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Background: The association of near-infrared spectroscopy (NIRS) with various

outcomes after pediatric cardiac surgery has been studied extensively. However, the role

of NIRS in the prediction of cardiac arrest (CA) in children with heart disease has yet to be

evaluated. We sought to determine if a model utilizing regional cerebral oximetry (rSO2c)

and somatic oximetry (rSO2s) could predict CA in children admitted to a single-center

pediatric cardiac intensive care unit (CICU).

Methods: We retrospectively reviewed 160 index CA events for patients admitted to our

pediatric CICU between November 2010 and January 2019. We selected 711 control

patients who did not have a cardiac arrest. Hourly data was collected from the electronic

health record (EHR). We previously created a machine-learning algorithm to predict the

risk of CA using EHR data. Univariable analysis was done on these variables, which we

then used to create a multivariable logistic regression model. The outputs from the model

were presented by odds ratio (OR) and 95% confidence interval (CI).

Results: We created a multivariable model to evaluate the association of CA using

five variables: arterial saturation (SpO2)- rSO2c difference, SpO2-rSO2s difference, heart

rate, diastolic blood pressure, and vasoactive inotrope score. While the SpO2-rSO2c

difference was not a significant contributor to the multivariable model, the SpO2-rSO2s

difference was. The average SpO2-rSO2s difference cutoff with the best prognostic

accuracy for CA was 29% [CI 26–31%]. In the multivariable model, a 10% increase in the

SpO2-rSO2s difference was independently associated with increased odds of CA [OR

1.40 (1.18, 1.67), P < 0.001] at 1 h before CA. Our model predicted CA with an AUROC

of 0.83 at 1 h before CA.

Conclusion: In this single-center case-control study of children admitted to a pediatric

CICU, we created a multivariable model utilizing hourly data from the EHR to predict CA.
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At 1 h before the event, for every 10% increase in the SpO2-rSO2s difference, the odds

of cardiac arrest increased by 40%. These findings are important as the field explores

ways to capitalize on the wealth of data at our disposal to improve patient care.

Keywords: near-infrared (NIR) spectroscopy, cardiac arrest, prediction, children, congenital heart disease

INTRODUCTION

Near-infrared spectroscopy (NIRS) is a method of non-invasive
real-time continuous monitoring of tissue oxygenation. The use
of NIRS has been studied extensively in children with congenital
heart disease (CHD) (1). There have been studies looking at the
association between NIRS and various outcomes after pediatric
cardiac surgery, such as low cardiac output syndrome, acute
kidney injury, necrotizing enterocolitis, neurodevelopmental
outcome, and mortality (2–5). In particular, multisite NIRS,
which refers to simultaneously monitoring cerebral oxygen
saturation (rSO2c) as well as somatic oxygen saturation (rSO2s),
can be performed by placing NIRS sensors over the brain and
kidney, liver, or intestines. Since the body’s response to decreased
cardiac output is to decrease perfusion to somatic sites to
preserve perfusion to the brain, it can be helpful to monitor
multisite NIRS as an early predictor (1). Monitoring regional
tissue oxygen extraction (using arterial oxygen saturation-rSO2
difference) can also be useful in the pre- and post-operative
periods of children with CHD. In a study of children with CHD
during the pre-operative period, it has been shown that those
lesions with diastolic runoff compared to lesions without runoff
have the most cerebral oxygen extraction indicating less cerebral
blood flow. There is also evidence that cerebral tissue oxygen
extraction can be predictive of mortality in the children with
HLHS after Stage 1 Palliation (6, 7). While the ability of NIRS to
predict various outcomes has been well-studied, the role of NIRS
in the prediction of cardiac arrest (CA) in children with heart
disease has yet to be studied. In fact, this gap in the literature
does not only apply to children with CHD. There is literature
looking at the association of NIRS with intra-arrest and post-
cardiac arrest outcomes in adults (8, 9), although this consists
of case reports and case series (10–15). There are no data on
the use of NIRS to predict cardiac arrest in adults. Our goal
therefore was to determine if regional, cerebral, and somatic
oxygen saturations (rSO2c and rSO2s) could predict cardiac
arrest in children admitted to a single-center pediatric cardiac
intensive care unit (CICU).

