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Abstract

It is generally accepted that the gastric mucosa and adjacent mucus layer are critical in the 

maintenance of a pH gradient from stomach lumen to stomach wall, protecting the mucosa from 

the acidic environment of the lumen and preventing auto-digestion of the epithelial layer. No 

conclusive study has shown precisely which physical, chemical, and regulatory mechanisms are 

responsible for maintaining this gradient. However, experimental work and modeling efforts have 

suggested that concentration dependent ion-exchange at the epithelial wall, together with hydrogen 

ion/mucus network binding, may produce the enormous pH gradients seen in vivo. As of yet, 

there has been no exhaustive study of how sensitive these modeling results are with respect 

to variation in model parameters, nor how sensitive such a regulatory mechanism may be to 

variation in physical/biological parameters. In this work, we perform sensitivity analysis (using 

Sobol’ Indices) on a previously reported model of gastric pH gradient maintenance. We quantify 

the sensitivity of mucosal wall pH (as a proxy for epithelial health) to variations in biologically 

relevant parameters and illustrate how variations in these parameters affects the distribution of the 

measured pH values. In all parameter regimes, we see that the rate of cation/hydrogen exchange 

at the epithelial wall is the dominant parameter/effect with regards to variation in mucosal pH. By 

careful sensitivity analysis, we also investigate two different regimes representing high and low 

hydrogen secretion with different physiological interpretations. By complementing mechanistic 

modeling and biological hypotheses testing with parametric sensitivity analysis we are able to 

conclude which biological processes must be tightly regulated in order to robustly maintain the pH 

values necessary for healthy function of the stomach.
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1 Introduction

The surface of the gastric epithelium is covered in a continuous layer of mucus, an 

entangled, hydrated gel of polymeric proteins. For more than six decades, the physiology 

community has accepted that this gastric mucus layer provides a protective barrier, shielding 

the gastric wall (mucosa) from the stomach interior (lumen). In addition to preventing 

epithelial infection by most bacteria and other pathogens, the gastric mucus layer appears 

to protect the mucosa from the high acidity and digestive enzymes within the gastric cavity, 

preventing auto-digestion of the epithelium [1, 2]. In numerous mammalian species, the 

gastric mucus layer has been observed to support a massive (105-fold) hydrogen gradient 

across a relatively small length scale (several hundred μm) [3–5]. Failure to maintain this 

pH gradient across the layer (due to infection or misregulation) is associated with numerous 

pathologies, including gastric ulcers and cancer [6].

There are numerous unanswered questions regarding the mechanisms that give rise to 

the protective function of the mucus layer. Competing hypotheses exist regarding how 

acid (which is produced within crypts on the epithelial surface) is transported to the 

stomach lumen without acidifying the space immediately adjacent to the epithelium [5, 

7, 8]. Unfortunately, the experimental evidence is inconclusive, and no consensus has been 

reached [9]. It has been known for some time that the the gastric epithelium also secretes 

bicarbonate, which can neutralize dissolved hydrogen ions and contributes to the protective 

nature of the mucus layer [10, 11]. However, there has been some debate if hydrogen, 

once transported to the stomach lumen, diffuses normally back down its own concentration 

gradient towards the epithelium, and if not, what mechanisms retard its diffusive flux [12]. 

Finally, there is no clear understanding of how the secretory processes within the epithelium 

are coordinated with the physical processes governing molecular diffusion through the 

mucus layer in order to maintain healthy gastric function. In this regard, mathematical 

models provide an invaluable tool, allowing one to analyze the interplay of physical and 

biological processes that give rise to the gastric pH gradient and often providing insights that 

may be inaccessible by experimental techniques.

It is known that the ionic composition of gastric secretions can vary in response to numerous 

stimuli, including histamine levels, the recency of a meal, and the contents of the gastric 

lumen [10, 13, 14]. At least one theoretical study has analyzed a model of how acid 

secretion is controlled by nervous and endocrine stimuli [15]. However, this model lacks any 

description of spatial variation in hydrogen concentration and therefore cannot explain the 

hydrogen gradient seen in vivo. Other, more physical, models have attempted to quantify 

the rate of hydrogen flux through gastric mucus and use this to calculate the secretion 

of bicarbonate required to maintain a healthy pH gradient [16]. However, experiments 

attempting to measure rates of bicarbonate secretion disagree with the model predictions 

[17].

To date, few modeling works have attempted to couple a physical description of diffusion 

through the mucus layer to a biologically informed model of secretion at the epithelial 

surface. One such model was put forth by Lewis, et. al in [18]. The underlying 
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assumption made in this model is that hydrogen is transported from epithelium to lumen 

sequestered on mucin polymers (and therefore is not a dissolved, diffusive species during 

this process), and then released in the lumen by auto-digestion of the mucus network, 

as suggested by Schreiber, et. al [5]. A physical model of electro-diffusion through a 

complex gel-like material was coupled with non-linear boundary conditions that mimic the 

anti-port ion exchange proteins expressed by gastric epithelial cells [11]. In particular, 

bicarbonate secretion in this model functionally depends on the ionic concentration 

(chloride, specifically) in the space immediately adjacent to the epithelial surface. Analysis 

showed that such a model was capable of reproducing the pH gradient across the mucus 

layer observed in vivo. In fact, the pH gradient was maintained regardless of nearly all 

variations in model parameters, with one exception: knocking out the hydrogen/sodium 

exchange proteins in the epithelial surface (by setting a parameter to zero) destroyed or even 

inverted the pH gradient across the epithelial surface and caused the predicted wall pH to 

depend “strongly” on the other model parameters.

The sensitivity of model predictions to variation in parameters is an important issue in the 

realm of biological modeling. Lack of accuracy or precision in experimental measurements 

can lead to uncertainty in model parameter values. Quantitative assessment of the impact 

that this uncertainty has on model predictions is therefore a valuable tool. Furthermore, the 

physical quantities which model parameters represent may not be fixed in the biological 

system of interest (varying temporally, for example). The sensitivity (or insensitivity) of 

model output to variations in these values gives meaningful insight into the underlying 

biology. The analysis of [18] represents what is often termed “one-at-a-time” sampling in 

the field of sensitivity analysis: restriction to a lower dimensional hyperplane of parameter 

space. Not only do such lower-dimensional analyses risk missing important features of the 

system behavior, in some cases they may even lead to misleading results [19]. Because of 

this, we will analyize a crucial prediction of the mathematical model from [18] using a more 

robust, global measure of sensitivity.

In this work, we use Sobol’ Indices (SIs) to perform a global sensitivity analysis of the 

model of gastric epithelial pH regulation first put forth in [18]. In Section 2, we outline the 

mathematical model as well as the relevant parameters. Section 3 provides a discussion of 

the theory and calculation of SI. In Section 4, we report the SI calculated for the model 

parameters and discuss the dependence of epithelial pH distribution on various parameters. 

In particular, we see that the rates at which ion exchange events take place at the epithelial 

surface exert the strongest control over the distribution of epithelial pH, followed by the 

strength of hydrogen secretion. To further explore the dependence of mucosal pH on 

these “important” parameters, we perform several restricted Sobol’ analyses where specific 

parameters are fixed at extremal values. These parameter regimes replicate physiologically 

relevant situations (stimulated acid secretion, for example). The functional dependence of 

wall pH distribution on the remaining parameters is quantified, and their SI are calculated. 

Finally, we discuss the physiological significance of these results in Section 5.
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2 Mathematical Model

Here, we utilize a mathematical description of diffusion through a gastric mucus layer that 

was first put forth in [18]. The model was developed based on the experiments of Schreiber 

et al. to mathematically investigate the proposed mechanism of hydrogen transport proposed 

in [5]. To our knowledge this represents the only physics-based model of hydrogen diffusion 

through mucus which has successful predicted the enormous pH gradient (from lumen 

to stomach wall) observed in mammalian stomachs. It is based upon the Nernst-Planck 

equations of electrodiffusion in conjuction with a “two-phase gel” representation of mucus. 

The two-phase gel framework has been used extensively to model gel-like substances in 

biological contexts [20, 21]. At each point in space there simultaneously exist two materials: 

the “gel” (cross-linked mucin polymer network), and the “solvent” (interstitial hydrating 

fluid). The local composition of the combined material is described by the dimensionless 

quantities θs and θg ≔ 1 − θs which represent the “volume fraction” of solvent and 

network, respectively (i.e. the proportion of local volume that is made up of each constituent 

material). In this work, we are primarily concerned with the diffusion of ionic species 

dissolved within the solvent phase. Therefore, the phases θs and θg) will be fixed in time, 

and their spatial profiles specified to represent the inhomogeneous material through which 

ions are moving (discussed at more length below).

