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Abstract: Hemagglutinin (HA) and neuraminidase (NA) are the two major envelope proteins of
influenza viruses. The spatial organization of HA and NA on the virus surface needs to be optimized
to promote viral fitness, host specificity, transmissibility, infectivity, and virulence. We previously
demonstrated that the recombinant NA protein of the 2009 pandemic H1N1 (pH1N1) with the
I365T/S366N mutation in the NA 370-loop elicited higher NA-inhibition antibody titers against
the homologous pH1N1 virus and three heterologous H5N1, H3N2, and H7N9 viruses in mice.
In this study, we used PR8-based reverse genetics (RG) by replacing the HA and NA genes of
A/Texas/05/2009 pH1N1 virus to obtain the wild-type pH1N1 and three NA 370-loop mutant
viruses of pH1N1 (I365T/S366N), RG pH1N1 (I365E/S366D), and RG pH1N1 (I365T/S366A). Our
results revealed that the viral NA enzyme activity increased for the RG pH1N1(I365T/S366N) and RG
pH1N1 (I365E/S366D) viruses but reduced for the RG pH1N1 (I365T/S366A) virus. The increased or
decreased NA enzyme activity was found to correlate with the increase or decrease in HA titers of
these NA 370-loop mutant viruses. All of these three NA 370-loop mutant RG pH1N1 viruses were
less virulent than the wild-type RG pH1N1 virus in mice. Immunizations with the inactivated viruses
carrying the three NA 370-loop mutations and the wild-type RG pH1N1 virus were found to elicit
approximately the same titers of NA-inhibition antibodies against H1N1 and H5N1 viruses. These
results may provide information for developing NA-based influenza virus vaccines.

Keywords: influenza virus; neuraminidase; 370-loop; vaccine

1. Introduction

Influenza viruses belong to the Orthomyxoviridae family and consist of single-stranded
eight-segment negative-sense genomic RNA, helical viral ribonucleoprotein (RNP) com-
plexes (RNA segments NP, PB2, PB1, and PA), and four viral envelope proteins (hemagglu-
tinin (HA), neuraminidase (NA), M1 matrix protein, and M2 ion channel protein) [1]. HA
and NA are the two major surface envelope proteins of influenza viruses. The antigenic
diversity of HA and NA are used to determine the influenza subtype. Moreover, both HA
and NA recognize sialic acid (SIA) in host cells [2]. HA is a receptor-binding glycoprotein
that binds to SIA to initiate viral infection and is the main antigen eliciting neutralizing anti-
bodies and protection [3]. NA is a receptor-destroying enzyme that cleaves the SIA linkage
between HA and the sialylated receptors of host cells to facilitate offspring virus release [4].
NA can also remove SIA decoy receptors from mucins, cilia, and cellular glycocalyx in
respiratory airways to help viruses penetrate the heavily sialylated mucus layer overlaying
on host cells to promote virus entry [5–7]. The spatial organization of HA and NA on the
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virus surface was shown to be correlated with the direction of virus movement in the host
mucus layer [8]. Moreover, NA can interact with HA to facilitate viral movement on the cell
surface for virus migration [7,9]. HA and NA are functional antagonists of each other, and
the balance between HA binding affinity and NA enzyme activity needs to be optimized to
promote viral fitness, host specificity, transmissibility, infectivity, and virulence [2,10].

NA was shown to elicit NA-inhibition antibodies via natural infection or vaccination
in humans [11], as well as animal models of mice [12], ferrets [13], rabbits [14], swans
and ibises [15], and non-human primates [16]. NA-inhibition antibody titers are inversely
correlated with illness severity, symptoms, and disease duration [17]. Moreover, several
studies have reported that NA-inhibition antibodies inhibit the NA activity of heterologous
viruses carrying the same NA subtype [18]. NA-inhibition antibodies induced by seasonal
trivalent influenza vaccines were also shown to provide protection against H5N1 challenges
in ferrets [13]. In addition, cross-reactive NA-inhibition antibodies against H5N1 viruses
were reported in ferrets with live attenuated vaccine immunization [19].

We previously demonstrated that recombinant N1 protein with the I365T/S366N
mutation in the NA 370-loop elicited more potent cross-reactive NA-inhibition antibody
titers against pH1N1, H5N1, H3N2, and H7N9 viruses [12]. In this study, we used the
PR8-based reverse genetics (RG) system [20] to obtain engineered RG pH1N1 virus and
three mutant viruses of RG pH1N1(I365T/S366N), RG pH1N1(I365T/S366A), and RG
pH1N1(I365E/S366D). We investigated the viral NA enzymatic activity, viral HA titer,
mouse virulence of these mutant RG viruses, and the hemagglutination inhibition (HI)
and NA-inhibition antibody titers in sera elicited by immunization with these formalin-
inactivated RG viruses. These results may provide useful information for NA-based
influenza vaccine development.