METHODS

The Institutional Review Board’s approval was obtained before
this study. We queried our local Get With the Guidelines
Resuscitation (GWTGR) Registry database for children admitted
to the Children’s Medical Center Dallas pediatric CICU between
November 2010 and January 2019 who developed a cardiac arrest
during their CICU admission. Our pediatric CICU is a 26-bed
unit that admits surgical and non-surgical patients with heart
disease. The GWTGR Registry database defines cardiac arrest

as pulselessness or pulse with inadequate perfusion requiring
chest compressions and/or defibrillation. From the GWTGR
Registry database, we retrospectively reviewed all events by chart
review of the electronic health record (EHR) to confirm the
diagnosis of cardiac arrest. For our study, we chose to only
include patients who developed a cardiac arrest that resulted in
chest compressions. We excluded cardiac arrests that resulted
in defibrillation alone without chest compressions. We chose
to analyze only the index events. We identified 160 index CA
events during the study period.We attempted to find amethod to
match controls to cases. Although there exist multiple severities
of illness scoring systems that have been validated in the general
pediatric ICU population to predict mortality, such as Pediatric
Risk of Mortality (PRISM)-3 and Pediatric Index of Mortality
(PIM)2, unfortunately, no scoring system has been validated for
the population of children with congenital heart disease (16, 17).
Jeffries et al. published a scoring tool to predict the risk of
mortality, the Pediatric Index of Cardiac Surgical Intensive Care
Mortality (PICSIM), that has been validated in children after
cardiac surgery (18). Unfortunately, this score is unique to the
post-surgical population and cannot be used in non-surgical
patients. As there was no validated tool to match cases and
controls in total, we selected our control patients at random using
the following criteria: 1. Patients admitted to the CICU between
November 2009 andDecember 2019; 2. patients who did not have
a cardiac arrest during the admission; 3. patients who were not
in the cardiac arrest dataset; and 4. patients who were not on
extracorporeal membrane oxygenation (ECMO) already at the
time of admission; and 5. patients who were admitted to the
CICU within 12 h of hospital admission.

NIRSmonitoring was done usingMedtronic INVOS oximeter
probes and monitors. Our standard of care for all patients who
are admitted to our CICU is to place INVOS oximeter probes on
the forehead and flank to measure regional cerebral and somatic
(kidney) oxygen saturation. We collected various data from the
electronic health record (EHR). The study period consisted of
up to 48 h before CA for patients who had a cardiac arrest, and
up to the first 48 h of ICU admission for the control patients.
Demographic data (age, weight, gestational age, ventricular
status) were collected from the EHR. Single ventricle physiology
is defined as those patients with a mixture of systemic venous and
pulmonary venous return, with total cardiac output partitioned
into pulmonary and systemic blood flow (19). Therefore, this
definition would include patients who are intended to undergo
a single ventricle palliation pathway as well as patients palliated
initially with a shunt before two ventricle repairs (such as
Tetralogy of Fallot). Surgical information (date of surgery, STS-
European Association for Cardiothoracic Surgery (STS-EACTS)
mortality category (STAT category), cardiopulmonary bypass
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(CPB) times, and cross-clamp (Xclamp) times were collected
from the STS database and EHR).

We had previously created a machine-learning algorithm to
predict the risk of CA in our center (manuscript currently under
preparation). The machine-learning algorithm was created using
XG-boost, or extreme gradient boosting, a type of decision tree
algorithm. The machine-learning algorithm was trained on the
same dataset. A total of 11 variables were selected that were
most important to the machine learning algorithm (Table 1).
VIS was defined by the equation: Dopamine dose (mcg/kg/min)
+ Dobutamine dose (mcg/kg/min) + [100 × Epinephrine
dose (mcg/kg/min)] + [10 × Milrinone dose (mcg/kg/min)]
+ [10,000 × Vasopressin dose (units/kg/min)] + [100 ×

Norepinephrine dose (mcg/kg/min)]. The data values of HR,
SpO2, DBP, rSO2c, rSO2s, and ETCO2 levels are automatically
carried over from the patient monitor to the EHR with the
bedside nurse confirming the value before it is finalized in the
EHR. The missing values were carried forward from the last
documented value. The 11 variables in order from most to least
missing data were the following: anion gap, FiO2, base excess,
ETCO2, rSO2s, rSO1c, DBP, SpO2, HR, urine output, and VIS
(Supplementary Table 1). The average of all available values
within each hourly interval from hours 1 to 15 before CA was
used for analysis. Univariable analysis was performed on each of
those 11 variables, and we selected the variables that were found
to have an association with CA in our multivariable analysis. We
created multivariable logistic regression models to include these
variables to predict CA as a function of time. The output from
models was presented by odds ratio (OR) and 95% confidence
interval (CI).

