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Abstract

Metabolic dysregulation within the tumor microenvironment (TME) is critical to the process of 

tumorigenesis in various cancer types. Thyrocyte metabolism in papillary and anaplastic thyroid 

cancer, however, remains poorly characterized, and studies analyzing the role of 

multicompartment metabolism in thyrocyte oncogenesis are sparse. We present a review of the 

current knowledge on cellular metabolism in non-cancerous and cancerous thyroid tissues, 

focusing on the monocarboxylate transporters MCT1 and MCT4, and on a transporter of the outer 

mitochondrial membrane TOMM20. Understanding the metabolic phenotype of tumor cells and 

associated stromal cells in thyroid cancer can have profound implications on the use of biomarker 

staining in detecting subclinical cancer, imaging as it relates to expression of various transport 

proteins, and therapeutic interventions that manipulate this dysregulated tumor metabolism to halt 

tumorigenesis and eradicate the cancer. Future studies are required to confirm the prognostic 

significance of these biomarkers and their correlation with existing staging schemas such as the 

AGES, AMES, ATA and MACIS scoring systems.
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Introduction

Thyroid cancer is the most common endocrine malignancy in the United States, with the 

fifth highest incidence of all cancers affecting females [1] and the highest prevalence of any 

malignancy affecting women under 35 years old. Thyroid cancer has increased in incidence 
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by 5.4-6.5% per year between 2006 and 2010 [1]. Some are predicting it to become the third 

most common cancer among American women by 2019, surpassing uterine and colorectal 

cancers [2].

Primary cancer is the most common type of thyroid malignancy, and papillary thyroid cancer 

(PTC) is the most common histologic type, representing 90% of all thyroid malignancies [2]. 

Other subtypes include: follicular, medullary, and anaplastic. Prognosis depends greatly on 

histologic type. Estimated 5-year survival rate for PTC is 98% [2], compared to anaplastic 

thyroid carcinoma [3], which has a median survival of only 3-5 months [4]. This prognostic 

disparity emphasizes the importance of classifying the type of thyroid cancer as the primary 

step in assessment, which is usually diagnosed via fine needle aspiration (FNA). However, 

cytologic patterns determined by FNA, or even histologic patterns identified by biopsy, may 

be inconclusive in some cases. Therefore, knowledge regarding the significance of various 

molecular biomarkers in different metabolic compartments of the tumor can aid in thyroid 

cancer diagnosis.

Despite a 98% 5-year survival rate, a recent study by Applewhite et al. found that quality of 

life of thyroid cancer survivors was worse than expected; it was similar to patients with 

colon cancer, glioma, and gynecologic cancer, and worse than patients with breast cancer 

[5]. Furthermore, some cases of well-differentiated thyroid cancer are significantly more 

aggressive than others, making it difficult to predict a patient's course. This heterogeneity of 

thyroid cancer behavior and unfavorable quality of life for survivors emphasizes the 

importance of discovering predictive and prognostic biomarkers for thyroid cancer. Once 

corroborated by future studies, this information can ultimately guide management and 

impact surgical considerations in patients who are clinically in a gray area of whether to 

proceed with total thyroidectomy, lobectomy, or, in the case of an indeterminate cancer 

diagnosis, more conservative measures like close observation and follow-up ultrasounds [6]. 

In this review, we discuss metabolism in thyroid cancer with an emphasis on our current 

knowledge of metabolism in the different compartments that constitute the tumor.

General concepts in tumor metabolism

Dysregulated cellular metabolism has been heralded as one of the “hallmarks of cancer,” 

which emphasizes its crucial role in oncogenesis [7]. Cancer cells in particular have high 

bioenergetic requirements needed to promote and maintain cell growth. Carcinoma cells in 

culture have demonstrated a preferential use of glycolysis with generation of lactate 

compared to the more energy efficient pathway of oxidative phosphorylation (OXPHOS), 

which generates more ATP per molecule of glucose than glycolysis [8-12]. This seemingly 

counterintuitive use of glycolysis may confer a growth and survival advantage, possibly due 

to increased carbon utilization, hypoxic adaptation, and increased rate of ATP production 

[8,9,13-16]. This altered metabolism is coined the Warburg effect, which suggests that 

cancer cells display increased glucose uptake and lactate production irrespective of oxygen 

availability [17]. This unique glycolytic feature of tumors is the basis of fluoro-2-deoxy-

glucose positron emission tomography (FDG-PET) imaging.

