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Heat shock proteins (HSPs) are ubiquitous in living organisms. HSPs are an essential component for cell growth and survival; the
main function of HSPs is controlling the folding and unfolding process of proteins. According to molecular function and mass,
HSPs are categorized into six different families: HSP20 (small HSPS), HSP40 (J-proteins), HSP60, HSP70, HSP90, and HSP100.
In this paper, improved methods for HSP prediction are proposed—the split amino acid composition (SAAC), the dipeptide
composition (DC), the conjoint triad feature (CTF), and the pseudoaverage chemical shift (PseACS) were selected to predict the
HSPs with a support vector machine (SVM). In order to overcome the imbalance data classification problems, the syntactic
minority oversampling technique (SMOTE) was used to balance the dataset. The overall accuracy was 99.72% with a balanced
dataset in the jackknife test by using the optimized combination feature SAAC+DC+CTF+PseACS, which was 4.81% higher
than the imbalanced dataset with the same combination feature. The Sn, Sp, Acc, and MCC of HSP families in our predictive
model were higher than those in existing methods. This improved method may be helpful for protein function prediction.

1. Introduction

Heat shock proteins (HSPs) are ubiquitous in living organ-
isms. They act as molecular chaperones by facilitating and
maintaining proper protein structure and function [1-4]; in
addition, they are involved in various cellular processes such
as protein assembly, secretion, transportation, and protein
degradation [5, 6]. HSPs are rapidly expressed when the cells
are exposed to physiological and environmental conditions
such as elevated temperature, infection, and inflammation
[7, 8]. Since the HSPs were discovered in 1962 by Ritossa
[9], the HSPs have been widely studied, including their
involvement in cardiovascular disease, diabetes, cancer [10-
14]. According to molecular function and mass, HSPs are
categorized into six different families: HSP20 (small HSPS),
HSP40 (J-protein), HSP60, HSP70, HSP90, and HSP100
[15]. These families of HSPs have different functions. The
HSP20 family is an ATP-independent molecular chaperone.
They are efficient in preventing irreversible aggregation pro-
cesses by binding denatured proteins [16]. The HSP70 family
is the most highly conserved among the HSP families; it is an

ATP-dependent molecular chaperone that involves protein
folding and remodeling [17]. HSP40 is the cochaperone of
HSP70, which participates in DNA binding, protein degrada-
tion, intracellular signal transduction, exocytosis, endocyto-
sis, viral infection, apoptosis, and heat shock sensing [18].
HSP90 is another ATP-dependent chaperone that controls
protein function and activity by facilitating protein folding,
binding of ligands to their receptors or targets, or the assem-
bly of multiprotein complexes [19]. The function of the
HSP100 protein is to improve the tolerance to temperature
and to promote the proteolysis of specific cellular substrates
and regulation of transcription [20]. Experimental determi-
nation of HSPs are time-consuming and laborious, so it is
necessary to use an effective method to predict HSPs.
Recently, some computational methods for predicting HSPs
have been proposed in the literature. Feng et al. developed a
predictor called “iHSP-RAAAC” that selected the reduced
amino acid alphabet (RAAA) as a feature vector; the overall
predictive accuracy was 87.42% with the jackknife test [21].
Ahmad et al. used the split amino acid composition (SAAC),
the dipeptide composition (DC), and PseAAC [22, 23] to
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identify HSPs; the highest overall predictive accuracy was
90.7% with the jackknife test [24]. Kumar et al. predicted
HSPs and non-HSPs, and the best prediction accuracy was
72.98% by using the dipeptide composition (DC) with a 5-
fold cross-validation test [25]. Meher et al. used the G-
Spaced Amino Acid Pair Composition (GPC) to predict
HSPs; a better result was obtained with the jackknife test
[26]. Chen et al. summarized the recent advances in machine
learning methods for predicting HSPs [27]. Feature selection
is generally essential in a classification, and the appropriate
integrated feature model generally offers higher accuracy
[28]. Hence, the hybrid features have been successfully used
in recent studies for constructing classifiers [29, 30]. We used
the hybrid features to enhance performance. In this paper,
the split amino acid composition (SAAC), the dipeptide
composition (DC), the conjoint triad feature (CTF), and the
pseudoaverage chemical shift (PseACS) were used to predict
the HSPs with the same datasets as investigated by Feng et al.
Data imbalance is always considered a problem in developing
efficient and reliable prediction systems; due to an imbal-
anced dataset, the classifier would tend towards the majority
class. Here, the syntactic minority oversampling technique
(SMOTE) was used to solve the problem of imbalance. The
overall accuracy was 99.72% with a balanced dataset in the
jackknife test by using the optimized combination feature
SAAC+DC+CTF+PseACS, which was 4.81% higher than
the imbalanced dataset with the same combination feature.

