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Abstract

Deriving reliable information about the structural and functional architecture of the

brain in vivo is critical for the clinical and basic neurosciences. In the new era of large

population-based datasets, when multiple brain imaging modalities and contrasts are

combined in order to reveal latent brain structural patterns and associations with

genetic, demographic and clinical information, automated and stringent quality con-

trol (QC) procedures are important. Diffusion magnetic resonance imaging (dMRI) is a

fertile imaging technique for probing and visualising brain tissue microstructure

in vivo, and has been included in most standard imaging protocols in large-scale stud-

ies. Due to its sensitivity to subject motion and technical artefacts, automated QC

procedures prior to scalar diffusion metrics estimation are required in order to mini-

mise the influence of noise and artefacts. However, the QC procedures performed

on raw diffusion data cannot guarantee an absence of distorted maps among the

derived diffusion metrics. Thus, robust and efficient QC methods for diffusion scalar

metrics are needed. Here, we introduce Fast qualitY conTrol meThod foR derIved dif-

fUsion Metrics (YTTRIUM), a computationally efficient QC method utilising structural

similarity to evaluate diffusion map quality and mean diffusion metrics. As an exam-

ple, we applied YTTRIUM in the context of tract-based spatial statistics to assess

associations between age and kurtosis imaging and white matter tract integrity maps

in U.K. Biobank data (n = 18,608). To assess the influence of outliers on results

obtained using machine learning (ML) approaches, we tested the effects of applying

YTTRIUM on brain age prediction. We demonstrated that the proposed QC pipeline

represents an efficient approach for identifying poor quality datasets and artefacts

and increases the accuracy of ML based brain age prediction.
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1 | INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) provides a range of

structural brain features based on routine clinical measurements,

which has contributed to its popularity across fields and applications

(de Lange et al., 2020; Kochunov et al., 2015; Westlye et al., 2010).

Advanced dMRI is technically challenging and often involves time-

consuming acquisitions placing high demands on the performance and

stability of the scanner hardware. Therefore, dMRI data are vulnerable

to experimental setup perturbations including post-processing approaches,

which might bias the results. In turn, optimised post-processing pipelines

(Ades-Aron et al., 2018; Maximov, Alnæs, & Westlye, 2019; Tournier

et al. 2019) and stringent procedures for quality control (QC; Alfaro-

Almagro et al., 2018; Bastiani et al., 2019; Graham, Drobnjak, &

Zhang, 2018; Haddad et al., 2019) are important to increase reliability and

sensitivity. Various approaches have been developed to detect and cor-

rect artefacts in raw diffusion data originating, for example, from eddy cur-

rents, bulk head motions, susceptibility distortions (Andersson &

Sotiropoulos, 2016), noise (Kochunov et al., 2018), Gibbs ringing artefacts

(Perrone et al., 2016; Veraart, Fieremans, Jelescu, Knoll, & Novikov, 2016;

Veraart, Novikov, et al., 2016), presence of outliers (Koch, Zhukov,

Stöcker, Groeschel, & Schultz, 2019) and diffusion metric variability

(David, Mesri, Viergever, & Leemans, 2019; Maximov et al., 2015).

However, QC and data harmonisation procedures applied on raw

diffusion data (Fortin et al., 2017; Mirzaalian et al., 2018) do not guar-

antee accurate numerical computation of scalar diffusion metrics.

Derived diffusion metrics from diffusion or kurtosis tensors are sensi-

tive to a range of subject-specific factors such as age or various brain

disorders, but also to applied numerical algorithm or its programming

implementation (David et al., 2019; Grinberg et al., 2017; Lebel

et al., 2012; Maximov et al., 2015). The effects of noisy observations

on subsequent between-subjects analysis involving the derived diffu-

sion metrics can be mitigated using simple outlier detection proce-

dures (see, e.g., de Lange et al., 2020; Richard et al., 2018; Tønnesen

et al., 2018). However, few publications have directly assessed the

effects of QC filtration of final data and performing a sanity check of

the derived scalar maps before the statistical analysis. As an example,

one can use a visual inspection (see, e.g., slicesdir utility from FSL

[Smith et al., 2007]) or truncation based on variability of the data and

their SD. We know that outliers might affect the results of analysis, in

particular, machine learning (ML) algorithms and related prediction or

classification output. One example is brain age prediction using neuro-

imaging data (Kaufmann et al., 2019; Smith, Vidaurre, Alfaro-Almagro,

Nichols, & Miller, 2019), where corrupted data either in the training or

test sets will influence the accuracy of the prediction.