The state variables of the model are the concentration of four ionic species and the electric 

potential gradient within the domain. Because the ions are dissolved in (and diffuse through) 

only the solvent phase of the gel, we define the concentration variables as moles per volume 

of solvent, not moles per total volume. Hydrogen and bicarbonate are denoted CH and CB, 

both with units of moles per liter (Molar). All other cations and anions are represented by 

CI and CA, respectively, measured in units of Equivalent per liter (which we denote M for 

notational convenience). The most common ions in the gastric interior are sodium (cations), 

potassium (cations), and chloride (anions) [22]. By including sodium and potassium in a 

single variable, we assume that both cations have the same chemical properties and diffusion 

constants. The spatial variable x measures distance from the epithelial wall of the stomach 

towards the lumen, and thus the location x = 0 corresponds to the epithelial surface. The 

concentration of ionic species is governed by a Nernst-Planck-like equation, which accounts 

for the flux of ions due to advection, diffusion, and electric potential gradients, as well as 

any reactions and sources that impact ionic concentration. A time-dependent version of this 

model was used in [18], and a careful derivation may be found in [23], however the present 

work is only concerned with steady state behavior. The equation which governs each ionic 

species may be described as the balance of fluxes and sources:

∂
∂x u x Cj

I
= 1

θs x
∂

∂x θs x Dj
∂

∂x Cj
II

+ zjDjCj
∂

∂x Ψ
III

+ gj
IV

, (1)

Here, the index j may take the values H, B, A, or I for hydrogen, bicarbonate, anions, 

and cations respectively. Terms I, II, and III represent fluxes of ionic concentration due to 

advective, diffusive, and electric effects repsectively. Term IV captures any reactions and/or 
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sources that impact the concentration of species j. The quantity u(x) is the velocity of the 

fluid solvent (in cm/sec), which results from secretion of fluid at the stomach wall. The 

parameters Dj and zj are the diffusion coefficient (cm2/sec) and valence (±1) of species 

j respectively. The variable Ψ is the non-dimensional electric potential (which may be 

converted to voltage by multiplying by RT/F, where R is the ideal gas constant, T is absolute 

temperature, and F is the Faraday constant). Note that Eq. (1) is similar to a standard steady 

state Nernst-Planck equation, with the exception of two appearances of θs(x) on the right 

hand side. These terms account for the fact that the ionic species are transported within 

the solvent phase of a mixture whose composition varies spatially (see [23]). The electric 

potential Ψ is determined by enforcing electro-neutrality, which is the principle that ionic 

concentrations may not result in a net charge at any location within space. Mathematically, 

this is expressed as

j
zjCj = 0. (2)

Thus, Ψ does not have its own equation but may be viewed as a Lagrange multiplier 

enforcing the constraint Eq. (2) on the set of evolution equations given by Eq. (1). We note 

here that the electroneutrality constraint (Eq. (2)) does not account for any charge on the 

mucus network itself. Though mucus polymers carry negative charge groups, the work of 

Schreiber, et al. indicates that in vivo mucus carries a large concentration of bound hydrogen 

ions, effectively neutralizing many of these negative charge groups [5]. Thus, the model 

implicitly assumes that approximately all of the negative charge on mucus is neutralized by 

bound cations.

Other works have explored the dynamic rearrangement of mucus in response to ionic 

diffusion using a similar modeling framework [24]. However, as we wish to focus on the 

steady state behavior of ionic species, we will treat both the solvent velocity and volume 

fraction as given model inputs. We assume that gastric mucus is constantly produced at the 

epithelial surface, moves away from the wall, and is degraded as it approaches the lumen 

in a manner that maintains a time-independent profile θg(x). We choose θg(x) to have a 

spatial profile that reflects a “standing front” defining the transition from the mucus gel 

layer to the stomach lumen. Figure 1 shows the spatial form of θg(x) (recall that θs(x) = 

1 — θg(x)). The transition is located 500 μm away from the wall, and the mucus layer is 

indicated by the grey shaded region in Fig. 1. We define the “mucus layer” as the region 

where mucus network occupies more than than 1% of the local volume (i.e θg > 0.01, θs 

< 0.99). The “lumen” is therefore the region where θg < 0.01 and θs > 0.99. We note here 

that this model does not explicitly describe the swelling of mucus that happens on very short 

length and time scales immediately after secretion, nor does it incorporate the (relatively 

modest) changes in mucus volume fraction which may result from changes in monovalent 

cation concentration (as all ions in the model are monovalent) [25, 26]. Finally, the profile 

of u(x) is chosen to ensure that the quantity u(x)θs(x) is constant in space (as required by 

conservation of solvent mass) and approximates observed rates of fluid secretion from the 

gastric mucusa (see [18]). Choosing u(x) in this manner also ensures that Eq. (1) (in the 
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absence of sources and reactions) is conservative in the quantities θs(x)Cj, which are the 

total ionic concentrations (moles per total volume).

The terms gj incorporate any sources or chemical reactions that may impact the four 

concentrations. Hydrogen is affected by the buffering reaction with bicarbonate (which 

proceeds according to the law of mass action). Because the dissociation constant of 

hydrogen and bicarbonate is small (4.2 × 10−7 M [16]), we assume that this reaction is 

non-reversible. In [5], Schreiber et. al proposed a mechanism of hydrogen transport in 

which hydrogen ions are also produced by a source located at the edge of the mucus layer. 

Mathematically, we represent this as a source S(x) supported in the same region where 

the volume fraction transitions from mucus layer to lumen. This is to model the release 

of hydrogen due to enzymatic degradation of the mucus gel itself, in accordance with the 

mechanism proposed by Schreiber et. al [5]. Because the gel layer is fixed, the source of 

hydrogen is assumed to be independent of time, but localized spatially,

gH = S(x) ‐ kCHCB . (3)

In [18], a hydrogen source was used that represents the “average” rate of hydrogen secretion 

in the gastric mucosa. In this work, we investigate the effects of changes in hydrogen 

secretion on model predictions, and therefore our source is given by S(x) = S0S(x), where 

S(x) is the “baseline” hydrogen source used in [18]. The constant S0 is a parameter which 

controls the magnitude of hydrogen production. The profile of S(x) is shown in Fig. 1. 

The concentration of bicarbonate is affected by the same hydrogen/bicarbonate buffering 

reaction, hence

gB =  ‐ kCHCB . (4)

Electro-neutrality implies that any hydrogen ion released by mucus degradation at the 

interface must be accompanied by a corresponding negatively charged particle. Therefore, 

the source term also affects the concentration of anions:

gA = S(x) . (5)

Finally, we assume that cations are not affected by any sources or reactions:

gI = 0. (6)

Equation (1) must be accompanied by boundary conditions at the wall (x = 0) and the lumen 

interior (x = L). At the wall (x = 0), we impose a flux relation that depends on the local 

ionic concentrations at the epithelial surface. We do not explicitly specify the flux of any ion 

through the epithelial surface. For each species, the total flux from the transport equation is
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ϕj = − Dj
∂

∂x Cj − DjzjCj
∂

∂x Ψ + Cju x . (7)

When evaluated at the mucosa (x = 0), this expression must be equal to the flux through 

the ion-exchange proteins expressed by the epithelial cells that make up the mucosal wall. 

These epithelial cells express two ion exchange proteins that we account for here: one 

which exchanges bicarbonate and chloride (in a 1-to-1 ratio), and another which exchanges 

hydrogen and sodium (again, 1-to-1) [27]. Mathematically, our boundary conditions at the 

left boundary are given by

ϕH|x = 0 = kHI CI − δHICH x = 0, ϕI|x = 0 = − kHI CI − δHICH x = 0, (8)

ϕB|x = 0 = kAB CA − δABCB x = 0, ϕA|x = 0 = − kAB CA − δABCB x = 0 . (9)

The terms on the right hand side represent a simplified, linear model of flux due to anti-port 

ion exchange proteins [28]. Concentrations at the stomach interior (which we define as x = 

0.2 cm) are given by Dirichlet boundary conditions.

CH|x = L = HL, CI|x = L = IL, (10)

CB|x = L = BL, CA|x = L = AL . (11)

These values may not be chosen independently. Electroneutrality in the stomach interior 

requires that

HL + IL ‐ BL ‐ AL = 0 . (12)

Several model parameters are either not well known, or may actively change in 

physiological situations. S0 represents the magnitude of hydrogen production by the gastric 

mucosa, which is known to change in response to physiological stimuli [14, 22, 29]. 