2. Material and Methods

2.1. Dataset. The benchmark dataset was generated by Feng
et al. [21]; the dataset was originally taken from the HSPIR
database. In order to reduce homologous bias and redun-
dancy, the program CD-HIT [31] was used to remove those
sequences that have >40% pairwise sequence identity. 2225
sequences were obtained from different HSP families: the
subset S, contains 357 sequences, the subset S, contains
1279 sequences, the subset S; contains 163 sequences, the
subset S, contains 283 sequences, the subset S contains 58
sequences, and the subset S; contains 85 sequences (see
Table 1). The dataset can be freely downloaded from
http://lin-group.cn/server/iHSP-PseRAAAC. The indepen-
dent datasets include two datasets: the HGNC dataset and
the RICE dataset (see Table 2). The HGNC dataset [32] has
96 human HSPs, and the RICE dataset has 55 RICE HSPs,
which obtained 31 HSPs from Wang et al. [33] and 24 HSPs
from a single family from Sarkar et al. [34]. The independent
dataset can be freely downloaded from http://cabgrid.res
.in:8080/ir-hsp.

2.2. The Prediction Model Construction Overview. The pre-
diction model process is illustrated in Figure 1. The feature
parameters were extracted for the HSPs. By using various
information parameters, the prediction results show that bet-
ter prediction results may be obtained by combining the fol-
lowing four information parameters: the split amino acid
composition (SAAC), the dipeptide composition (DC), the
conjoint triad feature (CTF), and the pseudoaverage chemi-
cal shift (PseACS). In SAAC, the protein sequence was split
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TaBLE 1: The number of sequences in HSP families.

Dataset Family Number of HSP samples
S, HSP20 357

S, HSP40 1279

S, HSP60 163

S, HSP70 283

S, HSP90 58

S, HSP100 85

N Overall 2225

TaBLE 2: The number of sequences in the independent dataset.

RICE dataset

Families HGNC dataset Wang et al. Sarkar et al.
HSP20 11 14 -
HSP40 49 - B
HSP60 15 4 -
HSP70 17 7 24
HSP90 4 3 -
HSP100 — 3 -
Total 96 31 24

into the N-terminus segment and the C-terminus segment
according to the golden ratio. Among the four feature param-
eters, the split amino acid composition (SAAC), the dipep-
tide composition (DC), and the conjoint triad feature
(CTF) are based on the protein sequence, while the pseu-
doaverage chemical shift (PseACS) is related to the protein
secondary structure. Therefore, the feature parameters
involved both sequence and structure information. The four
feature parameters were combined, and the syntactic minor-
ity oversampling technique (SMOTE) was used to solve the
problem of the imbalance dataset. The overall accuracy
(OA) was 99.72% with the balanced dataset, and the result
demonstrates that the proposed method is superior to the
existing methods.

2.3. Feature Extraction Techniques. In order to predict the
HSPs, it is very important to choose a classifier and a set of
reasonable parameters. In this paper, the split amino acid
composition (SAAC), the dipeptide composition (DC) [35],
the conjoint triad feature (CTF), and the pseudoaverage
chemical shift (PseACS) were used to predict the HSPs.