Here, we introduce a QC method for the derived diffusion maps

based on twofold parameterisation: first, diffusion data reduction

based on the scalar diffusion values averaged across skeleton voxels

using tract-based spatial statistics (TBSS; Smith et al., 2007), and,

second, structural similarity (SSIM; Wang, Bovik, Sheikh, &

Simoncelli, 2004) of individual diffusion maps relative to the mean dif-

fusion image derived from all subjects. We demonstrate feasibility of

this approach for U.K. Biobank (UKB) data (Miller et al., 2016) using

three commonly applied diffusion approaches: diffusion tensor imag-

ing (DTI) (Basser, Mattiello, & Lebihan, 1994), diffusion kurtosis imag-

ing (DKI) (Jensen, Helpern, Ramani, Lu, & Kaczynski, 2005) and white

matter tract integrity (WMTI; Fieremans, Jensen, & Helpern, 2011).

We evaluated the effect of the developed QC approach by assessing

age-diffusion associations and the accuracy of brain age prediction

using ML technique.

2 | METHODS AND MATERIALS

2.1 | Participants and MRI data

We used dMRI data obtained from 18,608 subjects (see Figure 1 for

age and sex distribution). An accurate overview of the UKB imaging

acquisition parameters and initial QC pipeline can be found in Alfaro-

Almagro et al. (2018) and Miller et al. (2016). Briefly, a conventional

Stejskal-Tanner monopolar spin-echo echo-planar imaging (EPI)

sequence was used with multiband factor 3, diffusion weightings

(b-values) were 1 and 2 ms/μm2 and 50 non-coplanar diffusion direc-

tions per shell. All subjects were scanned at 3T Siemens Skyra scan-

ners with a standard Siemens 32-channel head coil, in Cheadle and

Newcastle, U.K. The spatial resolution was 2 mm3 isotropic, and five

AP versus three PA images with b = 0 ms/μm2 were acquired. All

diffusion data were post-processed using an optimised diffusion

pipeline (Maximov et al., 2019) consisting of six steps: noise correc-

tion (Veraart, Fieremans, et al., 2016; Veraart, Novikov, et al., 2016),

Gibbs-ringing correction (Kellner, Dhital, Kiselev, & Reisert, 2016),

estimation of echo-planar imaging distortions, head motions, eddy-

current and susceptibility distortions (Andersson & Sotiropoulos, 2016),

spatial smoothing using fslmaths from FSL (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012) with a 1 mm3 Gaussian kernel, and

diffusion metrics estimation using Matlab scripts (MathWorks, Natick,

MA; Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 2013). UKB data

were processed using the high-performance computing facility Colossus

F IGURE 1 Demographic data depending on the scanner location
and gender. The mean age (SD) for all data is on the top of the plot

3142 MAXIMOV ET AL.



at the University of Oslo and large data storage located at Services for

Sensitive Data (TSD).

2.2 | Diffusion metrics

2.2.1 | DTI and DKI

Diffusion signal decay can be represented as the Taylor expansion

along diffusion weightings (Novikov, Kiselev, & Jespersen, 2018). This

can be approximated by two diffusion tensors of the second (DTI) and

fourth (DKI) orders of diffusion wavevector. A set of scalar maps are

derived from eigenvalues of the both tensors such as FA, mean, axial

and radial diffusivities (MD, AD, RD, respectively), and mean, axial and

radial kurtosis (MK, AK and RK, respectively). The scalar maps charac-

terise integrative features of brain tissue with potential to represent

sensitive biomarkers (Jones, 2010).

2.2.2 | WMTI

In the frame of standard diffusion model (Novikov, Kiselev, &

Jespersen, 2018), WMTI represents an intra-axonal space as a bundle

of cylinders with effective radius equals to zero (Fieremans

et al., 2011). The cylinders are impermeable, that is, there is no water

exchange between intra- and extra-axonal spaces. The extra-axonal

space is described by anisotropic Gaussian diffusion. In order to keep

the model simple a few more assumptions have been made: intra-

axonal space consists of mostly myelinated axons without any

contribution from myelin due to a fast relaxation rate across of typical

diffusion times; at the same time in extra-axonal space the glial cells

possess fast water exchange with extra-cellular matrix; both intra-

and extra-axonal spaces are modelled by Gaussian diffusion tensors.

In order to avoid degeneration (Jelescu, Veraart, Fieremans, & Novikov,

2016), intra-axonal diffusion is assumed to be slower than diffusion in

extra-axonal matrix. However, this assumption should be considered

carefully, because it artificially reduces a set of plausible estimations

appearing in the conventional diffusion experiments (Novikov, Kiselev,

& Jespersen 2018; Veraart, Novikov, & Fieremans, 2018; Novikov, Ver-

aart et al., 2018). Besides, WMTI parameterisation works in the case of

quite coherent axonal bundle with an orientation dispersion below 30�

(Fieremans et al., 2011). WMTI allows one to derive axonal water frac-

tion (AWF), extra-axonal axial and radial diffusivities (axEAD and

radEAD, respectively).