The parameters kHI and kAB quantify the rate at which hydrogen/sodium and bicarbonate/

chloride exchange takes place. These values are presumably a function of the density of the 

anti-port proteins expressed by the gastric epithelium, as well as the specific thermodynamic 

properties of a single exchange event. These quantities are difficult to estimate, and may 

not remain constant in vivo. Similarly, δHI and δAB represent a “bias” in the respective 

ion exchange proteins, which can be related to the concentration of individual ionic species 

within the epithelial cells [18]. Existing estimates for these values are based on data for 

various cell types and may not necessarily be applicable to gastric epithelial cells. Finally, 

HL, IL, BL and AL and represent ionic concentrations within the bulk of the stomach, which 

our model treats as prescribed, constant values, but which are known to vary temporally 

in vivo [13]. The one exception to this is BL, which is the lumenal concentration of 

bicarbonate. This value is essentially zero in all situations, and which we take to be 10−14 M 
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(simply for numerical purposes). Therefore, the model has 7 parameters that may reasonably 

vary in vivo, or are poorly estimated in the literature: S0, kHI, kAB, δHI, δAB, H L, and 

I L (the electro-neutrality constraint determines AL). The main purpose of this work is to 

perform sensitivity analysis of the model predictions with respect to these 7 parameters. This 

analysis will help determine which parameters play a significant role in the model prediction 

of [18]. These “sensitive” parameters require accurate estimates. Conversely, “insensitive” 

parameters indicate values whose variations have little effect on model predictions.

To do this, we must first decide on a “Quanitity of Interest” (QoI). As our QoI, we will use 

the negative logarithm (base 10) of the hydrogen concentration at the left boundary

QoI = ‐log10 (H0) ≔ − log10 (CH x = 0 ) = pH at left boundary . (13)

This corresponds to the pH at the mucosal surface of the stomach, and can be interpreted 

as a measurement of gastric health (a neutral stomach wall with pH approximately 6 or 7 

would indicate a healthy stomach, while significantly lower pH would indicate an unhealthy 

stomach). Therefore, one may view sensitivity analysis of this QoI as quantifying the 

sensitivity of “predicted stomach health” to variations in physiological parameters.

3 Sensitivity Analysis

To analyze the sensitivity of the non-linear relationship between the pH at the mucosal 

surface of the stomach and the seven parameters (implicitly defined by Eqs. (1) to (13)), 

we use Sobol’ indices (SI). In [30] Sobol’ defined and developed the theory for SI, 

variance-based sensitivity measures that do not assume linearity and monotonicity in the 

mathematical model. This makes them attractive to a large class of models across different 

fields, and they have since been used in engineering [31], physical systems [32, 33], 

biological systems [34], and economic models [35]. Moreover, simultaneous variation in 

all of the parameters is considered over the entire parameter space to compute SIs, providing 

a comprehensive exploration of the sensitivity of the output to the inputs. Hence, SIs are 

classified as global sensitivity analysis indices. The numerical methods that we used to 

estimate total and first-order SIs in this work, are based on Monte-Carlo estimation of 

integrals over a volume in the full-dimensional parameter space. As a result, it can be 

computationally expensive to estimate SIs if the number of parameters, or the dimensionality 

of the parameter space, is large [36, 37]. However, as we have previously mentioned, less 

computationally expensive local methods like one-at-a-time sampling can miss important 

parameter interactions, giving misleading conclusions [19]. The reader is directed to [38–40] 

for a review of various sensitivity measures.

3.1 Mathematical theory and notation

Given a scalar quantity of interest, y, as a square-integrable function of parameters {p1, …, 

pN}, where pi ∈ [ai, bi],

y = f(p1,…,pN) = f(P), pi  ∈ ai, bi],
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Sobol’ showed in [30] that there exists a unique functional decomposition,

f = f0 +
I D

fI, (14)

where f0 is a constant, I ⊂ D {1, …, N}, and fI is a function of parameters {pi} where i ∈ I, 
and

fI dpi = 0, if i ∈ I . (15)

Using Eq. (15), it can be shown that, if I, J are two distinct subsets of D, then ∫ 
fIfJ dp = 0. Hence, fI and fJ are orthogonal if I ≠ J. In other words, Eqs. (14) and 

(15) show that a square-integrable function f can be decomposed into lower dimensional 

orthogonal functions. Sobol’ [30] also gives an analytical method to evaluate fI recursively. 

Furthermore, if we consider the parameters to be independent and uniformly distributed over 

their prescribed interval, Sobol’ showed that the variance in the distribution of the output, 

resulting from the variation in the parameters, can be decomposed as,

V (Y ) =
I D

fI
2dp, (16)

where Y is the random variable corresponding to the output y = f(p1, …, pN) and ∫ · dp 
represents integral over the parameters p1, …, pN. This gives an ANOVA-like decomposition 

of the variance of the output by partitioning it into contributions from uncertainties in 

the parameters, considering not only the effects of uncertainty in an individual parameter 

but also the uncertainty propagation due to functional dependence of the output on any 

interaction between the parameters. For example, f 1
2 dp will be the contribution of the 

uncertainty in the parameter p1 to the uncertainty in the output due to the functional 

dependence of the output on the parameter p1, and f 1 2
2 dp will be the contribution of the 

uncertainty in the parameters p1 and p2 to the uncertainty in the output due to the functional 

dependence of the output on the parameters p1 and p2 as captured by f{1,2}. In this case, 

the contribution of f 1
2 dp is referred to as the main effect or the first-order effect of the 

parameter p1, the contribution of f 1 2
2 dp is referred to as the interaction effect of the 

parameters p1 and p2.

The Sobol’ indices are then defined as,

SI = ∫ fI
2 dp

V Y . (17)

Intuitively, the ranking of SI will induce a ranking of the contribution of the corresponding 

Sobol’ function fI to the variance of the output Y. We denote the random variables 

corresponding to the output y and a parameter pi, by Y and Pi, respectively. Then, to 
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consider the total contribution of the variance in Pi to the variance of Y, contributions from 

all of the Sobol’ functions of pi should be considered. Following this line of reasoning, the 

total Sobol’ index for a parameter Pi, is defined by,

Si =

Σ
I D
i I

∫ fI
2 dp

V Y .
(18)

It follows from Eq. (18) that, if Si = 0, then fI = 0 for all I ⊂ D where i ⊂ I. This shows 

that the QoI does not functionally depend upon the input pi in the chosen parameter space, 

Ω = ∏i = 1
N [ai, bi], and we can conclude that the presumed variation in the parameter pi is 

of no consequence to the QoI. Hence, in the sensitivity analysis using SIs, a parameter is 

deemed as unimportant if the corresponding total SI is negligible. Consequently, the choice 

of the value of the parameter pi, in the analyzed parameter space, will not have any effect on 

the QoI.

Furthermore, a statistical interpretation for the total Sobol’ index can be seen from

Si =
EP ∼ i V Pi Y ∣ P ∼ i

V Y , (19)

where P~i is the vector of random variables for all parameters except pi [39]. VPi(Y|P~i) is 

the conditional variance in the output if we vary only the parameter pi and fix all of the 

remaining parameters, giving a measure of local sensitivity of the QoI to pi. For a global 

sensitivity measure, variation in all of the parameters has to be considered simultaneously, 

and as a result, we can consider the statistical distribution of VPi(Y|P~i) over the N — 

1 dimensional space corresponding to P~i. Si then measures the expected value of this 

distribution, i.e. the expected value of the conditional variation in the output with respect to 

pi over the space of all of the remaining parameters (EP~i [VPi(Y|P~i)]), normalized by the 

variance in the output (V(Y)). A high Si therefore indicates that we expect the variance in 

the output to be high with respect to the variance in pi, considering simultaneous variation 

in all of the remaining parameters as well, and we classify it as a significant parameter. 

On the other hand, a negligible Si will indicate that we do not expect any variance in the 

output with respect to pi and it can be frozen at any value in the [ai, bi] without significantly 

affecting the QoI over the entire parameter space Ω.

The first-order or main Sobol’ indices are defined by,

Si = ∫ f i
2 dp

V Y . (20)

We define the additional SI of a parameter pi as the contributions of all of the interaction 

effects involving the parameter pi, and denote it by Ai. Hence,
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Ai = Si − Si

=

Σ
I ⊂ D, i ∈ I
I ≠ i

∫ fI
2 dp

V (Y )

(21)

Further analysis reveals the following relations between main Sobol’ indices and statistics of 

the QoI-distribution [39],

Si =
EPi[V Y − V P ∼ i Y ∣ Pi ]

V Y ,  and (22)

Si =
V Pi(EP i Y ∣ Pi )

V Y . (23)

It follows from Eq. (22), that high Si indicates a high expectation of a reduction in the 

variance of the QoI if the value of Pi is known.