2.3.1. Split Amino Acid Composition (SAAC). Split amino
acid composition (SAAC) is a feature extraction method
based on AAC. In SAAC, the protein sequence is split into
various segments; then, the composition of each segment is
counted separately [36-39]. It is well known that the golden
ratio is ubiquitous in nature. According to the golden ratio,
the protein sequence is divided into the N-terminus segment
and the C-terminus segment; the ratio of the N-terminus
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Fi1GURE 1: The flowchart of the proposed method. SAAC: split amino acid composition; DC: dipeptide composition; CTF: conjoint triad
feature; PseACS: pseudoaverage chemical shift; SMOTE: syntactic minority oversampling technique.

segment to the C-terminus segment is the golden ratio [40].
This method can be represented as follows:

SAAC_Gr' = (AACYN, AACY),
AACN = [xll\l, xIZ\I, ...)x?]’ ---,x%],

c_r,Cc .,C C C
AAC* = [‘xl’xZ’.”’xi ;"‘;xzo]y

w.
LN
w.
xlC = _l,
LC
(i=1,2,-,20),

where Gr' is the 1-step segmentation using the golden ratio,
N represents the N-terminus, C represents the C-terminus,
W, is the occurrence of amino acid 4, Ly is the length of the
N-terminus segment, Lo is the length of the C-terminus
segment.

With this method, we can get SAAC_Gr?, SAAC_Gr?, ...

SAAC_Gr* = (AACY, AACY, AACY, AACY),
SAAC_Gr’ = (AACYy, AACRy, AACY(, AACS, AACEy, AACEy, AACY., AACS).

(2)

2.3.2. Dipeptide Composition (DC). Dipeptide composition
(DC) is a discrete method using sequence neighbor informa-
tion [27, 41, 42]. The occurrence frequency of each two adja-
cent amino acid residue was computed; the advantage of DC
is that it considers some sequence-order information. It can
be calculated as follows:

P=[fisfo fsrof o0 ofano)

m 3)
L-1

where m; is the occurrence number of the ith dipeptide in the
protein sequence, L is the length of the protein sequence.

2.3.3. Conjoint Triad Feature (CTF). The conjoint triad fea-
ture (CTF) representation was used by Shen et al. [43]. In this
method, the properties of one amino acid and its vicinal
amino acids were considered. Three continuous amino acids
were regarded as a unit. The 20 amino acids are classified into
7 groups based on dipole moments and the volume of the
side chains: {A, G, V}, {I,L,F, P}, {Y,M,T,S}, {H,N,Q,
W}, {R,K}, {D,E}, and {C}. Thus, each protein sequence
is represented by a 343- (7 x 7 x 7) dimensional vector, where
each element of the vector corresponds to the frequency of
the corresponding conjoint triad in the protein sequence.
The conjoint triad feature (CTF) has successfully predicted



enzyme function [44], protein-protein interactions [45],
RNA-protein interactions [46], and nuclear receptors [47].
The features of CTF can be formulated as follows:

CTF = [x1, Xp, X357+ 5X50 5 X343)5

(4)

x;= ,
L-2

where #; is the occurrence number of each triad type of the
protein sequence, L is the length of the protein sequence.

2.3.4. Pseudoaverage Chemical Shift (PseACS). Nuclear mag-
netic resonance (NMR) plays a unique role in studying the
structure of proteins because it provides information on the
dynamics of the internal motion of proteins on multiple time
scales [48]. Protons are sensitive to the chemical environ-
ment. The protons in different chemical environments expe-
rience slightly different magnetic fields, and they absorb
different frequencies in different magnetic fields; the resonant
frequencies of the various proteins in relation to a stand are
called the chemical shift [49]. As important parameters are
measured by nuclear magnetic resonance (NMR) spectros-
copy, a chemical shift has been used as a powerful indicator
of the protein structure. Several researchers revealed that
the averaged chemical shift (ACS) of a particular nucleus in
the protein backbone empirically correlates well to its sec-
ondary structure [50]. The PseACS web is accessible at
http://202.207.14.87:8032/bioinformation/acACS/index.asp.

For a protein P, each amino acid in the sequence is
substituted by its averaged chemical shift, and P can be
expressed as follows:

P=[Al, AL AL AL, (i="N,"C,'H,,'H), (5)

where °N stands for nitrogen, *C_ for alpha carbon, 'H, for
alpha hydrogen, and 'Hy for hydrogen linked with nitrogen.