New evidence, however, has shed light on the role of aerobic glycolysis in tumorigenesis, 

and the Warburg effect has recently become subject to scrutiny, leading to conception of the 
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“reverse Warburg effect.” Aerobic glycolysis occurring in the cancer-associated fibroblasts 

(CAFs), as opposed to the tumor cells themselves, results in the production of high-energy 

metabolites such as lactate and pyruvate. Cancer cells at the leading edge of growth exploit 

nearby glycolytic CAFs to utilize these metabolites, which are ultimately transferred to 

epithelial cancer cells via inflammation and high levels of reactive oxygen species (ROS) 

acting as second messengers. Lactate and pyruvate then undergo mitochondrial metabolism, 

resulting in increased ATP production, which promotes tumor progression. This shift toward 

aerobic glycolysis occurring in the CAFs and the coupling of different tumoral metabolic 

compartments is coined the “reverse Warburg effect” [18-22]. This interplay between 

synergistic metabolic compartments facilitates cancer cell anabolism via the catabolic 

activity of adjacent tumor fibroblasts (Figure 1) [23].

There has been an increased emphasis on multi-compartment metabolism and metabolic 

coupling between compartments in the characterization of tumor metabolism. For instance, a 

two-compartment model of tumor metabolism has been set forth wherein carcinoma cells 

secrete hydrogen peroxide to induce oxidative stress in tumor fibroblasts or stromal cells 

[22]. These fibroblasts in turn increase their production of ROS, which induces aerobic 

glycolysis and autophagy, resulting in increased levels of intermediate catabolites such as 

lactate, glutamine and ketone bodies [18]. As fibroblasts release these catabolites into the 

tumor microenvironment, OXPHOS is stimulated in cancer cells [22,24]. Metabolic 

coupling with glycolysis occurring in some cancer cells and OXPHOS in other cells 

promotes proliferation and resistance to apoptosis [21].

More recently, a three-compartment model of metabolism has been proposed in normal 

mucosa and hand and neck squamous cell carcinoma (HNSCC) by Curry et al. In normal 

mucosa, a hyperproliferative and mitochondrial-rich basal stem cell layer exists that is 

positive for markers Ki-67, TOMM20, COX, and MCT1. In contrast, the underlying 

connective tissue and the differentiated epithelial cells are non-proliferative and 

mitochondrial-poor, making them both negative for MCT4 expression. In HNSCC tumors, 

the poorly differentiated cancer cells are hyperproliferative (Ki-67+), mitochondrial-rich 

(TOMM20+/COX+) and use mitochondrial fuels (MCT1+). In contrast, the tumor stroma 

and well-differentiated cancer cells, the remaining 2 compartments, are non-proliferative and 

mitochondrial poor. A subset of patients demonstrated MCT4 positivity in these non-

proliferating compartments, correlating with a higher disease stage or lower disease free 

survival [8].

New evidence has identified lactate transporters as being essential to this picture of multi-

compartment metabolism. MCT1 is a high-affinity transporter of lactate, which mediates 

influx into the cell; MCT4 is a low-affinity transporter of lactate that mediates efflux of 

lactate from cells. These transporters couple cancer cells so that hypoxic cells maintain 

functioning glycolytic metabolism while aerobic tumor cells recycle and utilize lactate and 

other high-energy substrates produced by them [13]. It is believed that cells with decreased 

lactate levels have high lactate uptake via MCTs, allowing them to generate large amounts of 

ATP via OXPHOS [25,26]. These transporters may represent possible therapeutic targets. 

MCT4 inhibition by N-acetyl-cysteine, for instance, halts mitochondrial biogenesis in cancer 

cells but not in normal epithelial cells, ultimately starving cancer cells of required nutrients 
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[27]. MCT1 inhibition prevents uptake of lactate, thereby forcing aerobic cells to use 

glucose and decreasing availability to hypoxic cells. α-cyanohydroxycinnamate, a MCT1 

inhibitor, has been shown to slow tumor growth and potentiate the effect of radiotherapy in 

MCT1-expressing tumors in mice [13,28].

