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Abstract Background/purpose: The All-on-4� treatment concept is a dental procedure that
utilizes only four dental implants to support a fixed prosthesis, providing full-arch rehabilita-
tion with affordable cost and speedy treatment courses. Although the placement of all-on-4�
implants has been researched in the past, little attention was paid to the structural design of
the prosthetic framework.
Materials and methods: This research proposed a new approach to optimize the structure of
denture framework called BESO-Net, which is a bidirectional evolutionary structural optimiza-
tion (BESO) based convolutional neural network (CNN). The approach aimed to reduce the use
of material for the framework, such as Tie6Ale4V, while maintaining structural strength. The
BESO-Net was designed as a one-dimensional CNN based on Inception V3, trained using finite
element analysis (FEA) data from 14,994 design configurations, and evaluated its training per-
formance, generalization capability, and computation efficiency.
Results: The results suggested that BESO-Net accurately predicted the optimal structure of the
denture framework in various mandibles with different implant and load settings. The average
error was found to be 0.29% for compliance and 11.26% for shape error when compared to the
traditional BESO combined with FEA. Additionally, the computational time required for struc-
tural optimization was significantly reduced from 6.5 h to 45 s.
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Conclusion: The proposed approach demonstrates its applicability in clinical settings to quickly
find personalized All-on-4� framework structure that can significantly reduce material con-
sumption while maintaining sufficient stiffness.
ª 2024 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

The All-on-4� treatment concept is a method of restoring a
full arch of teeth for edentulous patients.1 This method
makes the most of the remaining bone in patients with
atrophic jaws, allowing immediate functionality without
additional procedures. However, the decision-making pro-
cess for implant placement is often based on the clinician’s
experience rather than a thorough evaluation of the
biomechanics involved.2,3

Assessing the biomechanical performance of the peri-
implant bone is critical to the success of a treatment plan.
Finite element analysis can simulate the biomechanical
behavior between the implant and jawbone before surgery
and provide valuable information for treatment planning.4

Additionally, optimization techniques can be used with
finite element analysis to find a biomechanically optimized
all-on-4� configuration based on patient-specific condi-
tions, thereby improving post-operative stability and
reducing the risk of complications.5 An integration of these
engineering techniques can be a useful tool to provide
valuable insights and assist clinicians in making a more
informed decision for the treatment.

When planning an all-on-4� treatment, it is important to
consider both the placement of implants and the design of
the prosthetic framework. While the former has been
extensively discussed in literature,4,6e13 the latter has
received less attention.

Topology optimization is a technique often used in
structural engineering to find the optimal shape of a
structure while adhering to specific constraints, loads, and
target volumes. This method helps minimize material usage
while still maintaining desired structural stiffness.
Recently, topology optimization has also been applied in
dentistry to optimize dental prosthesis and implant designs.
By combining finite element analysis (FEA) and topology
optimization techniques, it is possible to improve the
structural performance of dental prosthetics and implants
in the surrounding bone.14e17 FEA provides accurate simu-
lations of complex mechanical behavior for the calculation
of objective function. However, the computation cost
associated with this combined method can be prohibitive,
making it difficult to use for real-time clinical decision
support.

A machine learning or deep learning model can be
trained to replace the role of FEA in an optimization pro-
cess. Artificial neural networks (ANNs) are advanced
computational models that take inspiration from the
structure and functionality of human brains. They are
composed of interconnected nodes that work together to
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simulate the learning and decision-making processes
observed in biological systems. ANNs gained popularity in
the late 1980s with the rediscovery of back-propagation
algorithms, which are highly regarded for their ability to
recognize patterns and generalize. ANNs are superior to
logistic regression in modeling complex nonlinear relation-
ships and have advanced to meet challenges beyond
traditional statistical methods, such as computer vision and
speech recognition. Some studies have successfully trained
ANNs to predict the objective function, saving computation
costs in every optimization iteration.18e21