2.2.3 | Tract based spatial statistics

In order to evaluate and compare different QC approaches for the

derived diffusion maps, we applied TBSS (Smith et al., 2007). Initially,

all FA volumes were aligned to the FMRI58_FA template, supplied by

FSL, using non-linear transformation implemented by FNIRT (Andersson

& Jenkinson. 2019). Next, a mean FA image across 18,600 subjects was

obtained and thinned in order to create mean FA skeleton. Afterwards,

each subject's FA data are projected onto the mean FA skeleton, by fill-

ing the skeleton with FA values from the nearest relevant tract centre.

TBSS minimises confounding effects due to partial voluming and residual

misalignments originated from non-linear spatial transformations. For

each diffusion metric, we computed the individual skeleton projecting

the non-FA values onto the FA skeleton.

2.2.4 | QC model description

Our approach of image quality estimation originates from multi-

dimensional experiments in nuclear magnetic resonance spectroscopy

(Ernst, Bodenhausen, & Wokaun, 1987), when an additional dimension

allows one to resolve hidden resonance peaks. Natural parameter in

diffusion scalar metrics is an absolute value which either has its physi-

cal limitations, for example, FA and AWF lie between 0 and 1 and dif-

fusion kurtosis is limited by [0, 3] range (Tabesh, Jensen, Ardekani, &

Helpern, 2010; Veraart, Van Hecke, & Sijbers, 2011), or some region-

specific values from other sources, for example, free water diffusivity

in the brain equals to 3 μm2/ms. Thus, by applying a reasonable

threshold rule one can discard volumes with unfeasible values from

further analysis. However, since the values are typically averaged over

the volume (region of interest, skeleton, etc.), we still can expect “hid-
den” outliers with minimal influence on the averaged metric.

The general workflow of the proposed QC algorithm is

summarised in Figure 2. The workflow consists of five steps: first, we

estimate diffusion metrics for each subject in the diffusion space; sec-

ond, a normalisation step is performed in order to align each diffusion

map to Montreal Neurological Institute (MNI) space using FA map and

derived non-linear transformation; third, two QC parameters are esti-

mated for each subject: namely, averaged diffusion metric and SSIM.

SSIM values are estimated using the cohort mean diffusion metric as a

reference, mean diffusion values are obtained by averaging the scalar

maps over the TBSS skeleton; fourth, k-means approach for one clus-

ter allows us to obtain a distribution of the Eucledian distances for

each subject point to the cluster centroid; finally, the median distance

and empirically determined number of neighbours are used for the

density based clustering in order to identify possible outliers among

the derived diffusion metrics. As a result, the outlier exclusion is done

in the level of the whole brain volume.

We assume that SSIM allows us to spread image parameterisation

into the second dimension using three principal features: luminance,

contrast and structure as following (Wang et al., 2004),

fssim =
2μxμy + c1
μ2x + μ

2
y + c1

 !α
2σxσy + c2
σ2x + σ

2
y + c2

 !β
σxy + c3
σxσy + c3

� �γ

,

where index x belongs to the evaluated map and y to the population

mean (reference) map for the given diffusion metric, μx,y are the

means of x and y, σ2x,y are the variances of x and y and σxy is the

covariance of x and y, constants c1,2,3 are the variables stabilising the
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SSIM estimation, and α, β and γ are the weights of three SSIM fea-

tures. The stabilisation constants c1, c2 and c3 are defined in Matlab

as c1 = (0.01*L)2; c2 = (0.03*L)2; c3 = c2/2; with L specified by a

dynamic range value: L = 1 for images with [0,1] scale, and 255 for

others. By design, the SSIM metric is devoted to extract structural dif-

ferences between the images, in contrast to the conventional

approaches based on pixelwise error visualisation. Thus, SSIM is capa-

ble to identify differences between the information extracted from

the scalar reference image and target image, similar to human visual

perception. For the estimations, we used the ssim function,

implemented in Matlab. The SSIM values are estimated for each diffu-

sion metric separately, such as FA, MD, MK and so on, due to differ-

ent map structure of the diffusion metrics. In theory, SSIM estimator

can be improved for some specific purposes (Charrier, Knoblauch,

Maloney, Bovik, & Moorthy, 2012) or generalised (Brunet, Vrscay, &

Wang, 2012). Nevertheless, original SSIM metric already proved its

capability in medical image quality verification (Chow & Paramesran,

2016; Renieblas, Nogués, González, Gómez-Leon, & del Castillo, 2017;

Vinding et al., 2017). The weights α, β and γ allow one to emphasise

the principle SSIM features in order to enhance a contrast between

original image and reference. While SSIM weights adjustment is still

debated (Li, & Bovik, 2009), we empirically define the following

weights α = .1, β = .1 and γ = 2, in order to stretch a range of SSIM

value components.