For some variables, we used absolute values, while for others,
we used the relative change from baseline (Table 2). We defined
a patient’s baseline for a given variable as the average value
over the first 4 h of the study period. The relative change
of a given variable X at hour Y was defined as [X (at hour
Y)-X (baseline)]/X(baseline. Given the population of children
admitted to our CICU have both cyanotic and non-cyanotic
heart disease, which can affect the baseline SpO2, rSO2c, and
rSO2s, we chose to analyze the changes in these values compared
to the patient’s baseline rather than their absolute values. In
patients with single ventricle physiology, changes in rSO2 can
influence the SpO2. Similarly, since baseline HR and DBP can
be age-dependent, we elected to analyze changes in HR and
DBP compared to the patient’s baseline. We elected to use
absolute VIS. Values for VIS were not normally distributed
therefore could not be represented as a continuous variable in
our logistic regression model but rather as categories. When
we analyzed the distribution of the VIS data, 75% of the VIS
values were 0. Therefore, we elected to classify values for VIS
into two categories: VIS 0 and VIS > 0. We also elected
to evaluate absolute values of the surrogates of arteriovenous
difference: SpO2-rSO2s difference and SpO2-rSO2c difference.
We attempted to use simultaneous values of SpO2 and rSO2s
and rSO2c to calculate these differences, however, the number
of values containing simultaneous values was too small to do an
analysis. Therefore, we instead used the average of SpO2 values
within a specific hour and the average of rSO2s and rSO2c for

TABLE 1 | Clinical features most important to the XG-boost algorithm.

Heart rate (HR)

Oxygen saturation level measured by pulse oximetry (SpO2)

Diastolic blood pressure (DBP)

rSO2c

rSO2s

End tidal carbon dioxide (ETCO2)

Urine output (cc/kg/hr)

Base excess

Anion gap

Fraction of inspired oxygen (FiO2)

Vasoactive inotrope score (VIS)

TABLE 2 | Clinical features: absolute value vs. relative change from baseline.

Variable Absolute value or relative change

Heart rate (HR) Relative change

Oxygen saturation level measured by

Pulse oximetry (SpO2) Relative change

Diastolic blood pressure (DBP) Relative change

rSO2c Relative change

rSO2s Relative change

End tidal carbon dioxide (ETCO2) Absolute value

Urine output (cc/kg/hr) Absolute value

Base excess Absolute value

Anion gap Absolute value

Fraction of inspired oxygen (FiO2) Absolute value

Vasoactive inotrope score (VIS) Absolute value

that specific hour to calculate the SpO2-rSO2s difference and
SpO2-rSO2c difference. All other variables (FiO2, urine output,
base excess, anion gap, ETCO2) were represented as absolute
values rather than standardized to the patient’s baseline. FiO2
was represented as a categorical instead of a continuous variable
with all values broken down into tertiles. All values for a given
variable over a given hour were averaged and the average value
was used in the model. We defined the patient’s baseline as
the first 4 h of the study period, we excluded any patient who
had <6 h of available data. The original contributions presented
in the study are publicly available. These data can be found
here [link/accession number]. Odds for CA were examined by
univariable andmultivariable logistic regressionmodels for hours
1 through 15 before CA.

Statistical Analysis
Categorical data are presented as counts and proportions
and compared between groups using a chi-square test. Mean
and std, or Medians and interquartile ranges are used to
summarize continuous data and are compared with the t-test
or Wilcoxon’s rank-sum test, based on the distribution of data.
Data distribution was assessed by the Shapiro–Wilk’s normality
test and normal probability plots. Optimal predicted probability

Frontiers in Pediatrics | www.frontiersin.org 3 June 2022 | Volume 10 | Article 894125

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Yu et al. NIRS Predicts Cardiac Arrest

cutoffs were determined by Youden’s index from the receiver-
operating characteristic (ROC) analysis and displayed as median
and 95% confidence intervals. All analyses were performed using
SAS 9.4 (SAS Institute, Cary, NC). All statistical tests were two-
sided, and P < 0.05 was considered as significant.