After, we select A=54 and i="N,"*C,'H_,'H, the
PseACS would be expressed as follows:

L-A
= 3 AL AT (=N P, T s e ),
k=1

PseACS = [(p? o, 47, (’ﬂ (i= 5N, BC, 'H,, IHN)'
(6)

2.4. Syntactic Minority Oversampling Technique (SMOTE).
As shown in Table 1, the numbers of HSP40 are about 4
times, 8 times, 5 times, 22 times, and 15 times that of
HSP20, HSP60, HSP70, HSP90, and HSP100, respectively.
This leads to imbalance data classification problems. In order
to overcome this problem, we used the SMOTE to solve the
problem of imbalance. SMOTE is an oversampling approach
where the minority class is oversampled by selecting the
minority class and creating new synthetic samples along the
line segments connecting any or all K-Nearest Neighbors
which belong to that class [51, 52]. In this paper, the protein
numbers of six subfamilies are in equilibrium with SMOTE.
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This algorithm is implemented by the Weka software. A filter
selects SMOTE when the data is loaded, and the parameters
adopt the default parameters according to the number of
families from small to large; the number of the remaining five
families increases in turn to the number of HSP40, which is
the largest number of the HSP families. In this way, SMOTE
is realized.

2.5. Support Vector Machine (SVM). The support vector
machine is a machine learning algorithm, which is based on
the statistical learning theory. The basic idea of SVM is to trans-
form the input data into a high-dimensional Hilbert space and
then determine the optional separating hyperplane [53, 54]. The
radical basis kernel function (RBF) was used to obtain the clas-
sification hyperplane with its effectiveness and speed in the
training process. To handle a multiclass problem, the regulation
parameter ¢ and kernel width parametery were determined via
the grid search method. “One-versus-one (OVO)” and “one-
versus-rest (OVR)” methods are generally applied to extend
the traditional SVM. In this study, the “OVO” strategy was
used. The OVO strategy constructs k x (k — 1)/2 classifiers with
each one trained with the data from two different classes. SVM
has been successfully applied in the field of computational biol-
ogy and bioinformatics [55-64]. In this paper, the LibSVM
package was used to predict HSPs, which can be downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvm.

2.6. Performance Evaluation. In statistical prediction, three
cross-validation tests are commonly used to examine a pre-
dictor for its effectiveness in practical application: the k-fold
cross-validation (subsampling test), the independent dataset
test, and the jackknife test. Among the three methods, the
jackknife test is deemed the most objective and rigorous
one. In the jackknife test, each sample in the training dataset
is in turn singled out as an independent test sample and all
the rule parameters are calculated based on the remaining
dataset without including the one being identified. Hence,
the jackknife test was used to evaluate performance in this
paper. To evaluate the predictive capability and reliability of
our model, the performance of the classification algorithm
is measured using the following: sensitivity (Sn), specificity
(Sp), accuracy (Acc), Matthew’s correlation coefficient
(MCCQC), and overall accuracy (OA) [65-75]. The perfor-
mance of the classification algorithm is measured through
the following:

TP
= TN
1IN
= TN
TP x TN — FP x FN
MCC = ,
/(TP + FP) x (TN + FN) x (TP + FN) x (TN + FP)
oo TP + TN )
TP + TN + FP + EN
m
OA = ) TP/N,

i=1
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TaBLE 3: The predictive results of individual features with the jackknife test by using SVM for HSP families.

HSP families

0,
Features HSP20 HSP40 HSP60 HSP70 HSP90 HSP100 OA (%)
Sn (%) 74.86 90.92 54.72 67.27 53.85 67.9
Sp (%) 95.07 76.19 98.71 96.48 99.86 99.52
CTF 80.92
MCC 0.7 0.68 0.63 0.66 0.69 0.75
Acc (%) 91.79 84.68 95.5 92.75 98.76 98.35
Sn (%) 81.07 97.53 58.49 75.9 57.69 74.07
Sp (%) 97.7 81.06 99.36 98.26 100 99.48
SAAC 87.25
MCC 0.81 0.81 0.7 0.78 0.76 0.78
Acc (%) 95 90.55 96.38 95.41 98.99 98.53
Sn (%) 90.96 96.66 68.55 84.89 63.46 77.78
Sp (%) 96.66 90.69 99.11 98.16 100 99.86
DC 90.69
MCC 0.85 0.88 0.75 0.84 0.79 0.86
Acc (%) 95.73 94.13 96.88 96.47 99.13 99.04
Sn (%) 92.37 95.46 75.47 87.41 67.31 83.95
Sp (%) 99.01 89.94 98.71 98.16 99.91 99.33
PseACS 91.38
MCC 0.92 0.86 0.77 0.86 0.79 0.83
Acc (%) 97.94 93.12 97.02 96.79 99.13 98.76
—~ 99.00 -
xX
§ 97.00 4 — —
Toos00 936 o413 o459
g 93.07 93.39
& 93.00 -
?2‘
g 91.00
3