After the diffusion metric evaluation and normalisation of the sca-

lar maps to the common space, we estimated the SSIM metrics for

each diffusion map using averaged normalised diffusion metric as a

reference image in SSIM. We performed outlier detection using the

following two-step approach: first, we used k-means clustering

(implemented as kmeans Matlab function) to define one cluster based

on squared Eucledian distances for (diffusion metric, SSIM) pairs

(David & Vassilvitskii, 2007). Next, in order to introduce object density

parameterisation, we used the median distance of the distance

distribution (MDD) around the cluster centroid as a unit for

neighbourhood radius in density-based scan algorithm with noise

(dbscan, implemented as MATLAB function; Daszykowski, Walczak, &

Massart, 2002; Ester, Kriegel, Sander, & Xu, 1996). The optional

parameters in the dbscan algorithm are number of objects in

neighbourhood of a central object and number of MDD units. We

empirically set it to be equal to 10 and 7, respectively, in the tests. As

such, the chosen parameters allow us to apply cluster density estima-

tion independently from the original data distribution (see,

e.g., Figure 3 and Kendall correlation coefficients between diffusion

metrics and SSIM values, estimated using Matlab function corr).

As a frequently applied QC approach for comparison purpose, we

applied a simple threshold approach of j3j SD from the mean diffusion

value after regressing out main effects of age, sex and site.

2.3 | Statistical analysis

In order to assess the effects of our proposed QC pipeline on the sen-

sitivity of the diffusion metrics we tested for associations with age

and sex using linear models as implemented in the Matlab function

lmfit. In the subsample of 799 subjects (724 UKB subjects + 75 artifi-

cially distorted maps) we employed the following general linear model

(GLM): y = b0 + b1 Age + b2 Sex + b3 Site, where Age is given in years,

Sex and site as a dichotomous variable. We computed specificity and

sensitivity of the automated artefact correction. Sensitivity is defined

as a ratio of True Positive/(True Positive + False Negative) and speci-

ficity as a ratio of True Negative/(True Negative + False Positive).

In the full UKB sample we employed the following models:

y = b0 + b1 Age + b2 Sex + b3 Site + (b4 Age
2). We computed root mean

squared error (RMSE) and R-squared as proxies for goodness-of-fit.

We compared coefficients between models (before and after dis-

carding datasets flagged by our QC pipeline) using the R package cocor

F IGURE 2 Algorithmic workflow of the developed QC procedure for diffusion metric. The proposed procedure consists of five steps:
(1) estimation of diffusion scalar maps; (2) transferring of scalar maps into TBSS format using conventional scheme (Smith et al., 2007);
(3) estimation of SSIM and skeleton-averaged values for each subject. As a reference image for the SSIM estimation, we used a mean diffusion
map; (4) applying of k-means for estimation of all point distances to the cluster centroid; (5) data filtration using the density-based spatial
clusterisation
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(Diedenhofen & Musch, 2015). In order to assess normality of the

residuals from the linear models we used QQ-plots (Aldor-Noiman,

Brown, Buja, Rolke, & Stine, 2013; implemented as qqplot Matlab func-

tion) and Kolmogorov–Smirnov (KS) test with W critical value

(Kolmogoroff, 1933; Smirnov, 1948). The W critical values have been

used as indirect measures of normality of the residuals. The KS tests

were implemented as MATLAB function kstest.

2.4 | Machine learning for brain age gap estimation

We estimated the influence of outliers on ML based brain age predic-

tion. The brain age gap (BAG) is defined as the difference between

chronological and predicted age and has been proposed to reflect a

sensitive imaging-derived phenotype (Kaufmann et al., 2019). For age

prediction we applied two frequently used approaches. First, we

employed linear model and multiple regressors (LMMR) defined as

Y = Xβ–δ, where Y is the chronological age, β is the regressor vector,

X is the matrix of brain features used for prediction, and δ is the BAG.

The solution can be obtained by pseudo-inversion X+ matrix (Smith

et al., 2019). In order to improve the ML-training, we used 25% of

eigenstates produced by the singular value decomposition replacing

the X matrix as recommended by Smith et al., 2019. The estimations

were performed using original Matlab script from Smith et al., 2019

(http://www.fmrib.ox.ac.uk/BrainAgeDelta) with removed cross-

validation code. The second algorithm is XGBoost employing a

gradient boosting approach (Chen & Guestrin, 2016). The extreme

gradient boosting algorithm has been shown to have enhanced perfor-

mance and speed in sequential decision trees ML algorithms. The

XGBoost algorithm allows one to use an optimised loss function

instead of increased weights as well as regularisation multipliers. The

parameters of XGBoost were chosen as follows: eta = 1; number of

rounds = 250; max depth = 4; lambda = 10−7. Estimations were per-

formed using Julia (https://julialang.org) implementation of XGBoost

algorithm (https://github.com/dmlc/XGBoost.jl).