2. Materials and Methods
2.1. Generation of RG Viruses

Eight plasmids containing the cDNA sequences of PB2, PB1, PA, NP, M, and NS from
A/PR/8/1934(H1N1), as well as those of HA and NA of pH1N1 (A/Texas/05/2009), were
cloned into a modified pcDNA3.1 plasmid containing an RNA polymerase II promoter
(CMV promoter) and a human RNA polymerase I promoter (PolIp) similar to the gener-
ation of pHW2000 [20]. Plasmids carrying mutant N1 genes (I365T/S366N mutant N1,
I365E/S366D mutant N1, and I365T/366A mutant N1) were obtained by site-directed PCR.
The eight plasmids (1 µg/plasmid) were incubated with 32 µL of TransIT®-LT1 transfection
reagent (Mirus Bio, Madison, WI, USA) in 800 µL of OPTI-MEM at room temperature for
45 min. Plasmid transfection reagent mixtures were added to a co-culture of MDCK/293T
(4 × 105/4.5 × 105) in a 6-well plate. Twenty-four hours after transfection, the medium was
changed to 2.5 mL of fresh OPTI-MEM containing 0.5 µg/mL TPCK-trypsin. After 72 h of
incubation at 37 ◦C, the supernatant was collected and tested by hemagglutination assay
to confirm virus rescue. The viruses were further amplified in MDCK cells. Virus titers
were measured using plaque assays. For virus growth curve determination, 2 × 107 MDCK
cells prepared in T175 flasks were infected with viruses (MOI = 0.001) in 20 mL of MEM-α
with 0.5 µg/mL TPCK-trypsin. After incubation for 1 h for virus absorption, the cells were
washed with PBS and incubated in fresh MEM-α containing 0.5 µg/mL TPCK-trypsin. The
viral titers of samples collected every 12 h for 72 h were measured by plaque assays and
plotted as growth curves.

2.2. Influenza Virus Plaque Assay

MDCK cells (9.5 × 105) in 2 mL of DMEM were seeded in a 6-well plate and incubated
at 37 ◦C for 48 h. After washing the cells twice with 1 mL of PBS, 1 mL of two-fold serially
diluted virus in MEM-α with 0.5 µg/mL TPCK-trypsin was added to the cells. After an
hour of incubation at 37 ◦C for virus absorption, the supernatant was removed from each
well, and the cells were washed once with 1 mL of PBS. The cells were then covered with
3 mL of overlay gel (0.5% low melting agarose in MEM-α with 0.5 µg/mL TPCK-trypsin)
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and incubated at 37 ◦C for 48 h for plaque formation. Then, 1 mL of 4% formalin (Sigma,
Burlington, MA, USA) was added to the cells for over 6 h. After removing the overlay gel,
the plaques were stained with 1% crystal violet and washed with tap water.

2.3. NA Enzyme Activity by MUNANA Assay and Kinetic Measurement

An NA-Fluor™ influenza neuraminidase assay kit (Thermo Fisher Scientific, Waltham,
MA, USA) was used to perform the MUNANA (’-(4-methylymbelliferyl)-α-D-N-acetyl-
neuraminic acid) assays. Briefly, 50 µL of two-fold serially diluted viruses (starting from
106 PFU) in 1× assay buffer were co-incubated with an equal volume of 200 µM MUNANA
substrate at 37 ◦C for 60 min in a black 96-well plate in the dark. Wells without viruses were
used as background controls. Then, the virus-substrate mixtures were treated with 100 µL
of NA-Fluor stop solution to stop the reaction. Finally, the plate was read using a VICTOR3
Multilabel plate reader (Wallac, TURKU, Varsinais-Suomi, Finland). The excitation and
emission wavelengths were 355 and 460 nm, respectively. The values of relative fluorescence
units (RFU) from each sample minus the value from the background control were plotted
as curves. The procedures of the MUNANA kinetic assay were performed as described
in a previous report with minor modifications [21]. Briefly, 50 µL of 106 PFU of viruses
was added to 50 µL of two-fold serially diluted MUNANA substrate (from 2000 µM to
0 µM) and incubated at 37 ◦C in a black 96-well plate in the dark. The fluorescence
values released by cleaved MUNANA were measured using a VICTOR3 Multilabel Plate
Reader every 60 s for 60 min. The excitation and emission wavelengths were 355 and
460 nm, respectively. The RFU values recorded at each time point for different MUNANA
concentrations were plotted as curves. The catalytic velocity of each reaction with different
MUNANA concentrations within 3 min was calculated and plotted as a Michaelis–Menten
plot. Then, the Michaelis–Menten plot was transformed into a Lineweaver–Burk curve
by transforming the X-axis from MUNANA into 1/(MUNANA) and the Y-axis from V to
1/V. The maximum velocity of NA activity (Vmax) and the Km of NA were calculated by
nonlinear regression using GraphPad Prism version 6 software (La Jolla, CA, USA).