®
o
=3
S
|

1+2 1+3 1+4 2+3 2+4 344 14243 14244 1+43+4 24344 1+2+3+4

F1GURE 2: Prediction results of different combined features. Numbers denote features: 1 for DC, 2 for CTF, 3 for PseACS, and 4 for SAAC.

TaBLE 4: The predictive results of HSPs by using the combined feature of SAAC+DC+CTF+PseACS with and without SMOTE.

HSP families

. . o
Features with and without SMOTE (Y/N) HSP20 HSP40 HSP60 HSP70 HSP90 HSP100 OA (%)
Sn (%) 100 98.33 100 100 100 100
Sp (%) 99.92 100 99.92 99.82 100 100
PseACS+DC+SAAC+CTF Y 99.72
MCC 1 0.99 1 0.99 1 1
Acc (%) 99.93 99.72 99.93 99.85 100 100
Sn (%) 94.35 98.89 81.13 90.29 75 91.36
Sp (%) 98.58 94.26 99.6 98.84 100 99.9
PseACS+DC+SAAC+CTF N 9491
MCC 0.92 0.94 0.87 0.90 0.86 0.94
Acc (%) 97.89 96.93 98.26 97.75 99.4 99.59

where TP represents the true positive, TN represents the true 3. Results and Discussion

negative, FP represents the false positive, and FN represents

the false negative. m =6 is the number of subsets, and N is  3.1. The Predictive Performance of HSPs. In order to investi-
the number of total sequences of HSP families. gate the effectiveness of the predictive model, many
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FIGURE 3: The predictive sensitivity, specificity, MCC, and accuracy of HSPs by using four algorithms.
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F1GURE 4: The predictive overall accuracy of HSPs by using four algorithms.

characteristic parameters were selected to predict the HSPs
[76, 77]. Then, the split amino acid composition (SAAC),
the dipeptide composition (DC), the conjoint triad feature
(CTF), and the pseudoaverage chemical shift (PseACS) were
selected to predict the HSPs. Table 3 lists the predictive per-
formance of HSPs using individual features with the SVM
classification algorithm without SMOTE; the highest overall

accuracy (OA) of an individual parameter is 91.38% with
the jackknife test by using PseACS. Individual features iden-
tify the families of HSPs with an overall accuracy (OA) rang-
ing from 80.92% to 91.38%.

Figure 2 shows the predictive results of different com-
bined features of HSPs with SVM without SMOTE. The
results show that the combined feature of SAAC+DC+CTF
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FIGURE 5: A comparison of the proposed method for independent datasets.
TaBLE 5: The comparison of the predictive results between this paper and existing methods.
HSP families
Method HSP20 HSP40 HSP60 HSP70 HSP90 HSP100
Sn (%) 87.68 95.31 66.87 79.15 51.72 69.41
. 2 Sp (%) 96.36 84.87 98.93 86.54 99.89 99.84
iHSP-PseRAAAC
MCC 0.82 0.99 0.69 0.54 0.3 0.83
Acc (%) — — — — — —
Sn (%) 92.16 96.09 79.75 91.17 72.41 82.35
b Sp (%) 97.16 86.26 97.24 91.97 99.12 98.08
PredHSP
MCC 0.87 0.83 0.72 0.71 0.7 0.71
Acc (%) 96.36 91.91 95.96 91.87 98.43 97.48
Sn (%) 94.63 97.45 67.92 88.49 75 88.89
i+ HSP® Sp (%) 96.61 95.13 98.86 98.84 99.76 99.57
ir-
MCC 0.8718 0.9276 0.7307 0.8871 0.8112 0.8846
Acc (%) 96.28 96.47 96.61 97.52 99.17 99.17
Sn (%) 100 98.33 100 100 100 100
. Sp (%) 99.92 100 99.92 99.82 100 100
Our predictive model
MCC 1 0.99 1 0.99 1 1
Acc (%) 99.93 99.72 99.93 99.85 100 100

“Feng et al. [21]. "Kumar et al. [25]. “Meher et al. [26].