General concepts in the tumor microenvironment

Tumorigenesis requires multiple elements as set forth by Hanahan and Weinberg: limitless 

replicative potential, self-sufficiency in growth signals, insensitivity to anti-growth signals, 

ability to evade apoptosis, increased angiogenesis, and invasion and metastasis [29]. In order 

to facilitate these metabolic requirements, solid tumors often reprogram and manipulate their 

surrounding “condemned tissue,” composed of cancerous cells, adjacent epithelial, stromal, 

and immune cells and their surrounding matrix. Collectively, these components make up the 

TME, which serves as a conduit for the cytokine signaling needed to meet the cancer cells' 

high metabolic requirements. Various signaling pathways, such as NF-kb, HIF-1α, and 

VEGF continue to be explored as therapeutic targets in the TME [30-32]. In HNSCC, for 

instance, tumorigenesis has been shown to be driven by signaling pathways such as EGFR, 

p53, p16, IGFR, cyclin D1, HPV-E6-E7, PI3K-AKT-mTOR, NFkB and HIF-1α [33].

An association between chronic inflammation and increased susceptibility to oncogenesis 

has been documented for several years, with 20% of all tumors exhibiting persistent low-

level inflammation in the TME [34,35]. This has led to the investigation of the roles of 

various inflammatory mediators and cytokines in cancer cells via intrinsic and extrinsic 

pathways. The intrinsic pathway begins with activation of oncogenes and/or inactivation of 

tumor-suppressor genes, and these transformed cells, upon activation by oncogenic signaling 

pathways, produce inflammatory molecules to generate an inflammatory microenvironment 

in tumors. On the other hand, in the extrinsic pathway, inflammatory or infectious conditions 

predispose to cancer development. Both pathways converge to result in activation of 

transcription factors that coordinate the production of inflammatory mediators that recruit 

and activate various leukocytes, contributing to the cancer-related inflammatory 

microenvironment [36].

Tumor metabolism and the microenvironment in thyroid cancer

Thyroid carcinogenesis exhibits both intrinsic and extrinsic pathway activity. The intrinsic 

pathway is activated by the most frequent genetic alterations found in PTCs, including RET/

PTC, HRAS, or BRAF. These genetic alterations activate, in a RAS-BRAF-MAPK-

dependent manner, transcription of proinflammatory molecules like VEGF-A, CXCL1/

GRO-α, CXCL10/IP-10, and CXCL8/IL-8, which can act autocrinously or paracrinously to 

support cancer cell growth and survival [37,38]. The extrinsic pathway involves different 

immune cells present at the tumor stroma and at the invasive front of thyroid cancer. For 

instance, high T-regulatory cell density correlates with thyroid cancer aggressiveness, and an 

increased number of immunoregulatory natural killer cells has been demonstrated in PTC 

compared to normal tissues [39,40]. Furthermore, is has been shown that the degree of 

lymphocyte and immature dendritic cell infiltration correlated with better prognosis in PTC 

[41,42], whereas increased macrophage density in poorly differentiated thyroid carcinoma 

correlated with invasive features and worsened prognosis [43]. Jung et al. found that tumor-
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associated macrophage density correlated with more aggressive subtypes, like anaplastic 

thyroid carcinoma [44]. More recently, a review by Visciano et al. discussed the contribution 

of mast cells to the epithelial-mesenchymal transformation (EMT) of thyroid cancer cells. 

They discovered that mast cell-derived mediators like CXCL1/GRO-α and CXCL10/IP-10 

are involved in stimulation of cell proliferation, and CXCL8/IL-8 induces/enhances the 

EMT. Mast cell density was found to correlate with extrathyroidal extension and 

invasiveness, opening avenues for therapeutic intervention of these mast cell mediators [34]. 

Lastly, mast cells were significantly more abundant in the intratumoral and peritumoral 

regions of follicular variant of PTC compared to adenoma, suggesting its usefulness in 

distinguishing between benign and malignant forms of follicular thyroid lesions [42].