For simplicity, we used the following linear model using only four

diffusion metrics averaged over the skeleton: Y ~ b1 FA + b2 MD + b3

MK + b4 AWF + b5 Sex + b6 Site. In order to assess the influence of

outliers on age prediction, a fixed number of 476 outliers, identified

by the proposed QC approach over all diffusion metrics, was com-

bined with varying samples of good-quality data, creating total

training-sets of 1,000, 2000, 3,000, 4,000, 5,000, 7,500, 10,000,

12,500 and 15,000 subjects. The 476 outliers were manually added to

each sample, leading to outlier percentages of 47.6, 23.8, 15.9, 11.9,

9.52, 6.35, 4.76, 3.81 and 3.17%, respectively. In all training sets, we

kept the sex and site distribution identical. All training sets were

selected from the whole UKB dataset. Thousand subjects not included

in the training sets were selected as a test sample that was used in all

runs. We performed the BAG estimations separately for the training

sets with and without outliers, respectively. As criteria we used the

Pearson correlations between chronological and predicted ages, and

root mean squared errors estimated for the test sample.

F IGURE 3 Example of simulated distortions added to the evaluated diffusion scalar maps and their influence on the estimated SSIM values.
(a) an original FA image and three types of distortions: Type 1—random zero slices (see the red arrow), Type 2—slices with scaled and smoothed
values (see the red arrow), Type 3—rotation of a whole volume around the superior–inferior axis (red lines show the angle); (b) correlation of the
SSIM metrics evaluated for FA, AWF, MD and MK metrics using data without (SSIM1) and with (SSIM2) outliers. r is the Pearson correlation
coefficient; black dotted line is a unity line; (c) left-side images are mean metrics averaged without (wo) outliers, when right-side images are mean
metrics including (w) the outliers into averaging step
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2.5 | Simulated artefacts in small subsample

In order to verify our approach for detection of possible “badly”
estimated scalar metrics and outliers we used a random subset of

UKB data consisting of 724 subjects. Next, we manually introduced

three types of image distortions to the evaluated diffusion scalar

maps in MNI space. The first type (Type 1) is based on complete

loss of N1 random slices in the image volume. In our case, we set

upper bound of N1 to be equal 5. The second type of artefacts

(Type 2) is based on value scaling of up to N2 = 7 random slices.

Scaling of the random slices can be performed in two ways as a

division or multiplication of the diffusion values. To dilute scaled

values between neighbouring slices we applied 3D Gaussian

smoothing with 3mm3 kernel. The final type of distortions (Type 3)

is based on residual misalignments along an image normalisation

process. As a simple implementation of the residual misalignments

we used rotation around superior–inferior axis with a random angle

up to 5�. An example of original diffusion maps and three types of

artificial distortions is presented in Figure 3. Finally, we added

25 volumes (10.4% of original data) of each type of distortions to

four diffusion metrics: FA, MD, MK and AWF. In order to test influ-

ence of artefacts on the derived mean metric maps, we evaluated

SSIM parameters of initial datasets using mean maps with (799 vol-

umes) and without (724 volumes) outliers.

3 | RESULTS

3.1 | Sensitivity to simulated artefacts

In the randomly selected subset of UKB data we evaluated an influ-

ence of artificial outliers on the averaged diffusion metrics and esti-

mated SSIM metrics. Resulting SSIM correlations are presented in

Figure 3. High linear correlations (over .999) demonstrated that an

introduction of outliers into data subsets did not influence on mean

reference images and, consequently, on the SSIM evaluations.

Supporting Information provide examples of the diffusion maps

detected in the whole UKB sample with different types of distortions

after data processing and scalar metric evaluation.

Figure 4 shows an application of the developed QC method to

the subsample consisting of 799 subjects with artificially introduced

outliers of the three types. The sensitivity of the QC method for the

diffusion metrics is presented in Table 1. Briefly, based on AWF we

detected all three types of introduced outliers. In the case of FA,

we missed 10 (13%) outliers; in the case of MD, we missed 7 (9%)

outliers; in the case of MK, we missed 2 (3%) outliers. In contrast,

the QC approach based on data truncation beyond three SDs from

the mean allowed us to detect for FA, only six outliers (69 outliers

are missed, 92%); for MD, it detected only four outliers (71 outliers

are missed, 95%); for MK, it detected six outliers (69 outliers are

F IGURE 4 Scatter plots of
diffusion metrics and SSIM values for
the data with three types of outliers.
All artificial outliers are marked by the
different colours. The result of QC
method is marked by black crosses.
Image inserts demonstrate a zoomed
boundary between outlier groups and
original data. Estimated Kendall
correlation coefficients (K) for the
diffusion metrics and SSIM are
presented as well. SSIM, FA, MK and
AWF are unit-less values, MD is in
μm2/ms. The black dashed lines are
boundaries of three SDs from the
mean and delineate the simple QC
method based on data thresholding
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missed, 92%); and for AWF, it detected four outliers (71 outliers are

missed, 95%).