3.2 Numerical estimation of SIs

Since the integrals required to define SIs might not always be determinable analytically, 

numerical methods are often used to estimate these indices. The available methods can 

be classified into three categories: hybrid pick-and-freeze, extended Fourier amplitude 

sensitivity test (eFAST), and generalized polynomial chaos expansion (gPC). The concept 

for hybrid pick-and-freeze was provided by Sobol’ in his seminal paper for SIs [30], in 

which he used Monte-Carlo methods to estimate the integrals corresponding to the SIs. The 

Monte-Carlo scheme has since been improved, and reviews and comparisons of different 

hybrid pick-and-freeze strategies can be found in [39, 41].

In this work, we implement the hybrid pick-and-freeze of Jansen ([42]) to estimate total SIs. 

Jansen’s scheme has been shown to be more efficient than similar sampling-based schemes, 

especially when used in conjunction with quasi-random sequences [39, 41]. To estimate the 

first-order SI, we implemented the “Correlation 2” scheme proposed in [41]. This scheme 

uses a larger number of samples than many other first-order SI estimators, but we prefer this 

scheme because it has been shown to provide a better estimation in the case when the SIs 

for some of the parameters may be small. For more information on the estimation of Sobol’ 

indices, see Appendix D.

4 Results

As previously stated, our Quantity of Interest will be the steady-state pH at the left boundary 

(epithelial wall)

QoI = ‐log10(CH x = 0) .
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Intuitively, a large SI for a given parameter means that fluctuations in that quantity may 

cause large fluctuations in the pH experienced by the mucosal tissue of the stomach and 

potentially be detrimental to stomach health. Conversely, a small SI indicates that variations 

in that parameter do not appreciably contribute to variations in the pH at the stomach wall, 

which could be physiologically advantageous.

4.1 Full Sobol’ Analysis

One of the central results from [18] was the quantification of the mucosal pH as a function 

of kHI and kAB. In that study, all other parameters were fixed using values estimated from 

biological data. It was shown that the mucosal pH only varied appreciably in the regime 

of low kHI and/or low kAB. Here, we extend that study by including simultaneous variation 

in other model parameters (due to different experimental conditions, or simply natural 

variations between people) and use Sobol’ indices for sensitivity analysis. Table 1 shows 

all of the parameters of interest, their physical units, and the intervals on which we sample 

them. The final column also indicates which parameters were assumed to be log-uniformly 

distributed (as opposed to uniformly distributed).

We begin with varying all of the parameters except for S0, which is fixed at its nominal value 

of 1. This set of parameters captures those that were either varied, or roughly estimated 

in [18], and thus represents an approximate reproduction of the analysis from that work 

using the SI methodology. The estimated SIs are shown in Fig. 2a. The blue bars indicate 

estimated first-order SI (Si), while the orange bars indicate the additional SI (Ai). The 

combined height of the orange and blue bars gives the total SI for each variable (Si). It is 

immediately clear that the two parameters with the largest total SI are the ion exchange rates 

(kHI and kAB and the bias constants δHI and δAB) have negligible total and first-order SIs. 

Furthermore, any variations in the lumenal concentrations (HL and IL account for strictly 

less than 20% of the variance in the QoI in this parameter regime, with their combined 

first-order effects accounting for less than 7% of the variance in the QoI. Therefore, the 

Sobol’ analysis shows that variations in kHI and kAB are necessary and sufficient to bring 

about a significant variation in the QoI, without any significant effects of variations in the 

other parameters. In this regard, Sobol’ analysis supports and extends the work in [18]. 

Together with the previous study, our analysis implies a remarkably robust mechanism for 

gastric pH maintenance.

Next, we also include the effects of variation in the magnitude of the Hydrogen secretion, 

S0. The estimated SIs are shown Fig. 2b. Based on the convergence criterion that we define 

in Appendix D, 20000 evaluations of the QoI were required to estimate the total SIs and 

48000 evaluations were required to estimate the first-order SIs. The mean of the evaluations 

used to estimate total SI is around 6.235 with a variance of 0.789. The comparison between 

total SIs of parameters again shows that the two rate constants are the most significant. The 

remaining parameters fall roughly into three categories. The bias constants δHI and δAB still 

have negligible SI (< 0.05). The lumenal boundary concentrations HL and IL have small SI 

(~ 0.1). However, the ion source magnitude S0 has significant SI (~ 0.2). This means that 

variation in S0 cannot be entirely ignored since it has non-negligible total SI along with a 

Aggarwal et al. Page 12

J Math Biol. Author manuscript; available in PMC 2022 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant first-order effect – varying S0 by itself can account for 15% of the variance in the 

QoI.

To more precisely describe the impact each parameter has on the model predictions, we use 

violin/box-and-whisker plots of the QoI as each parameter is varied (see Fig. 3). Figure 3a 

illustrates the process of generating these plots for the parameter S0. The grey points indicate 

a simple scatter of the measured QoI as a function of the parameter S0. The dashed and solid 

purple lines indicate a running mean and mean ± standard deviation of the QoI. However, 

this format makes it difficult to visually infer trends in the distribution of the QoI as S0 is 

varied. Therefore, we divide the range of S0 into ten equal width sub-intervals and generate a 

violin for each. The white hash indicates the mean of the QoI for samples in that respective 

subinterval and the black hash indicates the median. The thicker black line indicates the 

region between the first and third quartiles. The black whiskers indicate the extent of the 

data (sans outliers), and the blue x-es indicate individual outliers defined as median ±1.5 

times the inter-quartile range. Finally, the width of the red violins represent a smoothed 

histogram of the data within each subinterval. For visual clarity we present only the violin 

plots, and not the underlying scatter plots, for all remaining parameters.

Visual inspection of Fig. 3a shows that the mean value of wall pH changes by approximately 

1 as S0 is varied over the given interval. From Eq. (23), we can interpret the ratio of this 

variation in the expected value of QoI to the total variation of QoI as the the first-order SI of 

the parameter under consideration (SS0). Other changes in the distribution of the QoI (from 

violin to violin) are attributable to additional SI of that parameter (AS0). For example, the 

distribution of QoI is bimodal when S0 is large but unimodal when S0 is small.

The observed change in mean QoI also has a very natural and unsurprising physiological 

interpretation: when the source of hydrogen due to gastric secretion is larger, the gastric 

wall (on average) is more acidic. However, we note here that variations in secretion rate 

(S0) over two orders of magnitude produces a variation in mean gastric pH of less than one. 

Thus, even though S0 exhibits a significant total SI, the mean mucosal pH is well within 

biologically acceptable limits (≈ 6 or 7). This seems physiologically advantageous, as one 

would expect in-vivo gastric secretion to vary throughout the day in response to various 

nervous and endocrine stimuli. In Section 4.2, we investigate more closely the behavior of 

mucosal pH in the limit of large S0 (i.e. secretion in response to a recent meal or histamine 

stimulus) and small S0 (i.e. secretion in response to weak/no stimulus).

Figures 3b and 3c show violin plots for QoI as a function of kHI and kAB. As expected, 

because these two parameters have the largest first order SI, we observe a notable variation 

in the mean of the QoI. As either exchange rate parameter is decreased, the measured pH 

decreases (on average), implying acidification of the gastric mucsoal wall and suggesting 

a failure to maintain homeostasis. This is in line with the results presented in [18], which 

indicated that as long as both exchange rates were sufficiently large (i.e. sufficiently rapid 

exchange of ions between the epithelium and gastric lumen), a healthy pH was robustly 

maintained. The present analysis also allows us to determine how the variance in the 

predicted wall pH changes as a function of ion exchange rates. In particular, we can see that 
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when kHI is low, there is a significant increase in the variation of the QoI. As this behavior 

affects higher order moments of the QoI distribution, it may be related to the additional 

affects within the total SI of kHI. A similar (but distinct) result was presented in [18], where 

it was shown that mucosal pH could vary wildly when kHI = 0. In Section 4.3 we investigate 

more closely the behavior of mucosal pH in the limit of small kHI. Finally, we note that the 

parameter kAB does not obviously affect the spread of the distribution of QoI, and therefore 

exhibits less additional SI (AkAB < AkHI).