This paradigm of shuttling high-yield metabolites from stromal fibroblasts to fuel cancer cell 

growth and metastasis has resulted in increased research of various transport proteins. 

Among these transport proteins are monocarboxylate transporters (MCT), which are a class 

of membrane bound proteins involved in the influx and efflux of small metabolites such as 

lactate, pyruvate and ketone bodies [16]. MCT4 is responsible for the export of lactate from 

CAFs. Lactate is then taken up by cancer cells via MCT1, a bidirectional transporter, and 

transported to mitochondria via a translocase of the outer mitochondrial membrane 

(TOMM20), leading to the generation of ATP via OXPHOS [45]. TOMM20 is a central 

component of the receptor complex responsible for the recognition and translocation of 

cytosolically-synthesized mitochondrial proteins and has been shown to be an indicator of 

functional mitochondrial mass and of OXPHOS activity [8,46,47]. Therefore, TOMM20, as 

well as MCT1, can be used as markers of OXPHOS, and MCT4 a marker of glycolytic 

metabolism and oxidative stress. Further, these biomarkers have been shown to have 

prognostic significance: MCT4 is associated with poor outcomes in other cancers [48], and 

in head and neck cancer specifically, MCT4+ tumor stromal cells were associated with 

higher tumor stage (p<0.03), poorer clinical outcome (tumor recurrence; p<0.0001) and 

greater FDG-PET avidity (p<0.04). MCT1 positivity, on the other hand, is prognostic in 

renal cell cancer and non-small cell lung cancer [49,50] (Table 1).

Our group previously characterized tumor metabolism in thyroid cancers specifically 

looking at TOMM20, MCT4 and MCT1. We interrogated, by IHC, non-cancerous, PTC, and 

ATC tissue for these biomarkers, and review our discoveries on the metabolic profiles of 

these tissue types. In all non-tumor thyroid tissue and multinodular goiter samples, 

TOMM20 expression was low. Fibroblasts in NCT and NG specimens demonstrated low 

MCT4 expression as well [51] (Figure 2). No NCT samples had high expression of MCT1 

(p<0.0001) [3]. In summary, IHC of NCT and NG tissue samples demonstrated low staining 

of all 3 biomarkers: stromal MCT4, cancer cell TOMM20 and cancer cell MCT1. In 

follicular adenoma specimens, all of the adenomatous thyrocytes demonstrated high 

expression of TOMM20 compared to adjacent non-tumor thyrocytes and nodular goiter 

samples [51]. The fibroblasts around the adenoma and throughout the rest of the gland 

showed low MCT4 staining. In one case, MCT4 was elevated around the adenoma, but 

negative throughout the rest of the gland [51].
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Papillary Thyroid Cancer (PTC)

All PTC thyrocytes from patients with and without advanced disease showed 

homogeneously high expression of TOMM20 throughout the tumor. Of note, there was a 

difference between intensity of staining between non-advanced and advanced PTC 

specimens, but this was not statistically significant (p=0.36) [52]. Specimens from the PTC 

group with advanced disease demonstrated higher MCT4 staining in the CAFs compared to 

PTC without advanced disease group; this difference was statistically significant (p<0.01). 

MCT1 expression was low in PTC specimens (p<0.001).

Anaplastic Thyroid Cancer (ATC)

There was significantly more TOMM20 staining in ATC compared to NCT (p<0.05) [3], and 

majority of samples also showed robust MCT1 expression.

Discussion

Current limitations in thyroid cancer diagnosis - Unmet clinical needs

Palpable thyroid nodules occur in 4-7% of the population [53-58], and 19-67% of lesions are 

found incidentally during ultrasonographic examination [6]. Management of thyroid nodules 

poses a significant challenge. Tools such as FNA cytology have helped considerably in 

differentiating benign from malignant thyroid lesions. However, this is not without 

limitations as it can be quite difficult to assess malignancy on cytology, which has 

necessitated the Bethesda criteria for risk stratification of thyroid aspirates [59]. Secondary 

to the shortcomings of thyroid FNA, many patients undergo diagnostic surgery, after which 

less than 30% of lesions are diagnosed as malignant [60]. These inadequacies of FNA have 

placed an emphasis on proteomic and genomic research in thyroid cancer. The BRAF gene 

mutation, which has been detected in 30-80% of PTC [61], has been an area of interest to 

improve the diagnostic yield in cases of indeterminate cytology. The BRAFV600E mutation 

is very specific for PTC; however, its absence cannot reliably rule out PTC [3].