Figure 5 shows the various diffusion metrics plotted as a function

of age and the corresponding linear fits based on the GLM. Briefly,

the raw data and thresholding method yielded similar GLM parame-

ters (see Table 2 for the intercept and slope values). Cocor function

revealed no significant slope differences for any of the diffusion met-

rics between the raw and QC'ed data. Table 2 summarises the

goodness-of-fit measures for the selected diffusion metrics for three

datasets (raw data, thresholding QC and the developed QC method)

and GLM parameters (b0, intercept, and b1, age slope). QQ plots and

the W parameters from KS tests based on FA, MD, MK and AWF for

three datasets (raw data, thresholding QC and our QC method)

suggested that our proposed QC method yields the most “normal”
residuals (Figure 6).

3.2 | Effects of QC pipeline on the sensitivity to
age, sex and scanner site

Figure 7 shows an application of the developed QC method to the

UKB data with 18,608 subjects. As detailed above, we discarded

datasets defined as outliers based on mean skeleton diffusion met-

rics and SSIM. The mean diffusion maps used as a reference for

SSIM estimations are depicted in Supporting Information. Distribu-

tions of relevant diffusion metrics and demographics of the data

TABLE 1 Sensitivity and specificity of the proposed QC method for the diffusion metrics based on artificial distortions of three types (see
Figure 3)

Metrics

Missed volumes from 25 outliers (sensitivity/specificity)
Number of discarded
volumes. False positive

Type 1 Type 2 Type 3 Original data

FA 2 (0.92/0.80) 8 (0.68/0.80) 0 (1/0.80) 142

MD 1 (0.96/0.91) 6 (0.76/0.91) 0 (1/0.91) 69

MK 0 (1/0.97) 2 (0.92/0.97) 0 (1/0.97) 21

AWF 0 (1/0.85) 0 (1/0.85) 0 (1/0.85) 112

F IGURE 5 Results of general
linear model y = b0 + b1 Age + b2 Sex
+ b3 Site for four diffusion metrics

over the test data sample of
724 subjects. The solid and dashed
red lines are linear fit (LF) and the
interval of confidence (CI 95%); the
black solid and dashed lines are LF
and CI for data thresholded by three
SDs from the mean diffusion metrics
(marked as dot-dash lines); the
magenta solid and dashed lines are LF
and CI for the proposed QC method.
SSIM, FA, MK and AWF are unit-less
values, MD is in μm2/ms
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TABLE 2 Results of GLM y = b0 + b1 Age + b2 Sex + b3 Site for four diffusion metrics using test sample of 724 subjects

Metrics/statistics

Raw data No 799 Threshold with 3 SD Our QC method

RMSE R2 NO RMSE R2 NO RMSE R2

FA 0.0211 .112 792 0.0198 .137 592 0.0135 .1

MD 0.0327 .125 786 0.03 .141 657 0.0223 .144

MK 0.0416 .0999 791 0.0391 .0985 705 0.0345 .105

AWF 0.0152 .103 793 0.0145 .108 611 0.0109 .0629

Intercept Slope Intercept Slope Intercept Slope

FA 0.5164 −9.80�10−4 0.5197 −1.01�10−3 0.4990 −5.98�10−4

MD 0.8037 1.54�10−3 0.8037 1.53�10−3 0.8194 1.18�10−3

MK 1.1188 −1.55�10−3 1.1154 −1.43�10−3 1.1189 −1.38�10−3

AWF 0.4174 −6.29�10−4 0.4176 −6.19�10−4 0.4077 −3.80�10−4

Note: RMSE is the root mean squared error; R2 is the R-squared parameter; NO is the number of observations; SDs; Intercept is b0; Slope is b1.

F IGURE 6 QQ plots of the GLM
residuals for three cases (see
Figure 4): (a) raw data; (b) after
thresholding by three SDs; (c) the
proposed QC method. Values W are
the critical numbers of Kolmogorov–
Smirnov (KS) test for a normality. In all
cases, KS test did not reveal that the
residuals are normally distributed
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F IGURE 7 An application of QC
method to UKB data. Mean diffusion
maps are presented as a reference for
the SSIM estimations. The red circles
are identified outliers; the blue circles
are the filtered data. SSIM, FA, MK
and AWF are unit-less values, MD is
in μm2/ms. The dashed black lines
mark the boundaries in three SDs

from the mean value

F IGURE 8 The results of GLM
age-diffusion correlations with linear
age term (red line) and quadratic age
term (black line). The plots marked as
“All” consists of all raw data
(n = 18,608); the plots marked as
“QC” consists of data passed through
the QC filtration (n = 18,132).
Intervals of confidence (CI 95%) are
presented as dashed line in all cases.
FA, MK and AWF are unit-less values,

MD is in μm2/ms
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defined as outliers are presented in Supporting Information. A

higher number of outliers were identified from the Cheadle

(n = 396; 3%) site compared to the Newcastle (n = 78; 1%) site,

and both sex (39% of women) and age distribution

(58.55/7.74 years) of the outlier data did not diverge substantially

from the distributions in the total sample. For illustration, we

depicted the boundaries of j3j SD from the mean cohort values for

each diffusion metric.