Convolutional Neural Networks (CNNs) are a type of deep
neural network that excel in processing structured grid
data, such as images, due to their unique architecture
inspired by the human visual system. Through the use of
convolution and pooling layers, CNNs can automatically
identify and learn spatial feature hierarchies, ranging from
simple edges to complex objects. This remarkable ability
has revolutionized the field of computer vision and led to
breakthroughs in image and video recognition, medical
image analysis, image classification, and autonomous
driving systems. CNNs have also been implemented to
speed up traditional topology optimization methods.22e30

For instance, Lee et al. proposed the use of a FEA-based
CNN for fast prediction of compliances for topology opti-
mization,30 while Xiang et al. presented a CNN-based
approach for 3D structural optimization, allowing direct
prediction of optimal structures without the need for iter-
ative processes. These studies show the potential of ma-
chine learning techniques in finding optimal structural
designs. However, the designs shown in these studies were
simple 2D or 3D cantilever structures. For structural opti-
mization of an all-on-4� prosthetic framework, more
advanced techniques are needed to overcome challenges
such as irregular jawbone geometries and interactions be-
tween multiple parts, which increase the complexity of the
finite element model.

In this paper, we introduce a novel method that opti-
mizes the structure of an All-on-4� prosthetic framework
using CNN and bidirectional evolutionary structural opti-
mization (BESO).31 Firstly, we created an FEA model that
reflects the use conditions of the All-on-4� treatment on a
realistic jawbone. Then, we developed an automated
process for generating FEA data and trained a CNN to
perform non-iterative structural optimization. Finally, we
evaluated the proposed method for its accuracy, versa-
tility, and efficiency. Our approach can assist dental pro-
fessionals in making informed decisions during the planning
stage of All-on-4� treatment based on biomechanical
considerations.
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Materials and methods

Workflow of this study

We have developed a deep learning model called BESO-Net,
which enables the prediction of the optimal structure of an
all-on-4� prosthetic framework given the jawbone and
implant placement without going through the iterative
evolution process.

The development was divided into three stages. First,
we created an FEA model using ABAQUS 2017 (Dassault
Systems, Johnston, RI, USA) to simulate the biomechanical
behavior of an all-on-4� treatment plan. The BESO was
performed to iteratively run instances of FEA, and output
data fields of FEA were collected to train a CNN (i.e., BESO-
Net). Given a set of design parameters, the trained BESO-
Net would be able predict the optimal shape of a prosthetic
framework. Finally, we evaluated the performance of
BESO-Net by comparing its results with the traditional BESO
process in terms of prediction accuracy and generalization
capability. A complete flowchart of this study is shown in
Fig. 1.

All the computation required for running simulations and
CNN model training was performed on a workstation PC
with an Intel Xeon W-2223 CPU at 3.60 GHz, an NVIDIA
Quadro RTX4000 with 8 GB GPU, and 64 GB of memory.
Figure 1 Flowchart of proposed approach. BESO: bidirectional ev
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Finite element modeling

A standard mandible model (SMM) was reconstructed based
on a series of CBCT images from a subject (IRB No. A-ER-
110-003) and further processed using Geomagic Studio 12
(3D Systems, Morrisville, NC, USA) to repair geometry and
smoothen the surfaces to ensure the success of meshing in
FEA. The SMM model was used as a baseline to create var-
iations by adjusting the heights of different alveolar ridges,
resulting another five types of mandibular models,
including mesial-side high (MH), distal-side high (DH), right-
side high (RH), left-side high (LH), and mesial-side low (ML),
as shown in Fig. 2.

The implant design was based on the multi-unit abut-
ment (Nobel Biocare, Kloten Switzerland) widely used in
the All-on-4� treatment. The geometric parameters of the
implants included length (l ), diameter (d ), and tangent
inclination angle (fT ), as shown in Fig. 3A. To facilitate the
FEA, the 3D mandibular model underwent surface smooth-
ing, crack repair, and geometric simplification. A coordi-
nate system was defined by aligning the XY plane with the
occlusal plane (Fig. 3B), and twelve points were then
manually selected on the alveolar ridge surface to fit a
curve of the arc, which allows the implants to be placed on.
The angular position of an implant on the arc can be
denoted by q.
olutionary structural optimization. FEA: finite element analysis.



