cortical resections is due to a non-selective effect of interfering with the func-
tional integrity of the cortex. Polack et al. [66] established in GAERS that the blockade of neu-
ronal activity by the topical application of the sodium channel blocker tetrodotoxin in the
motor cortex did not affect the occurrence of SWDs in the somatosensory cortex, while the
functional deactivation of neurons in the facial area of the somatosensory cortex by the same
method abolished all ictal activities in the somatosensory cortex, including the SWD. This
Polack et al. study [66] is the primary evidence that it matters for SWD occurrence which part
of the cortex is inactivated or removed.

Similarly, we previously established that rostral thalamic lesions in WAG/Rij rats abolished
cortical SWD, while caudal thalamic lesions enhanced SWDs [42], again demonstrating that
the effects of in this case thalamic lesions regarding their SWD reducing effects are specific for
the location within the cortico-thalamo-cortical network and therefore this abolishment should
not be considered as being caused by a non-specific lesion effect.
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The outcomes of two pharmacological studies confirm that selectivity of the somatosensory
cortex as the initiation side for SWDs: infusion with ethosuximide or AMPA antagonists was
only effective when applied in the somatosensory cortex and not in the motor cortex [22, 67]).
Additionally, a diminishment of SWD is not very likely in case of lesions in for example the
visual cortex considering that the focal facial region receives necessary input from the VPM
[68] and projects back to the posterior nucleus, RTN and somatosensory thalamus and not to
the visual thalamus. The visual cortex and its thalamic counterpart, the lateral geniculate, are,
to the best of our knowledge, not part of the SWD generating system. Moreover, no other
SWD initiating sites have been described in this genetic rodent absence model outside the
somatosensory cortex. In all, a non-specific effect of the lesion is not a likely explanation for
the complete abolishment of SWD after bilateral cortical lesions.

Concluding remarks
The outcomes of the present study contribute to the discussion about the generalized nature of
absence epilepsy; the successful removal of an assumed focal zone has been an argument for
the distinction between focal and generalized epilepsies. Here the bilateral removal of the
assumed focal regions, or more precise, a partial removal of the cortical zone dorsal to the
assumed focal origin and or interference with the columnar intracortical networks was enough
for complete seizure abolishment in this acute study. It is also thought that the site of the corti-
cal lesion is specific.

It is acknowledged that craniectomy and surgical resection is a radical surgical technique for
seizure inactivation. More subtle alternative techniques should be explored. Small implanted
electrodes for example, would allow making selective lesions in brain tissue. Moreover, before
making lesions, these electrodes might be used for local field potential recordings of SWDs and
for local evoked potentials elicited by stimulation of specific afferent pathways. In this way the
cortical area would be functionally mapped, the excitable focal area could be identified before
making the lesions.

The experiments were carried out in anesthetized WAG/Rij rats. Although the SWDs as
seen under this type anesthesia closely mimic the spontaneous occurring SWDs (Fig 6, upper
trace), it is necessary to repeat these experiments in free moving animals and evaluate the long
term effects of surgical manipulations. Finally, the possibility exists that surgical ablation
restricted to the most superficial layers hampers the functionality of the deep layers of the cor-
tex, considering that the intracolumn information flow is bidirectional and that resection of
the dendritic arborescence is likely to modify the deep neurons integrative properties. There-
fore, and as is the case in all in vitro studies and in some ablation studies in vivo, the functional-
ity of the remaining neural tissue can be questioned. Differential recorded local field potentials
measured in frontal and parietal cortex (the removed area was in between the two active EEG
electrodes) showed a diminshment of the amplitude in both the experimental and control
group, however no changes in amplitude of the SWDs before and after the cortical resection in
either the lesioned and intact side were found, suggesting that after the lesion the remaining tis-
sue was still good enough to generate some SWDs.

The outcomes of our study emphasize the necessity of an intact cortical circuit for the occur-
rence of SWDs and demonstrate that absence epilepsy is a network type of epilepsy since inter-
ference within the network involved in the communication between supra and subgranular
layers disrupts seizures. SWDs also have a cortical focal origin in patients with absence epilepsy
[18, 69, 70, 71, 72], although the location of their foci might be different from that in animals
[73, 74]. Some of the absence epileptic patients are cognitively impaired and this depends on the
anatomical site of seizure onset, the hemisphere involved and the dimension of epileptogenic
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area [75]. Some forms of absence seizures have their origin in the frontal lobe, especially in the
mesial frontal region [76, 77] and patients with absence seizures with clear focal abnormalities
on EEG were identified [78]. Since some of these patients are intractable by current medications
[79], partial inactivation with modern techniques of the assumed focus or interference with an
intracortical circuit might be a treatment option in these refractory patients. Moreover, seizure
control is of utmost importance because it might restrict cognitive damage since the duration of
refractory epilepsy is a major determinant of cognitive deterioration, affecting also quality of life
[80, 81, 82]. These first experimental outcomes of cortical resection teach us that surgical tech-
niques in combination with electrophysiological recordings should not be rejected at forehand
although there are many questions whether the present acute results in this genetic absence
model can be translated to a chronic preparation and later to patients without further functional
compromising patients.
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