The parameters HL and IL both have relatively small SIs. These parameters represent the 

concentration of ions in the interior of the stomach lumen, which could vary in the in vivo 
system of interest (in response to diet, for example). Small SI imply that the pH experienced 

by the stomach wall does not vary appreciably in response to these temporal fluctuations, 

implying a robust physiological control mechanism. In this regard, the data presented here 

represents a more quantitative (and global) generalization of the argument put forward in 

[18]. We note however, that these SIs are not completely negligible and are comprised of 

significant additional SI. For this reason we include the violin plots of both in Figs. 3d and 

3e. Of particular note is that even though the mean QoI does not depend strongly on IL (SIL
is small), when IL is large the variation in QoI is drastically decreased. In this regard, one 

could describe the model as extremely robust in the limit that IL is large: regardless of other 

parameter values, the pH at the stomach wall will almost certainly be ≈ 6.

We do not include violin plots of δHI and δAB in this section, as both of those parameters 

have negligible SI. However, those graphs can be found in Appendix A for completeness. 

We also note here that there is no “accepted” value for these parameters in the literature. 

In [18] their values were roughly estimated based on data available from other epithelial 

cell types. The negligible SI for δHI and δAB imply that the results presented in [18] do 

not depend on the these estimated values and are generically representative of the model 

behavior.

4.2 Analysis for Fixed Source Magnitude

The results of Section 4.1 indicate that the ion exchange rates kHI and kAB exhibit the largest 

SI, which when interpreted in conjuction with [18], imply a robust physiological control of 

mucosal pH. However, they also indicate that the hydrogen source magnitude (or secretion 

rate) S0 may make a significant contribution to the sensitivity of the model predictions, 

which was not addressed in previous investigations. This is physiologically relevant, as the 

secretion rate of hydrogen in the human stomach is known to vary by a factor of 40 or more, 

in response to histamine levels or the recency of a meal [14, 22]. We analyze the sensitivity 

of the model predictions when secretion is at its extremal values, i.e. when the stomach is 

quiescent and not secreting much gastric juice, or after intense stimulation. In this section, 

we perform a second analysis where we fix the value of S0 and calculate the SI (primary and 

additional) for the remaining six parameters. This is done twice: with S0 = 0.1 and with S0 = 

10.

Large S0: Upon fixing S0 = 10 (which represents stimulated gastric secretion), we 

recalculate the SI of the other six parameters. This requires approximately 18000 evaluations 
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of the QoI. The primary and additional SI are shown in Fig. 4. In this regime, kHI and kAB 

remain the dominant SI, and are predominantly characterized by first order SI. Remarkably, 

no other parameters exhibit significant SI. This can be interpreted to mean that in the regime 

of strong gastric secretion, the ion exchange rates nearly completely govern the mucosal pH.

Figure 5 shows the violin plots for QoI as a function of kHI and kAB. Consistent with 

the SI shown in Fig. 4, when ion exchange rates are small the gastric wall is likely to be 

significantly more acidic. We note that there is a marked increase in the variation of QoI 

when kHI is small and this is the only parameter regime when the wall pH is strongly acidic 

(< 4). This result is also consistent with those presented in [18]: as long as ion exchange 

rates are “fast enough”, the mucosal wall is generically maintained at near-neutral pH. The 

violin plots for the remaining four parameters do not add much to our discussion here (and 

their SI are insignificant), but we include them in Appendix A for completeness.

Small S0: After fixing S0 = 0.1 (which represents suppressed secretion of gastric juice), 

we again calculate the SI of the remaining parameters. Convergence required roughly 20000 

evaluations of the QoI, and the calculated SI are shown in Fig. 6. The ion exchange rates still 

exhibit the largest SI; however in this regime we also observe significant SI for the lumenal 

ion concentrations HL and IL. This implies that the mucosal pH is more sensitive to the 

ionic composition of the gastric interior when secretion is suppressed. Furthermore, all four 

parameters exhibit appreciable additional SI, implying that there are significant interaction 

effects between parameters. As in all other analyses, the SI of both offset parameters is 

negligible.

Figures 7a and 7b show the violin plots for kHI and kAB. As in all previous analyses, 

we observe that increased ion exchange generically leads to a less acidic mucosal wall. 

However, the mean QoI exhibits a relatively weak dependence on either exchange rate 

parameter. This is consistent with the relatively small first order SI shown in Fig. 6. We also 

note here that the mucosal wall is generically neutral (or near neutral), always with a mean 

pH ≳ 5.5. This is physiologically unsurprising, as these results are produced in the regime 

where less hydrogen is being secreted into the gastric lumen.

Figures 7c and 7d show the violin plots for HL and IL. Figure 7c shows that an increase 

in HL (which represents a more acidic gastric lumen) likely leads to a more acidic mucosal 

wall. However, it is also associated with an increase in the variance of the QoI. This means 

that when secretion is low, the mucosal pH is more susceptible to variations in lumenal 

acidity but may be able to maintain neutral (or near neutral) conditions depending on other 

factors. Conversely, Fig. 7d shows that the QoI exhibits a drastic decrease in variance 

associated with high values of IL. This effect is even more pronounced than that observed in 

Section 4.1. The analysis shows that when gastric secretion is low, but sodium concentration 

in the stomach lumen is high, the mucosal pH will nearly always be ≈ 6.

4.3 Sobol’ Analysis for low kHI

A recurring theme in the above sections is that kHI exhibits a greater SI than the other 

parameters considered. Physically, this is somewhat surprising, as the analysis in [18] 

showed that under most conditions, the flux of hydrogen ions through hydrogen/sodium 
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exchange is significantly smaller than the other sources/sinks of hydrogen in the system 

(secretion and bicarbonate buffering). However, the analysis of [18] also concluded that 

kHI is a critical parameter of the system: when it is identically zero (representing a lack of 

hydrogen/sodium exchange proteins), the system fails to robustly maintain a near-neutral 

mucosal pH. Our analysis here has corroborated this finding; in all cases we see that low 

values of kHI lead to drastically increased variance in QoI.

To further explore the behavior of the system in the limit of “vanishing” hydrogen/sodium 

exchange, we perform a series of calculations where kHI is fixed at a low values, and the 

SI of the remaining six parameter are calculated. We calculate the SI of the remaining 

parameters for five values of kHI ranging from 10−6 to 10−8. Calculating these SI required 

roughly 24000 to 26000 evaluations of the QoI, depending on the value of kHI. We do 

not explore the case when kHI = 0, as this caused the linear operators associated with our 

numerical scheme (see Appendices B and C) to become ill-conditioned.

Figure 8a shows the SI of the remaining six parameters when kHI = 10−6; Fig. 8b shows the 

same SI when kHI = 10−8. In both Figs. 8a and 8b, we see that though the numerical values 

have changed, the SI of the remaining parameters are qualitatively similar to the full Sobol’ 

analysis: kAB exhibits the dominant SI, followed by S0, IL, and HL with moderate SI, and 

finally the ion exchange offsets (δHI and δAB) have negligible SI.

Comparing Fig. 8a to Fig. 8b, we observe two trends. First, we note that decreasing kHI 

leads to significant increase in total SI for IL and a moderate increase in the SI of HL. 

This can be interpreted to mean that when there is a deficiency in (or shortage of) hydrogen/

sodium exchange proteins in the epithelial wall, mucosal pH becomes much more sensitive 

to the ionic composition of the stomach lumen. To more clearly illustrate this phenomenon, 

Fig. 9a shows the total SI for the remaining size parameters as a function of kHI. It clearly 

illustrates the increase of SIL as kHI → 0. One can also observe moderate increases in SHL
and SkAB, as well as a moderate decrease in SS0. Generically, the SI for ion exchange offset 

parameters is negligible. These analyses all corroborate and extend the work presented in 

[18].

The second trend of note in Fig. 8 is that decreasing kHI appears to decrease the first order 

SI and increase the additional SI for all parameters. This indicates that are significant 

interaction effects and may suggest variation in higher order moments of the QoI as 

parameter values change. For this reason we plot the mean and variance (over all evaluations 

used to calculate the SI) of the mucosal pH as a function of kHI. The results are shown 

in Fig. 9b. As can be seen, the mucosal pH becomes (on average) more acidic as kHI 

decreases. However, there is also a dramatic (> 3-fold) increase in the variance of mucosal 

pH; the coefficient of variation for the mucosal pH increases from approximately 0.23 (when 

kHI = 10−6) to approximately 0.62 (when kHI = 10−8). Taken together, these facts imply 

that as hydrogen/sodium exchange is down-regulated, the bicarbonate buffering mechanism 

becomes unable to robustly maintain a neutral environment adjacent to the mucosal wall.
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5 Discussion

In this paper, we have presented a global sensitivity analysis of steady state epithelial pH 

predicted by an electrodiffusive model of hydrogen transport in the gastric mucus layer. 