Figure 2 Standard mandibular model (SMM) and five modi-
fied types, which are mesial-side high (MH), distal-side high
(DH), right-side high (RH), left-side high (LH), and mesial-side
low (ML).

Figure 3 Design parameters of implants (A) and angular
position (q) of implant placement on jawbone (B).

Figure 4 Assembled geometric model that includes
jawbone, four implants, and framework structure with tita-
nium alloy prosthetic framework as design region (in red) and
prosthetic crown as non-design region (in blue). (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the Web version of this article).
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The initial structure of the prosthetic framework was
constructed in two steps, as shown in Fig. 4. First, four
implants and abutment teeth were created and positioned
according to input implant parameters. A 6 mm � 4 mm
titanium alloy prosthetic framework (red region) was then
generated on top of the four implants. Next, a layer of PEEK
material is extended 6 mm upward and 2 mm on each side
of the framework to simulate the prosthetic crowns (blue
region). The volume of the prosthetic framework was
defined as the design region, where material substitutions
were allowed during the evolutionary optimization process
of BESO.

The region 38 mm above the occlusal plane of the
mandible model, corresponding to the condylar region, was
2143
fully fixed to mimic the stabilizing effect of the TMJ. To
account for incomplete bone integration after implanta-
tion, the contact between the implants and the bone was
modeled with friction (mZ 0.3). The interface between the
prosthetic framework and implants was fully bonded. A
load condition based on previous research was used to
simulate maximum occlusal forces.32 Therefore, pressure
loads of 525 N, 110 N, and 120 N were applied to the lo-
cations of posterior molars, premolars, and anterior teeth
over circular areas with radii of 2.1 mm, 1 mm, and 1.1 mm,
respectively (Fig. 5).

All materials were assumed to be homogeneous and
isotropic. The prosthetic framework were composed of ti-
tanium alloy (Tie6Ale4V) and polyetheretherketone
(PEEK), while the implants were made of titanium alloy.
The mandible was represented as a composite structure
consisting of the outer cortical bone and the inner cancel-
lous bone. The material properties of all parts are listed in
Table 1. The model was meshed using C3D4 elements, a
convergence study was conducted to assign the mesh size
of mandible as 2 mm, peri-implants area as 0.25 mm, and
prosthetic framework as 1 mm, resulting in 523,647 ele-
ments and 199,925 nodes.

Bidirectional evolutionary structural optimization
algorithm

BESO iteratively analyzes the sensitivity of finite elements
and determines whether to retain or replace them in order
to minimize the average compliance of the structure, which
can be expressed mathematically as follows.33



Figure 5 Finite element model with specified boundary
condition and loading.

Table 1 Material properties.

Material Young’s modulus
(MPa)

Poisson’s
ratio

Cortical bone 14,000 0.3
Trabecular bone 1400 0.3
Tie6Ale4V 110,000 0.35
Polyetheretherketone

(PEEK)
3000 0.36

Table 2 Architecture of BESO-Net.

Type Patch size/Stride Input size

Convolution 3/2 25,000 � 8
Convolution 3/1 12,499 � 4
Conv padded 3/1 12,497 � 4
Pool 3/2 12,497 � 8
Convolution 3/1 6248 � 8
Convolution 3/2 6248 � 10
Convolution 3/1 6246 � 24
Inception 3 � Inception module 3122 � 24
Inception 3 � Inception module 1561 � 48
Inception 3 � Inception module 780 � 96
Pool 3 780 � 128
Flatten 128
Sigmoid Classifier 25,000 � 1

BESO: bidirectional evolutionary structural optimization.
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minimize : CZ
1

2
uTKu Eq1

Subject to : V� �
XN
iZ1

VixiZ0 Eq2

xiZxmin or 1 Eq3

where C represents the objective function, which is the
average compliance of the structure. K is the global stiff-
ness matrix, u is the displacement vector, Vi is the volume
of a single element, and V) is the predetermined volume of
the structure, known as the volume fraction. The param-
eter N denotes the total number of elements in the struc-
ture, while the design variable xi denotes the relative
density of the ith element. Setting xi to 1 indicates a solid
element, while xmin typically represents the density of a
void element and is set to 0.001.