Figure 8 presents age-related trajectories (linear and quadratic

fits) for four diffusion metrics with the detected outliers included or

excluded. The summary statistics are summarised in Table 3. All other

metrics are shown in the Supporting Information. Figure 9 shows

corresponding QQ-plots of the GLM residuals in the case of linear

and quadratic age terms. QQ-plots of the residuals for all diffusion

metrics are shown in Supporting Information. Briefly, the residuals

from the models using raw data show strong deviations from the diag-

onal in both linear and quadratic age terms. In contrast, the residuals

from QC approved data appear more normal. The GLM age-diffusion

dependence and related QQ-plots for simple thresholding approach

are presented in Supporting Information. In short, the results for trun-

cation QC method repeat the same behaviour as in the case of simu-

lated data (see Figures 5 and 6). Cocor function revealed no significant

slope differences for any of the diffusion metrics between the raw

and QC'ed data in Figure 8.

3.3 | Effects of QC pipeline on the ML BAG
estimations

Figure 10 shows the trajectories of RMSE and correlations between

chronological and predicted ages for the two ML algorithms. For sta-

tistics and cross validation of the BAG results, we repeated model

training 100 times, randomly choosing the training samples from

whole UKB data. Briefly, in the case of QC filtered data model perfor-

mance increased only moderately with sample size, with RMSE of the

XGBoost algorithm suggesting only minor effects. In contrast, the

training sets with outliers demonstrated strong dependence of the

chronological and predicted age correlations and RMSE on the per-

centage of outliers in the training sample, in particular, for the LMMR

approach. For both ML algorithms, increasing training sample size

decreased RMSE in the test set.

4 | DISCUSSION

Advanced dMRI offers sensitive measures of brain tissue micro- and

macrostructural architecture and integrity, with large potential for the

basic and clinical neurosciences. With the surge of large-scale clinical

and population-based efforts acquiring dMRI data from thousands of

individuals, there is an increasing need to develop computationally

TABLE 3 Results of two GLM
y = b0 + b1 Age + b2 Sex + b3 Site + (b4
Age2) for four diffusion metrics using all
UKB data with and without QC
procedure

Metrics/statistics

All data, linear age term QC passed, linear age term

NO RMSE R2 NO RMSE R2

FA 18,608 0.0187 .173 18,134 0.0171 .179

MD 18,603 0.0337 .133 18,129 0.0282 .158

MK 18,608 0.0398 .1 18,134 0.037 .096

AWF 18,607 0.014 .119 18,133 0.0131 .113

Intercept Slope Intercept Slope

FA 0.5277 −1.12�10−3 0.5242 −1.05�10−3

MD 0.7914 1.70�10−3 0.7976 1.58�10−3

MK 1.1315 −1.64�10−3 1.1231 −1.47�10−3

AWF 0.4226 −6.70�10−4 0.4196 −6.10�10−4

All data, quadratic age term QC passed, quadratic age term

NO RMSE R2 NO RMSE R2

FA 18,608 0.0187 .176 18,134 0.0171 .182

MD 18,603 0.0335 .141 18,129 0.028 .165

MK 18,608 0.0397 .106 18,134 0.0369 .101

AWF 18,607 0.014 .125 18,133 0.0131 .117

Intercept Slope Intercept Slope

FA 0.5283 −1.13�10−3 0.5247 −1.06�10−3

MD 0.7898 1.73�10−3 0.7962 1.61�10−3

MK 1.1332 1.67�10−3 1.1246 −1.50�10−3

AWF 0.4232 −6.81�10−4 0.4201 −6.19�10−4

Note: RMSE is the root mean squared error; R2 is the R-squared parameter, NO is the number of

observations; Intercept is b0; Slope is b1.
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efficient pipelines for quality assessment and identification of poor

quality data among derived diffusion scalar metrics. The proposed QC

method based on 2D data representation exploiting similarity metrics

and data density features enables an efficient evaluation of data qual-

ity after estimation of diffusion scalar metrics. In a subsample (n = 724

plus 75 artificial outliers), our semi-automated artefact detection

based on similarity metrics yielded high sensitivity and specificity and

the residuals from linear age fits in the full sample (n = 18,608)

resulted in more normal residuals after compared to before discarding

flagged datasets. Additionally, the QC pipeline improved brain-age

prediction using ML by mitigating the influence of outliers in the

training set.

By default, the harmonised validated raw diffusion data allow one

to derive accurate scalar metrics. However, a quality evaluation of the

processed diffusion maps is still an open question in big data analysis.