2.4. NA Enzyme Activity by Enzyme-Linked Lectin Assay (ELLA)

The NA activity of the viruses on multivalent fetuin substrates was determined using
ELLA as previously described with minor modifications [12,22,23]. Briefly, ELISA plates
coated with 50 µg/mL fetuin ((Sigma, Burlington, MA, USA) were washed with PBST (PBS
with 0.05% Tween-20) and blocked with blocking buffer (1% BSA in PBS) for 2 h. Two-fold
serially diluted viruses (from 106 PFU) in 100 µL of blocking buffer were added to the
plate and incubated at 37 ◦C for 1 h for SIA cleavage. After three washes with PBST, the
desialylated O-linked glycans and desialylated N-linked glycans were probed with 100 µL
of 2.5 µg/mL biotin-conjugated peanut agglutinin (PNA) (Vector Laboratories, Burlingame,
CA, USA) and 100 µL of 1.25 µg/mL biotinylated lectin from erythrina cristagalli (ECA)
(Vector Laboratories), respectively, in separate sets of experiments at RT for 1 h. After
washing three times with PBST, the binding of PNA and ECA was detected by incubation
with horseradish peroxidase (HRP)-conjugated streptavidin (Vector Laboratories) for 30 min
at RT. After three more washes with PBST, the optical density (OD) value at 450 nm was
determined by treatment with tetramethylbenzidine substrate (TMB) for 15 min at RT, and
the reactions were terminated using 2 N H2SO4. The samples were then read using an
ELISA reader (Tecan, Kawasaki, Japan).

2.5. Hemagglutination Assay

The hemagglutination assay was performed using 50 µL of two-fold serially diluted
virus (starting from 106 PFU) in PBS with or without 10 µM oseltamivir carboxylate loaded
onto a V-bottom 96-well plate. Then, 50 µL of 0.5% turkey red blood cells (RBCs) was
added to the viruses, which were then incubated for 30 min at 4 ◦C and 37 ◦C for separate
experimental sets. The final dilution in the wells that exhibited no agglutinated RBCs was
used as the HA titer.
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2.6. Virulence in Mice

Groups of BALB/c mice (female, 6 weeks old, n = 5) were anesthetized with isophorone
and intranasally inoculated with 50 µL of 102 or 103 PFU of live viruses (RG pH1N1,
RG pH1N1 (I365T/S366N), RG pH1N1 (I365E/S366D), or RG pH1N1 (I365T/S366N)),
respectively. The body weight and survival rates of the mice were monitored for 14 days.
Mice with a body weight loss of >25% were sacrificed according to the IACUC guidelines.
The survival rates obtained from different infection doses were used to calculate the MLD50
values of the tested viruses.

2.7. Formalin-Inactivated Virus Preparation

Ten plates of MDCK cells (2 × 107/plate) incubated in 20 mL of MEM-α with 0.5 µg/mL
TPCK-trypsin were infected with viruses at MOI = 0.001. After 72 h of incubation at 37 ◦C,
200 mL of virus-containing culture supernatant was collected, centrifuged at 3000× g at
4 ◦C for 5 min to remove cell debris, and inactivated with 0.01% formalin (Sigma) at 4 ◦C
for 24 h. The inactivated virus-containing solution was then concentrated to 30 mL using a
100 kDa spin column (Millipore, Burlington, MA, USA). Concentrated viruses were overlaid
onto 5 mL of a 20% sucrose solution (w/v) dissolved in TNE buffer (10 mM Tris-HCl, 0.1 M
NaCl, 1 mM EDTA, 10 mM, pH 7.4) in six ultracentrifugation tubes (Hitachi, Tokyo, Japan).
After ultracentrifugation at 82,700× g and 4 ◦C for 2 h, the inactivated virus pellets were
dissolved in 600 µL of PBS and stored at −80 ◦C [23,24]. The total protein concentration of
the inactivated viruses was measured using the Bradford protein assay (Bio-Rad, Hercules,
MA, USA).