This study considered two non-void materials, and the
material interpolation was performed using Eq. (4), where
E1 and E2 represent the Young’s moduli of the two mate-
rials, and p denotes the penalty exponent, which is usually
set to 3. It is important to note that E1 > E2s0. The
calculation of the element sensitivity (ai) is formulated as
Eq. (5).
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We developed ABAQUS Python scripts to automatically
configure the FEA model’s boundary conditions, loads,
material properties, and meshing. By manually importing
the jawbone model and assigning the implant design pa-
rameters, the required finite element models were
created. Based on a basic BESO program,34 we developed
new ABAQUS Python scripts specifically for BESO optimiza-
tion in the context of dental implant abutment design.
These scripts required only the input of the target volume,
material properties, volume fraction evolution rate, and
convergence criteria to automatically initiate the BESO
optimization process.

Development of bidirectional evolutionary
structural optimization neural network

We modified the model architecture based on the Inception
V3 network to create a one-dimensional CNN,35 as shown in
Table 2. The Adaptive Moment Estimation (ADAM) optimizer
was used, and the loss function was binary cross-entropy
because the model output is composed of 0s and 1s to
represent the shape matrix of the support structure. The
batch size was set as eight, and dropout and early stopping
techniques were incorporated to improve the generaliza-
tion ability of the model. The hyperparameters were sum-
marized in Table 3.

The input of BESO-Net had eight channels including
tensile strain (in x, y, and z directions), shear strain (in x, y,
and z directions), initial shape of the framework structure,
and difference in volume fraction. Each channel was in the
form of 1-dimensional matrices with a length equal to the
number of elements.

The training set involved four types of jawbone (SMM,
DH, MH, and RH) configured with three random implant



Table 3 Hyperparameters used to train BESO-Net.

Optimizer

Optimizer ADAM
Learning rate 0.0001
First moment estimate 0.9
Second moment estimate 0.999

Training

Batch size 8
Epoch 1000
Early stopping patience 15
Early stopping monitor Validation loss
Loss function Binary cross entropy

BESO: bidirectional evolutionary structural optimization. ADAM:
Adaptive Moment Estimation.
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placements, resulting in 12 FEA model instances. FEA data
was generated by performing BESO for each of these model
instances with the target volume set from 0.8 to 0.4. Table
4 shows the amount of data collected at different values of
target volume. During the training process, the data was
randomly divided into a 70% training set and a 30% valida-
tion set. The performance of the BESO-Net was evaluated
by the validation set to measure the effectiveness and ac-
curacy of the training process.

The generalization test evaluated the BESO-Net’s
adaptability to three types of unseen conditions (jawbone,
loading, and implant placement). First, the two jawbone
models, LH and ML, which were not included in the training
set, were used to test the BESO-NET. Secondly, the load
changes were introduced to the SMM jawbone by modifying
the two pressure loads applied at the areas of posterior
molars from 525 to 50 N and the two applied at the areas of
premolars from 110 to 55 N (Fig. 5), while the one applied
at the area of anterior teeth was unchanged. The signifi-
cant changes in loads were specified to ensure an effective
generalization test, but not intended for matching partic-
ular settings found in the existing literature. Finally, new
implant placements were tested on the SMM and DH jaw-
bones. The optimal structures obtained by BESO-NET were
compared with the results of BESO, which iteratively per-
formed FEA and discovered the optimal design (FEA-BESO).
The differences in shape and average compliance were
calculated, where the shape error is the discrepancy in the
number of elements preserved as hard material between
the optimal designs found by BESO-NET and FEA-BESO
divided by the total number of elements in the frame-
work structure.
Table 4 Amount of data collected for training BESO-Net.