Using Sobol’ Indices, we have provided a systematic extension of the (relatively local) 

sensitivity analysis of this model reported in previous work. Our results support the existing 

analysis of [18], while also providing further physiological insight by considering variation 

in biological parameters which were considered “fixed” in previous works.

The analysis presented here repeatedly shows that the rate constants of ion exchange 

through the epithelial surface (kHI and kAB) are the dominant parameters that impact 

the maintenance of the pH at the epithelial wall. These two parameters exhibited the 

largest sensitivities in all regimes considered, particularly when the source of hydrogen 

secretion is large (i.e. stimulated gastric secretion). In the regime of suppressed gastric 

acid secretion, the parameters representing the concentration of ions in the gastric lumen 

exhibited significant sensitivities. Taken together, these results indicate that when the 

stomach is not stimulated (and not producing large amounts of gastric juice), the contents 

of the stomach may impact the pH of the epithelium. However, when hydrochloric acid is 

actively introduced to the stomach lumen (i.e. secretion is stimulated by ingesting a meal, or 

treatment with histamine) the exchange of ions at the epithelial wall becomes the dominant 

process and exerts significant control over wall pH.

Furthermore, the large sensitivities of both exchange rate parameters (kHI and kAB) suggest 

that both hydrogen/sodium and bicarbonate/chloride exchange events are critical to the 

control of the hydrogen concentration adjacent to the gastric epithelium. This conclusion is 

in line with the work of [18], but to our knowledge has not been suggested anywhere in 

the gastric physiology literature, where the physiological purpose of the hydrogen/sodium 

exchange proteins is rarely, if ever, discussed.

The observation that epithelial pH is sensitive to hydrogen/sodium exchange even though 

this relationship is not appreciated in the physiology literature, together with the analysis 

of [18], inspired us to perform a sequence of sensitivity analyses where the SI of the 

remaining parameters were calculated for several (small and decreasing) values of kHI. 

Notably, the sensitivity measure of lumenal sodium concentration increases. This is perhaps 

unsurprising, as the electroneutrality constraint implies that the concentration of sodium and 

hydrogen at the epithelial wall are strongly dependent on one another, and impeding the 

regulatory function of hydrogen/sodium exchange at the epithelium would reasonably leave 

epithelial pH more sensitive to sodium diffusing from the lumen. Perhaps more surprising 

is that the sensitivity measure of hydrogen source magnitude decreases as kHI decreases. 

As the rate of hydrogen/sodium exchange decreases, one would expect the epithelium to 

become more sensitive to the amount of hydrogen secreted by the stomach. This illustrates 

a common misunderstanding in how SI are often interpreted in the broader community. 

Directly comparing SI values generated with two different parameter sets (kHI = 10−6 cm/sec 

vs. kHI = 10−6 cm/sec) may be misleading, as these values are expressed as a proportion of 
the total variation in the QoI, which may be changing (see below). What can be concluded is 
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that as kHI decreases, the QoI becomes relatively more sensitive to IL than S0, as SIL < SS0
when kHI 10−6, but SIL > SS0 when kHI = 10−8.

Finally and perhaps most importantly, our analysis shows that as the rate of hydrogen/

sodium exchange decreases, the mean pH of the gastric epithelium also decreases, while the 

variance of this same quantity increases nearly five-fold. Both of these changes have drastic 

implications for healthy physiological function. A decrease in pH is generally detrimental to 

the health of the cells that make up the epithelial surface and is associated with numerous 

pathologies. Indeed, it is generally accepted that a major role of the gastric mucus layer 

is to protect the epithelium from the low pH of the lumen [11]. Therefore, any scenario 

which leads to a decrease in the lumenal pH would be physiologicaly disadvantageous. 

Furthermore, the increase in the variance as kHI decreases implies that the epithelial pH 

is generally more sensitive to perturbations in the other parameters, and thus one could 

expect larger variations in wall pH. Taken together, these results imply something of a 

“double whammy” for the maintenance of healthy gastric pH: as the rate of hydrogen/

sodium exchange decreases towards zero, the system is not only more likely to maintain an 

“unhealthy” pH at the wall, but it is more likely to experience large swings in said pH.

In closing, we would like to note that several of these results represent a powerful use 

for Sobol’ Indices (and sensitivity analysis in general) which remains underappreciated in 

the literature. Sensitivity analysis is often used to simply quantify uncertainty in model 

predictions associated with uncertainty in parameter estimation, and no deeper implications 

are considered. However, there are specific biological insights that can be determined by 

judicious use of sensitivity analysis – this includes varying the QoI, parameter regimes, and 

exploring the QoI distributions. Furthermore, the physical and/or biological quantities that 

model parameters represent are often not fixed, but rather dynamic quantities subject to 

random or deterministic fluctuations. Sensitivity analysis can be used to make quantitative 

inferences about the robustness of the system of interest to these fluctuations, and such 

inferences can have profound implications for how biological systems function in the face of 

a dynamic environment.

Appendices

A Extra Figures

Here we present the remaining violin plots from the SI calculations in Sections 4.1 and 

4.2. These parameters all exhibit small SI, and were therefore deemed “unimportant” for 

discussion We include these figures for completeness.

Aggarwal et al. Page 18

J Math Biol. Author manuscript; available in PMC 2022 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. A.1: 
Violin and box plots for log10 (H0) as a function of (a) bicarbonate offset parameter δAB, 

and (b) hydrogen offset parameter δHI during Sobol’ analysis of all 7 parameters.

Fig. A.2: 
Violin and box plots for log10 (H0) as a function of (a) bicarbonate offset parameter 

(δAB), (b) hydrogen offset parameter (δHI), (c) lumenal hydrogen concentration HL, and 

(d) lumenal cation concentration IL when hydrogen source is large (S0 = 10).

Aggarwal et al. Page 19

J Math Biol. Author manuscript; available in PMC 2022 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. A.3: 
Violin and box plots for log10 (H0) as a function of (a) bicarbonate offset parameter (δAB), 

and (b) hydrogen offset parameter δHI, when hydrogen source is small (S0 = 0.1).

B Iterative Solution Scheme

To determine the steady state ion concentrations (and then evaluate the QoI), we must solve 

the following system of five equations

∂
∂x u x CH = 1

θs x
∂

∂x θs x DH
∂

∂x CH + zHDHCH
∂

∂x Ψ − kCHCB + S x , (B.1)

∂
∂x u x CB = 1

θs x
∂

∂x θs x DB
∂

∂x CB + zBDBCB
∂

∂x Ψ − kCHCB, (B.2)

∂
∂x u x CA = 1

θs x
∂

∂x θs x DA
∂

∂x CA + zHDACA
∂

∂x Ψ + S x , (B.3)

∂
∂x u x CI = 1

θs x
∂

∂x θs x DI
∂

∂x CI + zIDICI
∂

∂x Ψ , (B.4)

zHCH + zBCB + zACA + zICI = 0. (B.5)

Unfortunately, Eqs. (B.1) to (B.4) all contain a similar quadratic non-linearity in the 

electrodiffusive flux term (the product of concentration and electric potential gradient), 

while Eqs. (B.1) and (B.2) contain a second quadratic non-linearity in the hydrogen 

buffering term. For this reason, we solve the steady state equations using an iterative 

relaxation scheme. Given a guess for the solutions Ci* (i = H, B, A, I) and Ψ*, we define the 

n-th iterates Ci
n (i = H, B, A, I) and Ψη via the linearized equations

∂
∂x u x CH

n = 1
θs x

∂
∂x θs x DH

∂
∂x CH

n + zHDHCH*
∂

∂x Ψn − kCH
n CB* + S x , (B.6)
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∂
∂x u x CB

n = 1
θs x

∂
∂x θs x DB

∂
∂x CB

n + zBDBCB*
∂

∂x Ψn − kCH*CB
n , (B.7)

∂
∂x u x CA

n = 1
θs x

∂
∂x θs x DA

∂
∂x CA

n + zHDACA*
∂

∂x Ψn + S x , (B.8)

∂
∂x u x CI

n = 1
θs x

∂
∂x θs x DI

∂
∂x CI

n + zIDICI*
∂

∂x Ψn , (B.9)

zHCH
n + zBCB

n + zACA
n + zICI

n = 0. (B.10)