2.8. Mouse Vaccination with Formalin-Inactivated Viruses

Groups of BALB/c mice (female, 6–8 weeks old, n = 5) were intramuscularly immu-
nized with two doses of inactivated viruses containing 10 µg of total protein and 300 µg
of alum adjuvant (Alhydrogel adjuvant; InvivoGen, San Diego, CA, USA) in a three-week
interval. Antisera were collected 14 days after the second immunization and incubated at
56 ◦C for 30 min for complement inactivation. Antisera samples were stored at −20 ◦C
before use.

2.9. NA Inhibition Assay

ELISA plates coated with 50 µg/mL (100 µL) of fetuin (Sigma) were incubated at 4 ◦C
overnight. Then, the plates were washed three times with PBST and blocked with blocking
buffer for 2 h. Viruses (pH1N1, H5N1, H3N2, or H7N9) were mixed with equal volumes of
two-fold serially diluted serum samples for 1 h at 37 ◦C and transferred to ELISA plates
coated with fetuin for 1 h at 37 ◦C. After washing three times with PBST, the desialylated
O-linked glycans and desialylated N-linked glycans were probed with 100 µL of 2.5 µg/mL
biotin-conjugated peanut agglutinin (PNA) (Vector Laboratories) and 100 µL of 1.25 µg/mL
biotinylated lectin from erythrina cristagalli (ECA) (Vector Laboratories), respectively, in
separate sets of experiments at RT for 1 h. After three washes with PBST, the binding
of PNA and ECA was detected by incubation with horseradish peroxidase -conjugated
streptavidin (Vector Laboratories) for 30 min at RT. After three more washes with PBST, the
OD at 450 nm was determined by treatment with tetramethylbenzidine substrate (TMB)
for 15 min at RT. The reactions were terminated using 2 N H2SO4 and the samples were
read using an ELISA reader (Tecan). The serum dilutions that inhibited 50% of NA enzyme
activity were defined as the IC50 values.

2.10. Virus-Neutralization Assay by Plaque Reduction

MDCK cells were seeded in DMEM with 5% FBS in 6-well plates for 48 h. Mouse sera
were serially diluted two-fold in minimum essential medium-α (MEM-α) with 0.5 µg/mL
TPCK-trypsin, and 30 µL of each diluted sample was co-incubated with 30 µL of pH1N1
virus (100 PFUs) at 37 ◦C for 1 h. The prepared MDCK cells were washed twice with PBS,
and the medium was changed to 940 µL of MEM-α with 0.5 µg/mL TPCK-trypsin. The
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serum-virus mixture samples were added to the prepared cells and incubated at 37 ◦C
for 1 h. The infected cells were washed with PBS and covered with 3 mL of overlay gel
(0.5% low melting agarose in MEM-α with 0.5 µg/mL TPCK-trypsin) and incubated at
37 ◦C for 48 h for plaque formation. The cells were then fixed with 1 mL of 4% formalin
(Sigma) for 6 h. After removing the overlay gel, the plaques were stained with 1% crystal
violet. The percentage of virus neutralization in each well was calculated as follows: virus
neutralization (%) = (number of viral plaques/number of viral plaques in the virus-only
control groups) × 100%. The results were used to plot neutralization curves.

2.11. HI Assay

To eliminate the materials causing nonspecific erythrocyte aggregation, 10 µL of mouse
serum was incubated with 30 µL of receptor-destroying enzyme (RDE; Denka Seiken) at
37 ◦C for 18 h. After another round of incubation at 56 ◦C for 30 min for RDE inactivation,
60 µL of PBS was added to the serum–enzyme mixture. The serum–enzyme mixtures were
serially diluted two-fold in 25 µL of PBS in V-bottomed 96-well plates and incubated with
4 HA units of pH1N1 viruses in 25 µL of PBS at RT for 30 min. Then, 50 µL of 0.5% turkey
red blood cells was added. The mixture was incubated at 4 ◦C for 30 min, and the HI titers
were determined as the final dilution that inhibited hemagglutination.

2.12. Statistics

Statistical analyses were performed using GraphPad Prism (GraphPad Software,
Inc., San Diego, CA, USA). The statistical significance of differences between the groups
was assessed using one-way analysis of variance (ANOVA) with Tukey’s or Holm–Sidak
multiple comparison tests. Differences with a p-value of less than 0.05 (*), 0.01 (**), 0.001
(***), and 0.0001 (****) were considered statistically significant.