Target volume Quantity of data

0.4 5760
0.5 4137
0.6 2606
0.7 1520
0.8 971

BESO: bidirectional evolutionary structural optimization.
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Results

The training process of BESO-Net reached convergence at
epoch 83 when the loss was 0.1279 (Fig. 6). The early
stopping mechanism terminated the training at epoch 98
because the validation loss of did not decrease for 15
epochs. The total training time was 19.6 min.

During the testing phase, BESO-Net was evaluated on
five test cases which included two jawbones (LH and ML)
that were unseen, new implant placements on SMM and DH
jawbones, and modified load conditions (on SMM). The re-
sults showed that the errors in compliance between BESO-
Net and FEA-BESO were within 2% and the shape errors
ranged from 4.22% to 17.55% (Table 5). Furthermore, the
compliance of the optimal structure predicted by BESO-Net
demonstrated the same trend as the FEA-BESO results in
response to the target volume change.

When the target volume was greater than 0.6 (40%
reduction in material), both methods achieved the goal
without significantly affecting the compliance of the
structure. This means that the compliance was similar to
the initial structure (values in the column of target
volume Z 1). However, when the target volume was set to
0.5 or lower (more than 50% material reduction), the
compliance of the structure slightly increased, indicating
that the structural strength would not be maintained at the
same level as the initial design.

This study assessed the accuracy of the BESO-Net in
predicting the optimal shape of a framework by comparing
it with FEA-BESO. The evaluation was based on the differ-
ence between the optimal shapes obtained by both
methods, which included the incorrect assignment of a hard
material element as a soft one, and vice versa. The BESO-
Net still showed an 88.7% accuracy rate in predicting the
optimal shape using this more comprehensive calculation of
error. Results showed that the prediction accuracy was
higher when the target volume was set at a mid-level range
of 0.6e0.7, but less accurate when the target volume was
set at low or high levels.

The optimized structures for the five scenarios are
depicted in Fig. 7, which shows only the preserved hard
Figure 6 Loss evaluated on training and validation set during
training process.



Table 5 Results of the five generalization test cases, including two unseen jawbones, left-side high (LH) and mesial-side low
(ML) models (#1 & #2), new implant placements on standard mandibular model (SMM) and distal-side high (DH) jawbones (#3 &
#4), and modified load conditions (#5). Unit of compliance is N$mm.

Case Result item Target volume

1 0.9 0.8 0.7 0.6 0.5 0.4

1 Compliance FEA-BESO 512.7 512.8 513.4 514.9 517.2 521.9 529.6
BESO-Net 512.7 517.3 513.7 515.6 518.4 522.5 529.2
Error (%) e 0.87 0.06 0.14 0.22 0.11 0.08

Shape difference # of elements 0 3929 1281 2052 2649 3005 3364
Error (%) 17.9 5.84 9.35 12.07 13.69 15.32

2 Compliance FEA-BESO 411.8 412.1 413.1 415.2 418.3 423.5 432.8
BESO-Net 411.8 416.5 413.4 415.7 419.7 425.1 433.2
Error (%) e 1.07 0.09 0.12 0.33 0.37 0.07

Shape difference # of elements 0 3549 1609 2399 2754 3200 3228
Error (%) 17.55 7.96 11.86 13.62 15.82 15.96

3 Compliance FEA-BESO 305.9 306.1 306.5 307.6 309.6 314 322.8
BESO-Net 305.9 306 306.7 307.7 309.8 314.7 323.9
Error (%) e 0.01 0.01 0.01 0.06 0.2 0.35

Shape difference # of elements 0 992 1295 1631 1868 2419 2757
Error (%) 4.38 5.72 7.21 8.26 10.69 12.19

4 Compliance FEA-BESO 263.3 263.4 263.8 264.9 267 271.9 281
BESO-Net 263.3 268.5 263.9 265 267.6 273.8 284.4
Error (%) e 1.93 0.03 0.04 0.2 0.68 1.21