RESULTS

During the defined study period 160 patients had cardiac arrest
and 711 control patients. Table 3 shows the demographics of
those patients who had a cardiac arrest vs. no cardiac arrest.
Patients who had a cardiac arrest tended to be younger, of lower
weight, younger gestational age at birth, more likely to have single
ventricle physiology, higher STAT category, and longer CPB and
cross-clamp times. The dataset for case and control groups and
their corresponding 11 variables for hours 1 to 15 is provided.

Univariable Analysis
Univariable analysis of the different variables with their
association with risk of cardiac arrest at 1 h before CA is displayed
in Table 4. FiO2, DBP, anion gap, HR, VIS, SpO2, SpO2-rSO2c
difference, and SpO2-rSO2s difference were all significantly
associated with the risk of cardiac arrest on univariable analysis.

Multivariable Analysis
Based on the univariable analysis results, we created a
multivariable model consisting of FiO2, DBP, anion gap,
HR, VIS, SpO2-rSO2c difference, and SpO2-rSO2s difference.
Table 5 shows which variables were associated with CA with a
multivariable logistic regression model. All the variables except
FiO2, anion gap, and SpO2-rSO2c difference were significantly
associated with CA. FiO2 and anion gap were removed from
the model given their non-significance and low numbers (only
26 patients in the CA group had those variables to analyze).
Figure 1 shows the graph of the multivariable logistic model with

the AUROC at each hour before CA using the variables HR,
VIS, SpO2-rSO2s difference, SpO2-rSO2c difference, and DBP.
The AUROC increased as time moved closer to the CA and
was 0.83 1 h before the CA. Table 6 displays the odds ratios for
CA for each variable in the multivariable model 1 h before CA.
The SpO2-rSO2s difference was independently associated with
the risk of CA with an OR of 1.40 (1.18, 1.67), P < 0.001. The
odds ratios for CA for all other hours before CA can be found in
Supplementary Table 2.

Changes in Individual Variables in the
Multivariable Model Over Time
Since the rSO2s values are affected by SpO2 values, we wanted
to evaluate if it was the SpO2-rSO2s difference that was different
between cases and controls, since this was taken to be a surrogate
of arteriovenous oxygen difference and thus the amount of
oxygen extraction. Figures 2, 3 show the mean SpO2- rSO2s
difference and SpO2-rSO2c difference, respectively, over time.
The SpO2-rSO2s difference values in cases were higher than in
controls. The average optimal cutoff which differentiated cases
and controls between hours 1 and 15 before CA was 29% [26–
32%]. The SpO2-rSO2c difference values were higher in cases
compared to controls as well. The average optimal cutoff which
differentiated cases and controls between hours 1 and 15 before
CA was 31% [30–33%]. Figures 4, 5 show changes in HR and
DBP, respectively, over time. Of note, the control group’s HR and
DBP do not start at baseline at hour 15. By definition, we chose
the baseline HR and DBP to be calculated using an average of the
first 4 h of data, which for themajority of patients was before hour
15. Figure 4 shows that the control group’s HR started at a higher
baseline and by hour 15 came down significantly, whereas the
arrest group’s HR had levels at hour 15 which was similar to their
baseline. Figure 5 shows that the control group’s DBP baseline
was similar to levels seen at hour 15, whereas the arrest group’s

TABLE 3 | Patient prearrest characteristics: cardiac arrest vs. no cardiac arrest.