3. Results
3.1. Analysis of the NA 370-Loop Amino Acid Sequences of H1N1 Viruses

The amino acid sequences of the NA 370-loop at residues 363–370 from 31,185 HXN1
virus strains were analyzed using WebLogo 3 (http://weblogo.threeplusone.com/create.
cgi) accessed on 16 May 2022. The analysis was used to calculate the percentage of amino
acid residues at 365 for I (70%), T (20%), and N (10%); at 366 for S (72%), N (16%), R
(8%), and H (4%); at 367 for S (92%) and L (8%); at 369 for K (44%), S (26%), N (22%),
and R (4%) (Figure 1A). We previously demonstrated that immunization with recombi-
nant NA (pH1N1, A/Texas/05/2009) proteins with I365T/S366N mutations elicited cross-
reactive NA-inhibition antibodies against the homologous pH1N1 and three heterologous
H3N2, H5N1, and H7N9 viruses [12]. The NA 370-loop amino acid sequences of pH1N1
(A/Texas/05/2009), H5N1 (A/Vietnam/1203/2004), H3N2 (A/Udorn/307/1972), and
H7N9 (A/Shanghai/02/2013) are listed in Figure 1B. As shown in the 3D structure of the
NA protein (PDB:4b7r) [6], the I365T/S366N mutations from pH1N1 (A/Texas/05/2009)
switched to H5N1(A/Vietnam/1203/2004) at the NA 370-loop are located at the upper
surface near the enzyme activity site (Figure 1C).

3.2. Construction of RG pH1N1 Viruses with the NA 370-Loop Mutations

The PR8 eight plasmids-based RG system was used to generate the wild-type pH1N1
RG virus and three NA 370-loop mutant viruses: RG pH1N1(I365T/S366N), RG pH1N1
(I365T/S366A), and RG pH1N1(I365E/S366D). All of these RG viruses were rescued
(Figure 2A–D). The morphology of these four RG viruses was roughly spherical and
pleomorphic with a spike signature by TEM visualization (Figure 2E–H). The growth
kinetics of these four RG viruses in MDCK cells were similar as shown by the virus titer
measured at different hours post-infection (Figure 2I).

http://weblogo.threeplusone.com/create.cgi
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NA enzyme activities on O-linked SIA of multivalent fetuin substrate. (L) Viral NA enzyme activities
on the N-linked SIA of multivalent fetuin substrate.

3.3. NA Activity for RG pH1N1 Viruses with the NA 370-Loop Mutations

The NA enzyme activity of these four pH1N1 RG viruses was measured using the
monovalent substrate MUNANA or the multivalent substrate fetuin [12,22,23]. The
MUNANA assay indicated that both the RG pH1N1 (I365T/S366N) and RG pH1N1
(I365E/3S66D) viruses had a higher NA activity, but the RG pH1N1 (I365T/S366A) virus
had a lower NA activity than the wild-type RG pH1N1 virus (Figure 2J). The O-linked
fetuin-PNA and N-linked fetuin-ECA assays also showed the order of NA enzyme activ-
ity following RG pH1N1(I365E/S366D) > RG pH1N1(I365T/S366N) > RG pH1N1 > RG
pH1N1(I365T/S366A) (Figure 2K,L). The differences in the NA enzyme activity of these
mutant viruses measured using multivalent substrates (O-linked or N-linked) were more
significant than the values measured using the monovalent substrate MUNANA. The
results demonstrated that the I365T/S366N and I365E/S366D NA mutant RG viruses had
an increased viral NA enzyme activity, but the I365T/S366A RG mutant RG virus had a
reduced NA enzyme activity.

3.4. NA Kinetic Parameters for RG pH1N1 Viruses with the NA 370-Loop Mutations

The enzyme kinetic parameters of these four RG viruses were further measured using
the MUNANA assay. Time course data for each concentration of the MUNANA substrate
were recorded for the RG pH1N1, RG pH1N1(I365T/S366N), RG pH1N1(I365T/S366A),
and RG pH1N1(I365E/S366D) viruses (Figure 3A–D). The velocities of the NA enzymes
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of these RG viruses were plotted using a Michaelis–Menten plot (Figure 3E). By plotting
1/V0 (reciprocal of initial velocity) against 1/S0 (reciprocal of substrate concentration), the
Lineweaver–Burk plot was obtained (Figure 3F). The kinetic parameters Michaelis–Menten
constant (Km) and maximum velocity of substrate conversion (Vmax) were calculated from
the Lineweaver–Burk plot. The results showed that pH1N1 (I365E/S366D) and pH1N1
(I365T/S366A) viruses had reduced Km values for enzyme affinity constant compared
to the RG pH1N1 virus (Figure 3G). However, the RG pH1N1(I365E/S366D) virus had
higher Vmax values than the RG pH1N1 and RG pH1N1(I365T/S366N) viruses, whereas
RG pH1N1(I365T/S366A) had a lower Vmax value than that of the RG pH1N1 virus
(Figure 3H). In addition, the RG pH1N1(I365E/S366D) virus had a higher Kcat/Km value
than the RG pH1N1, RG pH1N1(I365T/S366N), and RG pH1N1(I365T/S366A) viruses.