Shape difference # of elements 0 3954 982 1520 1928 2405 2836
Error (%) 17.01 4.22 6.54 8.29 10.35 12.2

5 Compliance FEA-BESO 25.5 25.5 25.6 25.6 25.6 25.7 25.9
BESO-Net 25.5 25.6 25.6 25.6 25.6 25.7 25.9
Error (%) e 0.23 0.01 0 0.04 0.1 0.12

Shape difference # of elements 0 3919 1299 2104 2712 3103 3418
Error (%) 17.46 5.79 9.37 12.08 13.82 15.23

Y.-C. Chen, K.-H. Wang and C.-L. Lin
material elements. It is evident that both methods retained
the hard material in comparable regions for the optimal
structure. However, the LH and ML cases exhibited more
apparent shape errors, which we will discuss in a later
section.

Compared with FEA-BESO, the computation efficiency of
BESO-Net was significantly superior. With the target volume
set to 0.4, FEA-BESO performed 55 iterations to converge to
the optimum, which required approximately 6 h and 35 min
of computing time. For the same setting, BESO-Net
required no iteration and directly predicted the optimum
in 45 s.

Discussion

The BESO-Net training set primarily consisted of FEA data,
and its output shape data requires importing to an FEA
software program for post-analysis. To facilitate data con-
version between the BESO-Net and FEA processes, we pro-
posed using one-dimensional matrices as the input and
output data format. However, in more complex models,
these matrices may contain a very long sequence of data,
which could hinder the CNN’s ability to capture long-range
dependencies in the dataset due to the fixed size of the
convolutional kernels. This limitation might have led to
discrepancies in shape at the right side of the anterior
teeth area for the LH and ML models (Fig. 7), where FEA-
BESO completely replaced the hard materials, but BESO-
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Net preserved some hard material fragments. In the
future, research could develop methods that transform the
data into three-dimensional matrices and use a three-
dimensional CNN architecture to train the model and
address this limitation. However, the development of such
a method should also consider the efficiency of data con-
version between CNN and FEA.

This study selected two types of FEA output fields, which
were tensile and shear strains, to train the BESO-Net and
obtained satisfactory prediction results. However, it is
important to recognize that other factors such as stress and
displacement should also be considered in structural opti-
mization. By examining the strain distribution in the ma-
terial (Fig. 8), it is evident that BESO-Net tends to replace
elements with lower strain values. For future studies,
incorporating additional types of FEA data should be
considered to enhance the model’s accuracy. However,
challenges associated with inconsistent data lengths and
increased data size would need to be addressed during
training.

This study has some limitations that need to be consid-
ered. Firstly, the SMM model was a simplified jawbone
(e.g., the condyle region), and the other variations with
adjusted height on one side were produced. Therefore,
these models may not fully represent the different jawbone
morphologies found in real patients. Additionally, the im-
plant’s geometry was simplified by only maintaining pri-
mary design parameters, and eliminating the threads. This



Figure 7 Comparison of optimal shapes obtained by FEA-BESO and BESO-Net. FEA: finite element analysis. BESO: bidirectional
evolutionary structural optimization. SMM: standard mandibular model; ML: mesial-side low; DH: distal-side high.

Figure 8 Optimal structure (generalization test case 2) predicted by BESO-Net and its strain contour obtained through post-
analysis. BESO: bidirectional evolutionary structural optimization.

Journal of Dental Sciences 19 (2024) 2140e2149
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Table 6 Results of additional generalization test for changes in materials. Unit of compliance is N$mm.