Characteristic Cardiac arrest n = 160 (%) No cardiac arrest N = 711 (%) P-value

Gender (male) 84 (52.50%) 367 (51.62%) 0.84

Age (day) Median [IQR] 54 [1, 908] 217 [30, 1,563] <0.0001

Number of days from admission to cardiac arrest 10.90 [2.38, 32.80] N/A N/A

Single ventricle physiology 64 (40.0) 91 (12.80) <0.0001

Weight (kg) Median [IQR] 5.17 [3.30, 11.0] 7.30 [4.32, 15.65] 0.0001

Gestational age Median [IQR] 38.0 [36.0, 39.3] 39.0 [37.0, 40.0] 0.0009

For surgical patients: (below variable were analyzed on surgical yes patients only) N = 94 N = 337

Number of post-operative days at arrest Median [IQR] 10.16 [1.68, 26.63] N/A

Stat category 1 4 (4.35%) 145 (43.6%) <0.0001

Stat category 2 17 (18.48%) 109 (32.83%)

Stat category 3 7 (7.61%) 33 (9.94%)

Stat category 4 46 (50.00%) 37 (11.14%)

Stat category 5 16 (17.39%) 5 (1.51%)

No stat category assigned (stat category = 0) 2 (2.17%) 3 (0.90%)

CPB times Median [IQR] 118.0 [93.0, 163.0] 77.0 [53.0, 111.0] <0.0001

X clamp times Median [IQR] 70.0 [39.0, 116.0] 49.5 [24.0, 80.0] 0.003
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TABLE 4 | Univariate predictors of cardiac arrest.

Variable OR, CI {95%} P-value AUROC

FiO2 (tertile 3 vs. 1) 0.78 (0.41, 1.51) 0.47 0.63

(tertile 3 vs. 2) 2.63 (1.59, 4.37) <0.001

Urine output 0.98 (0.96, 1.01) 0.30 0.48

DBP 0.91 (0.87, 0.95) <0.001 0.62

Anion gap 11.20 (3.30, 38.30) <0.001 0.68

Base excess 0.84 (0.51, 1.40) 0.51 0.51

ETCO2 0.86 (0.68, 1.09) 0.21 0.58

HR 1.16 (1.10, 1.23) <0.001 0.64

VIS 9.14 (6.18, 13.52) <0.001 0.71

SpO2 0.80 (0.70, 0.90) <0.001 0.58

rSO2c 0.97 (0.93, 1.01) 0.25 0.53

rSO2s 1.04 (0.999, 1.096) 0.05 0.55

SaO2-rSO2c difference 1.31 (1.11, 1.53) 0.001 0.61

SaO2-rSO2s difference 1.40 (1.21, 1.60) <0.001 0.64

All units of change are 10 except HR, DBP, SpO2, rSO2c, and rSO2s which are 5.

TABLE 5 | Variables associated with cardiac arrest in multivariable logistic

regression model.

SaO2-rSO2s difference

HR

VIS

DBP

DBP at hour 15 was lower than their baseline. At around hour 5
before CA, changes in HR and DBP start to develop. HR shows a
steady increase above baseline. DBP shows a steady decline below
the baseline.

Confounding Variables
Since we were unable to match cases to controls as described
previously in our Methods section, we attempted to account for
confounding variables in our multivariable analysis.

The patients who had a CA compared to controls were more
likely to have SV physiology, therefore, we wanted to evaluate if
the diagnosis of SV physiology was a potential confounder. We
also created a multivariable model that included the diagnosis of
SV physiology as a covariate in addition to the other variables.
Even after controlling for SV physiology diagnosis, the variable
SpO2-rSO2s difference remained a significant risk factor for odds
of CA.

The surgical patients who had a CA compared to the controls
had higher STAT categories, longer CPB times, and longer X
clamp times, therefore, we created a model for the surgical
patients that included CPB times as a variable in addition to
the other 4 variables. We had originally attempted to use the
STAT category as a variable in our multivariable model however
there was an imbalance of STAT categories in this cohort with
a larger proportion of lower STAT categories. Therefore, in the
multivariable analysis, we had to divide the STAT categories into

two groups: those with STAT categories 1–2 vs. 3–5. Since we did
not believe a dichotomous grouping adequately stratified the risk
of surgical complexity, we decided to use CPB time (a variable
that could be evaluated as a continuous variable) as a surrogate
for surgical complexity since those patients with surgeries of
higher surgical complexity tended to have higher CPB times. The
CPB time was classified into 3 categories: Group 1: 0–60min,
Group 2: >60–120min, and Group 3: >120min. This model
shows that even when controlling for CPB time, increases in the
SpO2-rSO2s difference increase the odds of CA.