1 

Figure 3. Viral NA enzyme kinetics. To determine the viral NA enzyme activities in real-time, the
emission signals from different concentrations of MUNANA cleaved by NA of (A) RG pH1N1,
(B) RG pH1N1(I365T/S366N), (C) RG pH1N1(I365E/S366D), and (D) RG pH1N1(I365T/S366A) were
measured every 60 s for 1 h. (E) Michaelis–Menten plots of viral NA enzyme activities. (F) Lineweaver–
Burk plots of viral NA enzyme activity. (G) Vmax, (H) Km, and (I) Kcat/Km of each viral NA
calculated using Lineweaver–Burk plots. Statistical tests for multiple comparisons in (G–I) were
analyzed using one-way ANOVA with Tukey’s or Holm–Sidak’s multiple comparison tests. (* p < 0.05,
** p < 0.01, *** p < 0.001 and **** p < 0.0001). Error bars are plotted as standard deviation from the
mean value.
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3.5. HA Titers for RG pH1N1 Viruses with the NA 370-Loop Mutations

Since the NA activity of influenza viruses can affect the HA–NA balance, which in
turn affects the initiation of viral infection, viral fitness, and cross-species transmission [24],
we measured the HA titers of these RG pH1N1 viruses using turkey RBCs in the presence
or absence of 10 µM oseltamivir carboxylate at 4 ◦C or 37 ◦C. The results showed that under
all of the conditions tested, the RG pH1N1(I365T/S366N) and RG pH1N1(I365E/S366D)
viruses had higher HA titers than the RG pH1N1 virus although these values are not
statistically significant, while the RG pH1N1(I365T/S366A) virus had the lowest titers
(Figure 4A,B). The increase or decrease in HA titers was found to roughly correlate with
the increase or decrease in the measured NA activity for these NA 370-loop mutant viruses.
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Figure 4. HA titers of RG pH1N1, RG pH1N1 (I365T/S366N), RG pH1N1 (I365E/S366D, and
RG pH1N1 (I365T/S366A). (A) HA titers of RG pH1N1, RG pH1N1 (I365T/S366N), RG pH1N1
(I365E/S366D) and RG pH1N1 (I365T/S366A) with or without oseltamivir carboxylate treatment
determined by hemagglutination assays using 0.5% turkey RBCs at 4 ◦C and 37 ◦C. (B) The HA titers
plotted as a bar chart.

3.6. Mouse Virulence for RG pH1N1 Viruses with the NA 370-Loop Mutations

To determine whether the increased NA and HA titers observed in these RG pH1N1
viruses may also affect their virulence, 10 groups of BALB/c mice (n = 5 per group) were
intranasally inoculated with 102 and 103 pfu RG viruses alone with the PBS control, and
their survival rates and body weight recovery were recorded for 14 days. For 102 pfu
inoculation, the results indicated that a 100% survival rate was found for all the inves-
tigated groups (Figure 5A), while the loss of body weight and its recovery for 14 days
was more significant for the RG pH1N1(I365T/S366A) group than for the RG pH1N1, RG
pH1N1(I365T/S366N), and RG pH1N1(I365E/S366D) groups (Figure 5B). For 103 pfu inoc-
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ulation, the results showed that the RG pH1N1(I365T/S366N), RG pH1N1(I365T/S366A),
and RG pH1N1(I365E/S366D) groups had a survival rate of 20% compared to 0% for
the RG pH1N1 and 100% for the PBS control (Figure 5C). The body weight loss was re-
covered for three NA 370-loop mutants but not the wild-type RG pH1N1 (Figure 5D).
Therefore, the RG pH1N1, RG pH1N1(I365T/S366N), RG pH1N1(I365T/S366A), and RG
pH1N1(I365E/S366D) viruses were less virulent than the wild-type RG pH1N1 virus.
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Figure 5. Virulence of the RG pH1N1, RG pH1N1(I365T/S366N), RG pH1N1 (I365E/S366D), and RG
pH1N1(I365T/S366A) viruses. Five mice from each group were intranasally infected with RG pH1N1,
RG pH1N1(I365T/S366N), RG pH1N1(I365E/S366D), or RG pH1N1(I365T/S366A). (A) Survival rates
of mice inoculated with 102 viruses. (B) Body weight of mice inoculated with 102 viruses. (C) Survival
rates of mice infected with 103 viruses. (D) Body weight of mice infected with 103 viruses.