Following the same line of thinking, the linearized boundary conditions for Eqs. (B.6) to 

(B.9) are given by

−DH
∂

∂x CH
n − DHzHCH*

∂
∂x Ψn + CH

n u x = 0 = kHI CI
n − δHICH

n
x = 0, (B.11)

−DB
∂

∂x CB
n − DBzBCB*

∂
∂x Ψn + CB

nu x = 0 = kAB CA − δABCB x = 0, (B.12)

−DA
∂

∂x CA
n − DAzACA*

∂
∂x Ψn + CA

n u x = 0 = − kAB CA − δABCB x = 0, (B.13)

−DI
∂

∂x CI
n − DIzICI*

∂
∂x Ψn + CI

nu x = 0 = − kHI CI
n − δHICH

n
x = 0, (B.14)

and

CH
n |x = L = HL, CI

n|x = L = IL, (B.15)

CB
n |x = L = BL, CA

n |x = L = AL . (B.16)

Solving Eqs. (B.6) to (B.10) subject to boundary conditions given by Eqs. (B.11) to (B.16) 

determines the n-th iterate for each concentration and the electric potential. We then update 

Ci* to be equal to Ci
n and repeat. This process converges when solving the system yields new 

iterates which are equal to the previous (Ci
n = Ci*), which gives a solution to the non-linear 

steady state problem Eqs. (B.1) to (B.5).
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C Spatial Discretization

Here we outline the discretization that is utilized to approximate the system of Eqs. (B.6) 

to (B.10). Our discretization is derived from a standard finite difference and finite volume 

schemes. We begin by discretizing space using a so-called “staggered grid”. Two collections 

of spatial points are defined, and various quantities more naturally “live” at each. The first 

collection of points we refer to as “cell edges,” and they are defined by

xj = j Δx j = 0, 1, … N (C.17)

where Δx = L/N is the spatial resolution of the grid. The second collection of points are 

referred to as “cell centers” and are defined by

xj = j Δx j = −1
2 , 1

2 , 3
2… N + 1

2 . (C.18)

There are in total N + 1 cell edges and N + 2 cell centers, but not all correspond to spatial 

locations within our domain. The cell edges x0 and xN, as well as the cell centers x1/2 and 

xN+1/2 lie either at or outside the boundary of the computational domain. These are often 

called “ghost points”, and quantities located at them are a numerical convenience used to 

help enforce boundary conditions but may not necessarily correspond to a physical quantity. 

All other points lie within the domain and will be referred to as interior cell centers and 

interior cell edges. A schematic of the spatial discretization is shown in Fig. C.4.

We approximate ionic concentrations at cell centers. Where necessary, we use a second 

subscript j to denote the spatial location where an approximation takes place, while a 

superscript n denotes n-th iterate of our relaxation scheme.

Ci, j
n ≈ Ci

n xj , i = H, B, A, I . (C.19)

Finally, we introduce the quantity Φ to approximate the electric potential gradient. This 

quantity “lives” at cell edges (j = 0, 1, … N).

Φj
n ≈ ∇Ψn(xj) . (C.20)

To approximate the Nernst-Planck type equation at interior cell centers, we use standard 

finite-difference and finite volume discretizations for all linear terms. The advective flux is 

treated with a standard upwinding scheme, while the diffusive flux is treated with a standard 

second order, variable coefficient, finite difference scheme [43]. In the interest of notational 

compactness, we utilize similar notation to denote the solvent velocity (u(x)) and volume 

fraction (θs(x)) at various spatial locations, though no approximation is necessary as we can 

simply evaluate the given functions.
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Fig. C.4: 
A schematic representation of our computational grid for N = 5. Dashed vertical black lines 

indicate the boundaries of the computational domain. Circles indicate cell centers, while 

diamonds indicate cell edges. Interior points are drawn with solid lines while ghost points 

are drawn with dash-dot lines.

We are now able to discretize Eqs. (B.6) to (B.9) for each of the four ionic species, at each 

interior cell center (j = 1/2, 3/2, … N — 1/2):

uj + 1/2CH, j
n − uj − 1/2CH, j − 1

n

Δx = DH
θs, jΔx2

θs, j − 1/2 CH, j − 1
n − θs, j − 1/2 + θs, j + 1/2 CH, j

n + θs, j + 1/2 CH, j + 1
n

+ DHzH
θs, jΔx θs, j + 1/2

CH, j + 1* + CH, j*
2 Φj + 1/2

n

− θs, j − 1/2
CH, j* + CH, j − 1*

2 Φj − 1/2
n + S xj − kCH, j

n CB, j* ,

(C.21)

uj + 1/2CB, j
n − uj − 1/2CB, j − 1

n

Δx = DB
θs, jΔx2

θs, j − 1/2 CB, j − 1
n − θs, j − 1/2 + θs, j + 1/2 CB, j

n + θs, j + 1/2 CB, j + 1
n

+ DBzB
θs, jΔx θs, j + 1/2

CB, j + 1* + CB, j*
2 Φj + 1/2

n

− θs, j − 1/2
CB, j* + CB, j − 1*

2 Φj − 1/2
n − kCB, j

n CH, j* ,

(C.22)

uj + 1/2CA, j
n − uj − 1/2CA, j − 1

n

Δx = DA
θs, jΔx2

θs, j − 1/2 CA, j − 1
n − θs, j − 1/2 + θs, j + 1/2 CA, j

n + θs, j + 1/2 CA, j + 1
n

+ DAzA
θs, jΔx θs, j + 1/2

CA, j + 1* + CA, j*
2 Φj + 1/2

n

− θs, j − 1/2
CA, j* + CA, j − 1*

2 Φj − 1/2
n + S(xj),

(C.23)
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uj + 1/2CI, j
n − uj − 1/2CI, j − 1

n

Δx = DI
θs, jΔx2 θs, j − 1/2 CI, j − 1

n

− θs, j − 1/2 + θs, j + 1/2 CI, j
n + θs, j + 1/2 CI, j + 1

n

+ DIzI
θs, jΔx θs, j + 1/2

CI, j + 1* + CI, j*
2 Φj + 1/2

n − θs, j − 1/2
CI, j* + CI, j − 1*

2 Φj − 1/2
n

.

(C.24)

We also discretize the boundary conditions for each species in a similar manner. To 

approximate ionic species at a boundary, we utilize linear interpolation (in space) using 

ghost points and the first interior cell center. At the left boundary of our domain (where j = 

0) we have the following equations:

kHI
CI, − 1/2

n + CI, 1/2
n

2 − δHI
CH, − 1/2

n + CH, 1/2
n

2 = − DH
Δx CH, 1/2

n − CH, − 1/2
n

+ u0CH, − 1/2
n − DHzH

CH, − 1/2* + CH, 1/2*
2 Φ0

n,
(C.25)

−kHI
CI, − 1/2

n + CI, 1/2
n

2 − δHI
CH, − 1/2

n + CH, 1/2
n

2 = − DI
Δx CI, 1/2

n − CI, − 1/2
n

+ u0CI, − 1/2
n − DIzI

CI, − 1/2* + CI, 1/2*
2 Φ0

n,
(C.26)

kAB
CA, − 1/2

n + CA, 1/2
n

2 − δAB
CB, − 1/2

n + CB, 1/2
n

2 =

− DB
Δx CB, 1/2

n − CB, − 1/2
n + u0CB, − 1/2

n − DBzB
CB, − 1/2* + CB, 1/2*

2 Φ0
n,

(C.27)

−kAB
CA, − 1/2

n + CA, 1/2
n

2 − δAB
CB, − 1/2

n + CB, 1/2
n

2 =

− DA
Δx CA, 1/2

n − CA, − 1/2
n + u0CA, − 1/2

n − DAzA
CA, − 1/2* + CA, 1/2*

2 Φ0
n .

(C.28)

The boundary conditions at the right are significantly simpler:

CH, N − 1/2
n + CH, N + 1/2

n

2 = HL, (C.29)

CB, N − 1/2
n + CB, N + 1/2

n

2 = BL, (C.30)
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CA, N − 1/2
n + CA, N + 1/2

n

2 = AL, (C.31)

CI, N − 1/2
n + CI, N + 1/2

n

2 = IL, (C.32)

Finally, we have a set of discrete equations which enforce the electro-neutrality constraint at 

the the interior cell centers (j = 1/2, 3/2,… N—1/2) as well as the ghost point corresponding 
to j = −1/2.

zHCH, j
n + zBCB, j

n + zACA, j
n + zICI, j

n = 0, j = − 1/2, 1/2, … N − 1/2. (C.33)

We enforce the electro-neutrality constraint at the left most ghost point even though the 

concentrations at this point do not represent physical quantities. This is done to ensure 

that (up to linear approximation), the electro-neutrality constraint is satisfied up to and 

including the left boundary. We do not need a similar equation at the right boundary because 

Eqs. (C.29) to (C.32) together with choosing HL, BL, AL and IL in a manner satisfying 

electro-neturality implies this condition is already met.