DISCUSSION

In this case-control study of children admitted to a single-
center pediatric CICU, FiO2, DBP, anion gap, HR, VIS, SpO2,
SpO2-rSO2c difference, and SpO2-rSO2s difference were all
significantly associated with the risk of CA on univariable
analysis. The multivariable analysis found that the variables
HR, VIS, SpO2-rSO2s difference, and DBP were independently
associated with CA. Multivariable logistic regression model to
predict CA with the variables HR, VIS, SpO2-rSO2s difference,
SpO2-rSO2c difference, and DBP had a good performance of
an AUROC that improved over time with the highest AUROC
at hour 1 before arrest of 0.83 (Figure 1). When looking at the
individual components of our model over time, the SpO2-rSO2s
difference and SpO2-rSO2c difference between case and control
patients remained relatively constant (Figures 2, 3), whereas the
HR andDBP showed steady increases and decreases, respectively,
as the time approached the CA (Figures 4, 5). Interestingly,
changes in HR andDBP showed similar changes at around hour 5
before CA. For the variable DBP, control patients started off and
remained with values close to their baselines with CA patients
having DBP values that were lower than their baseline values, but
at hour 5 before CA, the split between case and control patients
becomes more prominent with case patients having declines
in their DBP. In contrast, with the variable HR, CA patients
started with their baseline HR, while control patients started with
significantly lower HR values than their baseline. Again, at hour
5 before CA, the split between the two groups becomes more
prominent with case patients having HR values that increase.

Studies have shown there is usually a widening of the
arteriovenous oxygen (AVO2) difference in settings of shock
or poor oxygen delivery to the body. Thus, the decision to
choose to use the variables SpO2-rSO2s and SpO2-rSO2c in
our model. Although in our multivariable model changes in
SpO2-rSO2c difference were not significant for CA, changes in
SpO2-rSO2s were. Typically, when cardiac output is limited,
somatic perfusion is limited to preserve cerebral perfusion (20).
Therefore, when cerebral perfusion is impaired, it is often a
late sign of impaired cardiac output when the body has lost its
compensatory mechanism to preserve cerebral blood flow. A
study by Hanson et al. showed that in moderately dehydrated
children, rSO2c is preserved while rSO2s often decreases.
Rehydration resulted in a significant increase in rSO2s with
no changes in rSO2c (21). We only analyzed the performance
of the model up to 1 h before CA. It is possible if we had
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FIGURE 1 | Multivariable model prediction of cardiac arrest.

TABLE 6 | Odds ratio of cardiac arrest of individual variables of multivariate model

at 1 h prior to cardiac arrest.

Variable OR [CI] P-value

SaO2-rSO2s difference 1.40 (1.18, 1.67) <0.001

SaO2-rSO2c difference 1.12 (0.90, 1.38) 0.30

HR 1.17 (1.08, 1.27) <0.001

VIS 10.01 (6.12, 16.36) <0.001

DBP 0.95 (0.90, 0.997) 0.037

Units of changes for HR are 5 bpm; Units of change for DBP are 5mm Hg; SaO2-rSO2c

and SaO2-rSO2s are 10% points.

evaluated rSO2c in the minutes preceding CA, we could have
detected changes.

As expected, the cases had overall higher SpO2-rSO2s
values compared to controls. The average optimal cutoff which
differentiated cases and controls between hours 1 and 15 before
CA was 29%. This optimal cutoff can be valuable for the
provider taking care of children with CHD when used in
conjunction with other patient factors. It was unexpected that
there were no changes in SpO2-rSO2s difference closer to the
arrest of cases compared to controls. We hypothesize that this
could be secondary to clinician intervention. A clinician may
notice early on a widened SpO2-rSO2s difference and make
interventions to correct what is perceived to be a state of
impending deterioration, such as administration of fluid, packed
red blood cell (prbc) transfusion, or titration of vasoactive
infusions. We did not investigate the administration of any
medications for this study other than vasoactive infusions. Future
studies should evaluate other factors that could affect SpO2-
rSO2s differences, such as administration of packed red blood
cell transfusions, volume expanders, sedative medications, and
neuromuscular blockade. Why those patients despite stable
SpO2-rSO2s differences continued to go on to have a CA is
unknown. Some patients will have a CA that is unpredictable,

such as from a sudden respiratory arrest from a mucus plug
occluding an airway. There are other subgroups of cardiac
patients who are at high risk of sudden cardiac arrest without
any preceding changes, such as single ventricle physiology
patients, those with coronary artery abnormalities, or primary
arrhythmias. Data from the Single Ventricle Reconstruction
Trial have shown that 18% of deaths during hospitalization
post the Norwood procedure were sudden and unexpected
(22). We did not do subgroup analysis on patients who were
found to have a non-sudden CA, but perhaps future studies
could delve into that subset of patients who are not thought
to have a sudden event, and evaluate the changes in their
SpO2-rSO2s difference.