3.7. NA-Inhibition, HI, and Virus-Neutralizing Antibodies Elicited by Inactivated RG pH1N1
Viruses with the NA 370-Loop Mutations

The culture supernatants were collected from MDCK cells infected with each RG
pH1N1 virus and then treated with 0.01% formalin for 24 h, concentrated, and purified by
20% sucrose ultracentrifugation to obtain the inactivated viruses for immunization. Groups
of BALB/c mice (n = 5 per group) were intramuscularly immunized with each group of
inactivated viruses containing 10 µg total protein plus alum adjuvant using a two-dose reg-
imen (Figure 6A). Antisera were collected two weeks after the second-dose immunization
to determine the titers of NA-inhibition, HI, and virus-neutralizing antibodies. The antisera
from the four inactivated virus groups, but not the PBS control, showed dose-dependent
NA inhibition against the homologous pH1N1 (Figure 6B,C) and the heterologous H5N1
viruses (Figure 6D,E). The corresponding IC50 titers of the NA-inhibition antibodies were
3.7–3.9 log10 against the pH1N1 virus and 2.8–3.2 log10 (O-linked) and 2.1–2.5 log10 (N-
linked) against the H5N1 virus (Figure 6F). No significant differences in NA-inhibition
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antibody titers were found between the inactivated RG pH1N1 and inactivated RG pH1N1
NA 370-loop mutant viruses. Furthermore, no detectable levels of NA-inhibition antibodies
against the heterosubtypic H3N2 and H7N9 viruses were observed (data not shown). We
also examined the HA-inhibition titers of these antisera using turkey RBCs, which showed
a gradual increase in the immunized groups of RG pH1N1, RG pH1N1(I365T/S366N), RG
pH1N1(I365E/S366D), and RG pH1N1(I365T/S366A) (Figure 6G). The virus-neutralizing
antibody titers were also determined using a plaque assay, showing similar results, with a
slight increase in the dose-dependent inhibition by RG pH1N1, RG pH1N1(I365T/S366N),
RG pH1N1(I365E/S366D), and RG pH1N1(I365T/S366A) (Figure 6H). No cross-reactive
HA-inhibition titers were detected in these antisera against the H5N1, H3N2, and H7N9
viruses (data not shown). Overall, the inactivated viruses of RG pH1N1(I365T/S366N), RG
pH1N1(I365E/S366D), and RG pH1N1(I365T/S366A) compared to RG pH1N1 were found
to elicit similar titers of NA-inhibition antibodies against pH1N1 and H5N1 viruses, but
not H3N2 and H7N9 viruses as well as of HI and virus-neutralizing antibody titers against
the pH1N1 viruses.
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Figure 6. NA-inhibition, HA-inhibition, and virus-neutralizing antibodies elicited by the inactivated
RG pH1N1 viruses with NA 370-loop mutations. (A) Groups of BALB/c mice (n = 5 per group) were
intramuscularly immunized with each group of inactivated viruses containing 10 µg total protein plus
alum adjuvant using a two-dose regimen. Antisera were collected on week 5. NA-inhibition antibody
curves against (B) pH1N1 (NA activity on O-linked SIA), (C) pH1N1 (NA activity on N-linked SIA),
(D) H5N1 (NA activity on O-linked SIA), and (E) H5N1 (NA activity on N-linked SIA). (F) IC50 titers
of NA-inhibition antibodies against pH1N1 and H5N1 viruses. (G) HI titers against pH1N1 virus.
(H) Virus-neutralization inhibition for pH1N1 virus.
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4. Discussion

HA and NA are two major antigens of the influenza A virus. Although both HA and
NA undergo antigenic drift, NA experiences less antigenic change than HA [25]. Although
NA-inhibition antibodies were shown to provide cross-protection against heterologous
viruses, this effect was restricted in viruses carrying the same influenza NA subtype [18].
For instance, the H3N2 DNA vaccine was reported to protect against heterologous H3N2
viruses, but not against the H1N1 virus [26]. The key amino acids of the cross-reactive
epitope (s) against H1N1 and H5N1 viruses were located at the seven upper loops sur-
rounding the enzyme activity site (14). We previously demonstrated that recombinant
NA protein with I365T/S366N mutation elicited cross-reactive NA-inhibition antibodies
against the homologous pH1N1, the heterologous H5N1, and the heterosubtypic H3N2,
and H7N9 viruses [12]. In this study, we used RG technology to engineer the wild-type
pH1N1 (RG pH1N1) and three NA 370-loop mutants (I365T/S366N, I365E/S366D, and
I365T/S366A) and investigated their NA enzyme activity, HA titers, mouse virulence, and
inactivated-virus immunogenicity.