Many efforts have been made to develop accurate QC and

harmonisation procedures on raw diffusion weighted data (Fortin

et al., 2017; Mirzaalian et al., 2018). Nevertheless, derived diffusion

metrics from DTI or DKI may still deviate from expected range, for

example, due to remaining artefacts and numerical misestimations

(see Supporting Information for examples of the distorted diffusion

maps). Despite improved post-processing algorithms (Ades-Aron

et al., 2018) for raw diffusion data, there is no consensus yet about a

unified pipeline for diffusion data, for example, noise correction

methods are regularly revised (Muckley et al., 2021), Gibbs ringing

artefacts can remain in the images due to different origins such as a

partial Fourier (Muckley et al., 2021), frequency drift effect (Vos

et al., 2016) can bias the estimations, in particular in the case of

advanced dMRI protocols, and diffusion gradient non-linearity correc-

tion (Rudrapatna, Parker, Roberts, & Jones, 2020) might be important

as well. Notably, a number of artefacts in the scalar diffusion maps

could be minimised by applying a state-of-the-art algorithms such as,

for example, eddy_gpu, if a computational facility allows that. The sim-

ple considerations of 2D representations of the averaged diffusion

F IGURE 9 QQ-plots of the GLM residuals for four diffusion metrics. “Original, Linear” means the all data and GLM with linear age term;

“Original, Quadratic” means the all data and GLM with quadratic age term; “QC, Linear” means the QC filtered data and GLM with linear age
term; “QC, Quadratic” means the QC filtered data and GLM with quadratic age term
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metric and SSIM values are an advantage of the developed QC

method. This allows us to take into account frequently applied mea-

sures in large-scale studies, that is, diffusion metrics averaged across a

region of interest or the entire TBSS skeleton and the structural simi-

larity based on the intensity, contrast and structure of the scalar map

in relation to a reference map. As an improvement of the developed

approach, one could generalise SSIM parameter for the scalar maps

belonging to the same diffusion approach. A combination of various

diffusion contrasts could improve the QC efficacy and reduce a com-

putation time. Our simulations revealed that our method is capable of

identifying image artefacts with different origins with high sensitivity

and specificity. Notably, our approach allows one to reveal different

artefacts originated either from the corrupted diffusion maps or cau-

sed by the not accurate warping procedure to MNI space. In the case

of map misalignments, the original diffusion maps in the diffusion

space still can be used in the native space, for example, for a

tractography but should be processed separately in the following

group analysis. This is particularly valuable in the context of large-

scale studies, where manual QC is not feasible and when a

quantitative estimate of structural similarity is needed. Whereas our

direct comparison of slopes did not reveal a significant effect of the

QC procedure on the estimated age-associations, the linear models

based on QC'ed data yielded evidence of improved model fits in terms

of the distributions of the model residuals compared to models based

on the non-QC'ed data.

We found evidence of improved ML based age prediction when

limiting the number of noisy datasets in the training set. In general,

larger training sets are expected to increase accuracy of brain age pre-

diction (see, e.g., Kaufmann et al., 2019). However, in practice, the

number of accessible data is usually limited. Thus, it is very important

to know how different amounts of undetected outliers in the training

set could affect the prediction accuracy in an independent test set.

Our results demonstrated that a higher portion of outliers in the train-

ing set influenced the prediction accuracy in the test set. Surprisingly,

for XGBoost, in contrast to the RMSE, the correlation between

predicted and chronological age did not increase much with increasing

training set size. For LMMR the correlation coefficients increased in

accordance with increased sample size. In both instances, however,

F IGURE 10 Outlier influence on the brain age predictions for two ML algorithm: linear model with multiple regressors (LMMR) and gradient
boosting method (XGBoost). The top row is non-corrected Pearson correlations between chronological and predicted ages as a function of the
sample size of training sets. The correlations were estimated for the fixed test sample of 1,000 subjects. The bottom row is root mean square
error (RMSE) of the predictions as a function of the sample size of training sets. The rectangular green boxplots are the datasets with included
outliers, the blue boxplots with “notched” feature are the datasets without outliers (QC filtered)
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the proportion of bad datasets in the training set influenced the pre-

diction accuracy in the test set, with markedly improved prediction

with lower proportion of noisy data.

In summary, although an overall beneficial effect of removing

poor quality datasets results is not surprising, our results serve as rele-

vant demonstrations of the importance of QC in the context of large-

scale studies. It should also be noted that all datasets included in the

current analysis have been checked and approved by the initial

U.K. Biobank QC procedures (Alfaro-Almagro et al., 2018), and the

reported effects of noise removal on age-associations are likely to

represent lower-bound effects compared to a scenario with no initial

QC procedures. In general, whereas minimising noise is a universal

aim, the direct effects and value of QC will vary between studies and

applications. As a relevant verification of the proposed QC approach,

we plan to apply the same procedure to other imaging biobanks such

as Adolescent Brian Cognitive Development study, conceived and

funded by the National Institutes of Health, United States.

Conclusively, in the case of big data, automated, efficient and

reliable approaches for evaluating the scalar diffusion metrics prior to

statistical analysis are needed. Our results suggest that our proposed

method is suitable as a complementary test of the estimated diffu-

sion data to increase sensitivity of conventional diffusion scalar

metrics.
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