Summary

Histopathological evaluation remains the gold standard in distinguishing different types of 

thyroid cancer, but is also subject to inaccuracies. For example, several morphologic 

features, such as nuclear atypia or pleomorphism, can be seen in Hashimoto's thyroiditis, 

and are not sufficient for a reliable diagnosis of malignancy [6]. Advances in IHC have 

attempted to enhance histopathologic diagnostic accuracy. One challenge of proteomic 

studies of thyroid tissue, however, is that thyroid tissue is extremely heterogeneous, with a 

broad range between the most abundant proteins, such as thyroglobulin, and the least 

abundant proteins [6]. In differentiating between follicular adenoma, follicular carcinoma, 

and the follicular variant of PTC, several biomarkers have proved to be applicable, including 

LGALS, hemoglobin, epsilon 1 (HBE1), cytokeratin-19 (CK-19), and thyroid peroxidase 

(TPO) [62]. Yet, these too are not without their diagnostic inaccuracies, as 31-55% of 

adenomatous hyperplasia could be positive for CK-19. Expression of other proteins, such as 

S100A, peroxiredoxin, and heat shock protein 70 (HSP70), were shown to be significantly 

increased in PTC specimens matched with the normal thyroid tissue from the same patients 
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[63]. Poorly differentiated thyroid carcinoma (PDTC) exhibits diffuse nuclear positivity for 

thyroid transcription factor 1 (TTF1) and focal positivity for thyroglobulin. On the other 

hand, undifferentiated thyroid carcinomas, such as anaplastic carcinoma, are by definition 

thyroglobulin negative and almost always TTF1 negative [64].

In spite of the advances made in proteomic characterization of thyroid cancer cells, 

information about how this correlates to prognosis remains indeterminate. This introduces 

different avenues to identify other biomarkers with greater prognostic yield. Among these 

biomarkers are monocarboxylate transporters MCT1 and MCT4, and a translocase of the 

outer mitochondrial membrane TOMM20. These and other markers may offer some 

diagnostic benefit in the future.

Clinical applications of thyroid cancer metabolism and future research directions

The preliminary knowledge of thyroid cancer metabolism discussed in this review may serve 

as a stepping-stone to advancements in thyroid cancer diagnosis and management. With 

further studies corroborating and expanding on our findings, biomarkers such as TOMM20, 

MCT4 and MCT1 can serve as early prognostic indicators in thyroid tissue samples of 

patients suspicious for cancer. For instance, no tumors with low fibroblast MCT4 staining 

demonstrated advanced disease or aggressive features. Furthermore, low fibroblast MCT4 

staining was associated with lower MACIS, AMES, AGES and ATA risk levels and the 

absence of extrathyroidal extension [51], which enhances the prognostic significance of 

these biomarkers.

These data may also have implications on imaging of thyroid cancers. A study by Curry et 

al. demonstrated that MCT4+ staining was specific for tumor tissue and oxidative stress 

leading to carcinogenesis, which in turn correlated with high PET avidity and poor clinical 

outcomes [8]. PET scans, initially thought to be detecting glucose uptake in cancer cells, are 

now being re-interpreted as detecting the “reverse Warburg effect” in CAFs. CAFs show the 

largest increase in glucose uptake, while cancer cells exhibit corresponding decreases in 

glucose uptake under identical co-culture conditions. These novel findings suggest that PET 

imaging detects the tumor stroma rather than the epithelial cancer cells [22]. The 

relationship between tumor glycolysis as measured by MCT4 staining and tumor uptake on 

PET scans specifically for thyroid cancer has not previously been studied and is a potential 

area for future research.