Our studies demonstrated that the I365T/S366N and I365E/S366D NA mutant viruses
had an increased viral NA enzyme activity, but the I365T/S366A RG mutant virus had a
reduced NA enzyme activity, based on the cleavage of SIA on MUNANA and the cleavages
of O- and N-linked SIA on fetuin as a multivalent substrate. These three 370-loop mutant
viruses (I365T/S366N, I365E/S366D, and I365T/S366A) did not show differences in their
viral growth kinetics in MDCK cells (Figure 2I), and the sensitivity to oseltamivir had no
difference for HA titers (Figure 4B). These results are different from other reports to show
that mutant H1N1 and H3N2 viruses with reduced NA enzyme activity had decreased
viral growth kinetics, reduced oseltamivir sensitivity, and lowered virulence, including
the H274Y NA mutation of A/Texas/36/91 (H1N1) [26], the H275Y NA mutation of
A/England/195/09 (H1N1) [27], the I427T NA mutation of A pH1N1 [28], and the E119V
and R292K NA mutations of A/Wuhan/359/95 (H3N2) [29]. Furthermore, the three mutant
RG viruses (I365T/S366N, I365E/S366D, and I365T/S366A) were also found to display an
increase or decrease in HA titers that was roughly correlated with an increase or decrease
in NA activity in these NA 370-loop mutant viruses, suggesting the possibly altered the
amounts of HA and NA on the virion’s surface or the HA–NA receptor balance for viral
fitness [2,30]. It was reported that the influenza virus with enhancing NA enzyme activity
can restore the replication by low-affinity receptor binding HA mutant viruses [31]. The
altered HA–NA receptor balance for influenza A viruses can be also affected by virion
lengths and the HA/NA ratios due to the low-fidelity assembly [32]. Therefore, further
studies are needed to determine whether the various levels of NA enzyme activities and
HA titers of these three mutant viruses (I365T/S366N, I365E/S366D, and I365T/S366A) are
related to virus assembly.

Our findings of NA-inhibition antibodies elicited by the inactivated I365T/S366N
mutant virus were not consistent with our previous study using mutant I365T/S366N NA
protein for immunization [12]. Immunization with the inactivated viruses of RG pH1N1,
RG pH1N1(I365T/S366N), RG pH1N1(I365T/S366A), and RG pH1N1(I365E/S366D) was
found to elicit similar titers of NA-inhibition antibodies against pH1N1 and H5N1 viruses,
respectively (Figure 6B–E). No detectable NA-inhibition antibodies against the hetero-
subtypic H3N2 and H7N9 viruses were found (data not shown). It was reported that
formalin-inactivated influenza virus contained approximately 0.62% NA content compared
to 25.58% HA content in a single virion surface (i.e., 645 µg inactivated virus containing
165 µg HA and 4 µg NA) [33]. Based on this estimation, one dose of 10 µg inactivated
pH1N1 RG virus in the immunization study was composed of approximately 2.558 µg
HA and 0.062 µg NA for inactivated virus immunization. The results may be due to the
insufficient NA amounts for presenting the cross-reactive epitope(s) using inactivated
virus immunization as compared to NA protein immunization. Therefore, future studies
using NA-based virus-like particles or some other way to increase the NA presentation can
provide useful information for NA-based influenza vaccine development.
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5. Conclusions

In conclusion, this study showed that the RG viruses carrying the NA 370-loop muta-
tions, including I365T/S366N, I365E/366D, and I365T/S366A affected viral NA enzyme
activity and virulence in mice, but had no effect on virus growth kinetics in MDCK cells
or oseltamivir sensitivity. Immunization with formalin-inactivated viruses of these NA
370-loop mutants compared to the wild-type RG pH1N1 virus elicited similar titers of NA-
inhibition antibodies against pH1N1 and H5N1 viruses. Future studies using NA-based
virus-like particles or some other way to increase the NA presentation could provide useful
information for NA-based influenza vaccine development.
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