Result item Target volume

1 0.9 0.8 0.7 0.6 0.5 0.4

Compliance FEA-BESO 265.2 265.2 265.3 265.5 265.7 266.1 266.7
BESO-Net 265.2 265.9 265.3 265.6 265.9 266 266.6
Error (%) e 0.26 0 0.05 0.07 0.02 0.04

Shape difference # of elements 0 3830 876 3428 3677 1933 1907
Error (%) 17.41 3.98 15.58 16.71 8.79 8.67

FEA: finite element analysis. BESO: bidirectional evolutionary structural optimization.
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simplification may lead to unrealistic stress and strain dis-
tributions at the bone-implant interface, but it would be
valid as the focus of this study was on the strains that occur
in the framework material.36 Finally, the FEA models used
in the study did not consider the actual forces exerted by
the muscles during biting and chewing. Future research
should aim to create more realistic FEA models by incor-
porating the jawbone geometry of actual patients and
considering various load cases. This will enable a more
accurate simulation of real-world scenarios.

The BESO-Net predicted an optimal structure that had
compliance values closely matching the optimization re-
sults of FEA-BESO (Table 5), even when there were changes
in loading conditions. We conducted additional tests to
evaluate whether BESO-Net could maintain high prediction
accuracy when new materials were considered for the
framework and crown. We assigned zirconia for the
framework and ceramic for the crown.17 The results (Table
6) showed that the errors in compliance and shape were
consistent with the previous test cases (Table 5), indicating
that BESO-Net is capable of adapting to changes not only in
jawbone, implant placement, and load but also in the
material used.

In designing the All-on-4� prosthesis, it is important to
consider various critical indicators in addition to the overall
structural strength and material use for the framework.
One of these indicators is the biomechanical performance
of the prosthesis, which includes the displacement and
stresses in the structure. It is also important to consider the
mechanical behavior of bone, implants and their interfaces
for patient comfort, potential side effects, or complica-
tions after treatment. To include these parameters in the
optimization process, a combined objective function or
new constraints can be added to the BESO process when
generating data for training BESO-Net.

Since the optimized denture framework will be sup-
ported by the implants, it is necessary to develop another
optimization process to determine the best implant place-
ment that provides maximum support while minimizing the
risk of mechanical damage. An FEA model can be estab-
lished to simulate how the All-on-4� framework interacts
with implants. By defining objective functions and implant
design parameters, such as geometry and position, it is
possible to optimize the implant placement for maximal
stability and longevity of the All-on-4� system. Similar to
the proposed method, an FEA-informed deep learning
model can be developed to replace the time-consuming FEA
and achieve real-time optimization for implant placement.
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The development of the Python scripts that automated
finite element modeling process can be a valuable tool for
efficient data collection and future trainings. The process
described in this paper demonstrated that the automation
scripts developed are applicable to complex 3D models like
the All-on-4� model investigated in this study. The method
facilitated the inclusion of FEA in the shape data from all
iterations in the BESO process, which enhances the accu-
racy of predicting the optimal framework design.

In conclusion, this study introduced an novel optimiza-
tion approach, known as BESO-Net, for designing All-on-4�
prosthesis. The approach integrated an FEA-based CNN with
BESO to ensure optimal compliance of the framework
structure while reducing material use. It has been proven
that the approach can adapt to the changes in jawbone,
implant, load, and material settings. The optimization time
for BESO-Net was only 45 s, which was much less than the
traditional topology optimization that required 6 h and
35 min. Future studies can include real patient data and
additional FEA data fields to train the BESO-Net and
conduct in-vitro experiments to validate its feasibility. A
standard approach for verifying and validating numerical
models used in medical device applications can be con-
ducted to assess their credibility. By accurately defining the
questions of interest and the context of use, in-vitro ex-
periments can be designed to collect solid validation evi-
dence for the applicability of the model.37 These efforts
could lead to significant advances in prosthesis design and
improved clinical outcomes for patients.
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4. Gümrükçü Z, Korkmaz YT, Korkmaz FM. Biomechanical evalu-
ation of implant-supported prosthesis with various tilting
implant angles and bone types in atrophic maxilla: a finite
element study. Comput Biol Med 2017;86:47e54.

5. Haroun F, Ozan O. Evaluation of stresses on implant, bone, and
restorative materials caused by different opposing arch ma-
terials in hybrid prosthetic restorations using the all-on-4
technique. Materials 2021;14:4308.
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