These findings may also impact surgical considerations in thyroid carcinoma. The mainstay 

treatment of PTC is surgical resection, but controversy persists over whether total 

thyroidectomy or thyroid lobectomy is more beneficial [2]. A review of 31 patients with 

PTC undergoing conservative surgery of lobectomy with isthmusectomy identified a rate of 

20% contralateral recurrence after a 20-year follow-up, and therefore supports total 

thyroidectomy as the initial therapy [65]. Assessing thyroid cancer aggressiveness by 

identifying the tumor cell metabolic phenotype can also have implications on the cost of care 

of thyroid cancer patients in the United States. Currently, the costs of management of PTC 

are substantially greater in the US compared with other countries. One study comparing 100 

US and 100 French PTC patients showed that the median cost per patients was greater in the 

US than in France ($1,069 vs. $,590, p<0.001) despite the length of stay being shorter in the 
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US (1 vs. 3 days, p<0.001). Total thyroidectomy with central neck dissection is also more 

frequently done in the US (92% vs. 35%, p<0.001). IHC staining of prognostic biomarkers 

in tissue samples of patients with suspected thyroid cancer may lead to less aggressive and 

expensive intervention later on by detecting these patients earlier on and managing them 

more conservatively [66].

Targeting the metabolism of cancer cells or their adjacent i with mitochondrial inhibitors 

such as metformin may offer a novel therapeutic strategy for PTC and ATC. Metformin is a 

mitochondrial complex I inhibitor that blocks mitochondrial-dependent ROS production and 

leads to decreased ATP production. Extensive preclinical data supports the efficacy of 

metformin as an antineoplastic agent [67], inhibiting cancer cell proliferation in gastric, 

medullary thyroid, breast, and pancreatic cancers [68-71]. Epidemiologic studies have also 

shown a decreased risk of cancer incidence and mortality from metformin use in diabetics 

[72], and clinical trials elucidating metformin's effect on head and neck squamous cell 

carcinoma are already underway. Further studies assessing its role in thyroid cancer, among 

other cancers, are needed to support these claims. A future area of interest would also be the 

development of other MCT1 and MCT4 inhibitors in order to limit tumoral ATP production 

[73].

Conclusions

We present a review of the current knowledge of metabolism in thyroid cancer, integrating 

our recent discoveries on the role of transmembrane lactate transporters MCT1 and MCT4, 

and a translocase of the outer mitochondrial membrane TOMM20. PTC samples exhibited 

TOMM20 and MCT4 positivity, whereas the more aggressive ATC demonstrated robust 

TOMM20 and MCT1 positivity. This contrasts non-cancerous and nodular goiter thyroid 

tissue, which were negative for all three biomarkers. Our characterization of the multiple 

metabolic compartments in thyroid cancer subtypes opens up avenues for therapy by 

intervening in the pathway to ATP generation with mitochondrial inhibitors like metformin. 

These novel findings also have prognostic significance that can help guide management in 

certain patients. Further studies are needed to corroborate these results and bolster the 

significance of these claims.
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Figure 1. 
Diagram depicting the reverse Warburg effect in cancer cells and stromal cells (OXPHOS = 

oxidative phosphorylation, HIF1alpha = hypoxia-inducible factor 1-alpha, MCT1 = 

monocarboxylate transporter, MCT4 = monocarboxylate transporter 4).

Gill et al. Page 13

J Thyroid Disord Ther. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Illustration depicting low MCT1 and TOMM20 in non-malignant thyroid tissue, low MCT1 

and high TOMM20 in PTC, and high MCT1 and TOMM20 in ATC.
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Table 1

Table outlining the immunohistochemical staining patterns of TOMM20, MCT1 and MCT4 in noncancerous 

and cancerous thyroid tissue specimens.

NCT/NG FA PTC ATC

TOMM20 (in thyrocytes) – + + +

MCT4 (in CAFs/stroma) – – +

MCT1 (in thyrocytes) – – +

(TOMM20 = transporter of the outer mitochondrial membrane 20, NCT/NG = noncancerous thyroid/nodular goiter, FA = follicular adenoma, PTC 
= papillary thyroid cancer, ATC = anaplastic thyroid cancer).
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