+PseACS was better than the other parameters. The overall
accuracy (OA) of the combined feature of SAAC+DC+CTF
+PseACS was 94.91% with the jackknife test. This result indi-
cated that the combined feature was powerful in predicting
HSPs.

Table 4 lists the predictive performance of HSP families
using the optimized combination feature SAAC+DC+CTF
+PseACS with and without SMOTE. In the models with
SMOTE, the Sn, Sp, Acc, and MCC of HSP families improved
remarkably. For example, for HSP20 with SMOTE, Sn=
100%, Sp =99.92%, MCC =1, and Acc =99.93%, which are
5.65%, 1.34%, 0.08, and 2.04% higher than those without
SMOTE. In addition, OA =99.72% with SMOTE, which is
4.81% higher than HSP families without SMOTE. The results
indicate that the combined parameter SAAC+DC+CTF
+PseACS with SMOTE was helpful in enhancing predictive
performance.

3.2. Comparison with Other Algorithms. The predictive per-
formance of our predictive model (SVM), Random Forest
(RF) [78], Naive Bayes (NB), and K-Nearest Neighbors
(KNN) [79] is shown in Figures 3 and 4. From Figure 3, we
can see that the differences of the Sn, Sp, MCC, and Acc of
the HSP families are obvious. The Sn of HSP60, HSP70,
HSP90, and HSP100 using SVM and KNN were all 100%.
The Sp of HSP20 using KNN and SVM were similar, and
the Sp of HSP40 using SVM and KNN were 100%. The
MCC of HSP20 and HSP90 using SVM and KNN were both
1. The Acc of HSP20 using KNN and SVM were similar. In
addition, from Figure 4, we can see that the value of OA with
SVM was 99.72%, which was 4.39%, 7.07%, and 18.99%
higher than RF, KNN, and NB, respectively. The highest
value of the other parameters was obtained by SVM. There-
fore, the experimental results show that SVM has achieved
the best measures.



Figure 5 shows the predictive performance of HSP fami-
lies using independent datasets. In the HGNC independent
dataset, the OA of our predictive model was 98.96%, which
was 11.60% and 11.46% higher than PredHSP and ir-HSP,
respectively. In the RICE independent dataset, the OA of
our predictive model reached 99.31%, which was 4.76% and
2.95% higher than PredHSP and ir-HSP, respectively. From
the comparison, we can draw a conclusion that the applica-
bility and accuracy of our prediction model for HSP predic-
tion were improved.

3.3. Comparison with Existing Methods. In order to evaluate
the performance of our predictive model, we made compari-
sons with existing methods. The method developed by
Ahmad et al. did not provide any family-wise accuracy of
HSPs, so we compared the effectiveness with iHSP-PseR-
AAAC, PredHSP, and ir-HSP. The results of the compari-
sons are shown in Table 5. We can see that the Sn, Sp, Acc,
and MCC of HSP families in our predictive model were
higher than those of PredHSP, iHSP-PseRAAAC, and ir-
HSP. For example, in our predictive model, Sn =100%, Sp
=99.92%, MCC =1, and Acc =99.93% for HSP20 exceeded
those of ir-HSP, PredHSP, and iHSP-PseRAAAC. In addi-
tion, in our predictive model, Sn = 100 for all HSP families,
except for HSP40 Sn=98.33%. Furthermore, the overall
accuracy was 99.72% in our predictive model. These results
indicate that our predictive model was superior to existing
methods.

4. Conclusion

In this work, an optimized classifier for HSP family identifi-
cation was developed. This model was derived from the
SVM machine learning algorithm, and SMOTE was used
for the imbalanced data classification problems. The overall
accuracy was 99.72% with the balanced dataset and the jack-
knife test by using the optimized combination feature SAAC
+DC+CTF+PseACS. High overall accuracy results indicate
that our predictive model is a reliable tool for HSP family
prediction. It is known that HSP expression is associated with
human diseases, and these families of HSPs have different
functions. Therefore, our predictive model will benefit
researchers by quickly and effectively identifying HSP fami-
lies and enabling researchers to design new drugs to achieve
the goal of treating diseases.
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