To our knowledge, this is the first case-control study to
show that a multivariable model using NIRS can be used to
predict CA. There have been various case reports and case
series reporting the use of NIRS as a predictor of CA. Mebius
et al. published a case report of two infants with CHD who
demonstrated a change in NIRS before the onset of CA (15).
Tume et al. published a case report of an infant after cardiac
surgery who demonstrated a decline in NIRS before the onset
of CA (14). Lanks et al. published a case report of an adult
who demonstrated a decrease in his cerebral NIRS before the
onset of CA (10).

Although not specific to CA, prior studies have shown
an association between NIRS and mortality in children with
CHD which is consistent with the findings of our study.

Hoffman et al. found that the use of rSO2c and rSO2s in
the post-operative period could predict mortality and ECMO
use in patients with hypoplastic left heart syndrome (6).
Phelps et al. found that low rSO2c in the first 48 h after

the Norwood procedure had a strong association with adverse
outcomes, defined as hospital death, need for ECMO, or CICU
stays >30 days (23).

We chose to only analyze data from the EHR rather than
continuous physiologic data. It is very likely that with more
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FIGURE 2 | Changes in the SaO2-rSO2s difference over time.

FIGURE 3 | Changes in the SaO2-rSO2c difference over time.

granular data, our model performance would improve. Although
not quite ready for bedside use, the goal would be to program
a prediction model into our existing EHR to flag clinicians
to patients with concerning trends. Our next step will be to
use continuous physiologic data to see if this improves our
model performance.

Limitations
One of the main limitations of our study is that we only chose
to study the first 48 h of the ICU admission of control patients.
This would likely give us a skewed sample of patients that would
not include higher post-operative stat categories from neonatal
surgical repairs, such as the Norwood procedure, since it is not
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FIGURE 4 | Changes in heart rate over time.

FIGURE 5 | Changes in diastolic blood pressure over time.

our center’s norm to do these procedures within the first 48 h of
admission given the elevated PVR and transitional physiology.
The bigger changes in VIS, HR, DBP, and SpO2-rSO2s difference
could be reflective of more complex surgeries and longer surgical
times in patients with higher stat categories rather than a marker
of impending cardiac arrest. We chose the first 48 h of admission
for control patients to compare to the CA patients since we
believed that for most patients (whether it was post-surgical or
a medical admission), the first 48 h of admission tend to be their
most unstable.

The prearrest characteristics were different in the case vs.
control patients. Currently, there is no severity of illness score
that has been validated in both the surgical and non-surgical
pediatric heart disease population that would allow us to match
cases with control patients. We believe that the large sample
size of our control group will make up for this limitation. We
were unable to include stat category as a covariate in our model
since there was a relatively smaller number of patients with
higher STAT category operations. Instead, we used CPB time as
a covariate since usually operations with higher STAT categories
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have higher CPB times.We elected to use CPB time as a surrogate
for the STAT category.

This is also a single-center study, therefore, our results
may not apply to other centers. This is also a heterogeneous
group of patients with various age ranges, cardiac anatomy,
and physiology.

CONCLUSION

In this case-control study of children admitted to a single-
center pediatric CICU, we were able to show that a multivariable
model consisting of SpO2-rSO2s difference, and SpO2-rSO2c
difference, HR, DBP, and VIS was able to predict CA with an
AUROC of 0.83 1 h to the CA. Furthermore, at 1 h before CA,
for every 10% increase in the SpO2-rSO2s difference, the odds of
cardiac arrest increased by 40%. The average optimal cutoffwhich
differentiated cases and controls was 29%. Future studies should
validate this model using continuous physiologic rather than
hourly data to see if the model performance would be enhanced.
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