Now, from a previous iteration (or an initial guess), we know the concentrations Ci, j* , for j = 

–1/2, 1/2, … N + 1/2 and i = H, I, A, B. This implies that eqs. (C.21) to (C.33) represent a 

5N + 9 × 5N + 9 system of linear equations which may be solved for concentrations and the 

potential gradient (simultaneously) at the next iteration (Ci, j
n  and ϕj

n).

C.1 Convergence Criteria

To calculate the steady state ion concentrations, the numerical discretization and relaxation 

scheme outlined above are iterated. This produces a sequence of approximate ion 

concentrations

Ci, j1 , Ci, j2 , … Ci, jn .

After n iterations, the error associated with ion i is approximated by

Ei n = max
j = − 1/2, 1/2, … N + 1/2

|Ci, j
n − Ci, j

n − 1| . (C.34)

We stop iteration when the maximum error (over all ion species) is less than a specified 

tolerace

max
i = H, I, B, A

Ei n < δ . (C.35)
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In the results reported here, we used a tolerance of δ = 5 × 10−10.

D Calculation of Sobol Indices

Using the notation from [39], we begin with generating two independent sampling matrices 

A and B, each of size s × N, where s is the number of samples and N is the number of 

parameters. Hence, each row represents a sample and each column represents a parameter. 

We define a matrix AB
(i) where all columns are from A except the i-th column which is from 

B. Then, the total Sobol’ index for the parameter pi is estimated by,

Si = 1
2s

j = 1

s

f(A)j − f AB
i

j
2
, (D.36)

where, f(A)j is the QoI for the parameters corresponding to the j-th row of the matrix A and 

f(AB
i )j is the QoI for the parameters corresponding to the j-th row of the matrix AB

i .

To estimate the first-order SI, we implemented the “Correlation 2” scheme proposed in 

[41]. This scheme uses three independent sampling matrices A, B, and C. Using the above 

notation, the estimator is defined by,

Si = 1
s

j = 1

s

f(A)j − f(AC
i )j f(BA

i )j − f(B)j , (D.37)

where, f(AC
i )j is the QoI for the parameters corresponding to the j-th row of the matrix 

AC
i . Following our terminology, AC

i  is the matrix where all columns are from A except 

the i-th column, which is from the third independent matrix C. To sample the parameter 

space we use Sobol’ sequences, which are quasi-random sequences that have been shown 

to give a uniform distribution with low discrepancy in high-dimensional spaces [44]. To 

reduce the computation time of the QoI for a sample, custom sparse arrays based on 

compressed sparse row format were developed to represent the discretized equations (Eqs. 

(C.21) to (C.33)). The resulting system of equations was solved using the sparse linear 

solver scipy.sparse.linalg.spsolve (with permc_spec=MMD_AT_PLUS_A). Further, rather 

than using a static number of samples for the estimation of SI, we define a convergence 

criterion to dynamically select the number of samples to estimate the SI of each parameter.

The estimated SI is updated with every new sample in the parameter space. This gives us a 

statistical distribution of the updates of the estimated SI. We define the convergence of SI 

if the standard deviation of this distribution, over the last k updates (we call this the batch 

size), is less than a tolerance tol. If the model is well-behaved in the parameter regime, we 

expect the estimated SIs to converge as we include more samples. Hence, we expect that the 

standard deviation of the last batch of k number of updates of the SI will be considerably 

low. Figure D.5 shows the convergence of the estimated SIs for the model in this study 
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in the full parameter regime. If we decrease tol, more number of updates are required for 

convergence of SI of some of the parameters, without a significant change in the estimated 

SI.

Finally, for faster computation, the QoIs required for the updates of an entire batch (defined 

by k) are computed in parallel using the package joblib in Python.

Fig. D.5: 
Convergence plots for total SI estimates, when all of the parameters are considered when (a) 

tol = 0.02 and (b) tol = 0.01, both with batch size k = 2000. At the lower tol value, some of 

the parameters take a greater number of updates for convergence. Note that the number of 

updates required for convergence for a parameter will always be a multiple of the batch size 

k.
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Fig. 1: 
Illustration of gel volume fraction (θg) and Hydrogen/Anion source profiles. Recall that θs = 

1 – θg.
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Fig. 2: 
Sobol’ indices for boundary pH for each parameter. First order (Si) and additional (AI) SI 

are depicted, while their sum indicates total SI (Si). (a) Source is fixed at 1, and all other 

parameters are varied in their region of interest, (b) All seven parameters are varied.
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Fig. 3: 
Violin and box plots for log10 (H0 as a function of (a) ion source magnitude (S0), (b) 

hydrogen exchange rate (kHI), (c) bicarbonate exchange rate (kAB), (d) lumenal hydrogen 

concentration (HL), and (e) lumenal cation concentration (IL). White hashes indicate mean 

of QoI within a subinterval and black hashes indicate the median. Thick black lines indicate 

the range from first to third quartiles. Black whiskers indicate the extent of the data (sans 

outliers), and blue x-es indicate individual outliers (median ±1.5 times inter-quartile range). 

Panel (a) also shows the underlying data (with running mean and mean±std. indicated) for 

illustrative purposes.
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Fig. 4: 
Sobol’ indices for the other six parameters when hydrogen source is fixed and large (S0 = 

10). First order (Si) and additional (AI) SI are depicted, while their sum indicates total SI 

(Si).
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Fig. 5: 
Violin and box plots for log10 (H0) as a function of (a) hydrogen exchange rate (kHI) and 

(b) bicarbonate exchange rate (kAB), when hydrogen source is large (S0 = 10). White hashes 

indicate mean of Qol within a subinterval and black hashes indicate the median. Thick 

black lines indicate the range from first to third quartiles. Black whiskers indicate the extent 

of the data (sans outliers), and blue x-es indicate individual outliers (median ±1.5 times 

inter-quartile range).
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Fig. 6: 
Sobol’ indices for the other six parameters when hydrogen source is fixed and small (S0 = 

0.1). First order (Si) and additional (AI) SI are depicted, while their sum indicates total SI 

(Si).
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Fig. 7: 
Violin and box plots for log10 (H0) as a function of (a) hydrogen exchange rate (kHI), (b) 

bicarbonate exchange rate (kAB, (c) lumenal hydrogen concentration (HL), and (d) lumenal 

cation concentration (IL), when hydrogen source is small (S0 = 0.1). White hashes indicate 

mean of QoI within a subinterval and black hashes indicate the median. Thick black lines 

indicate the range from first to third quartiles. Black whiskers indicate the extent of the data 

(sans outliers), and blue x-es indicate individual outliers (median ±1.5 times inter-quartile 

range).
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Fig. 8: 
First order and additional Sobol’ indices for the other six parameters when hydrogen 

exchange rate is fixed and small. Panels show (a) kHI = 10−6 and (b) kHI = 10−8. First 

order (Si) and additional (AI) SI are depicted, while their sum indicates total SI (Si).
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Fig. 9: 
(a) Total Sobol’ indices of the other six parameters as a function of kHI. (b) Mean (blue 

diamonds) and variance (orange squares) of pH at the left boundary as a function of kHI.
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Table 1:

This table lists the relevant parameters for our Sobol’ analysis, their units, and the intervals over which we 

allow them to range. The final column indicates if the parameter is assumed to be log-uniformly distributed 

(otherwise, parameters are assumed to be uniformly distributed).

Parameter Description Units Interval Log-unif.

k HI Rate constant of Hydrogen/Sodium Exchange cm/sec [1 × 10−6, 1 × 10−1] ✓

k AB Rate constant of Chloride/Bicarbonate Exchange cm/sec [1 × 10−6, 1 × 10−1] ✓

δ HI Bias constant of Hydrogen/Sodium Exchange [−] [5 × 104, 15 × 104]

δ AB Bias constant of Chloride/Bicarbonate Exchange [−] [5, 15]

HL Lumenal concentration of Hydrogen M [1 × 10−4, 1 × 10−1] ✓

IL Lumenal concentration of cations M [1 × 10−4, 1 × 10−1] ✓

S 0 Magnitude of Hydrogen secretion [−] [1 × 10−1, 1 × 101] ✓
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