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MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation and phenotype 
development. Understanding the regulation of miRNA genes is critical to understand gene regulation. 
One of the challenges to study miRNA gene regulation is the lack of condition-specific annotation 
of miRNA transcription start sites (TSSs). Unlike protein-coding genes, miRNA TSSs can be tens 
of thousands of nucleotides away from the precursor miRNAs and they are hard to be detected by 
conventional RNA-Seq experiments. A number of studies have been attempted to computationally 
predict miRNA TSSs. However, high-resolution condition-specific miRNA TSS prediction remains 
a challenging problem. Recently, deep learning models have been successfully applied to various 
bioinformatics problems but have not been effectively created for condition-specific miRNA TSS 
prediction. Here we created a two-stream deep learning model called D-miRT for computational 
prediction of condition-specific miRNA TSSs (http://hulab​.ucf.edu/resea​rch/proje​cts/DmiRT​/). D-miRT 
is a natural fit for the integration of low-resolution epigenetic features (DNase-Seq and histone 
modification data) and high-resolution sequence features. Compared with alternative computational 
models on different sets of training data, D-miRT outperformed all baseline models and demonstrated 
high accuracy for condition-specific miRNA TSS prediction tasks. Comparing with the most recent 
approaches on cell-specific miRNA TSS identification using cell lines that were unseen to the model 
training processes, D-miRT also showed superior performance.

MicroRNAs (miRNAs) are ~ 22 nucleotides long non-coding RNAs. They express ubiquitously in almost all 
cell types, are evolutionarily conserved in most metazoan and plant species, and can regulate more than 30% 
of mammalian gene products through complementary binding to the corresponding mRNAs1,2. MiRNAs have 
been shown to participate in various types of biological processes such as cell development, differentiation, and 
apoptosis. Misexpression of miRNAs has been linked to complex diseases such as cancer, diabetes, and heart 
disease3–5. Therefore, understanding how miRNAs are regulated under different conditions is critical to under-
stand gene regulation and disease phenotypes.

Transcription start sites (TSSs) are the key to define promoter regions and understand gene regulation. In 
contrast to our knowledge of TSSs of protein-coding genes, much less is known about the locations of TSSs for 
miRNA genes under different cellular conditions. MiRNA TSSs can be quite far away (e.g. 10 kilobase pairs (kbp)) 
from the corresponding mature miRNAs due to the specific process of miRNA biogenesis6–8. During the process, 
long primary miRNAs (pri-miRNAs) are first transcribed. These pri-miRNAs are subsequently processed by a 
microprocessor consisting of the nuclear RNase III Drosha and its cofactor protein DGCR8 to generate precursor 
miRNAs (pre-miRNAs). Cleavage of the generated pre-miRNAs by another RNase III protein Dicer produces 
small RNA duplexes, which form RNA-induced silencing complexes (RISCs) together with AGO proteins and 
generate the mature miRNAs. MiRNA biogenesis is so transient that regular RNA-Seq experiments cannot 
capture a sufficient amount of pri-miRNAs, and as a consequence, identifying the TSSs of miRNA genes is more 
difficult than identifying the TSSs of protein-coding genes.
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Initial computational approaches for genome-wide TSS identification focused on the use of sequence fea-
tures such as over-represented k-mers, transcription factor binding site enrichment, conservation, and CpG 
content9–13. Such sequence-based strategies often lead to a large number of false predictions and are not able to 
identify condition-specific TSSs. Later studies have shown success in miRNA TSS prediction utilizing active gene 
transcription markers such as trimethylation of Lys 4 of histone 3 (H3K4me3), acetylation of Lys 9/14 of histone 
3(H3K9/14Ac), Polymerase II (Pol II) and DNase-Seq measurements14–18. In the past decade, TSS-Seq technolo-
gies such as Cap Analysis Gene Expression (CAGE) have enabled the genome-scale detection of transcription 
initiation events19,20. With TSS-Seq data available in many tissues and cell lines, computational methods have 
been created to identify miRNA TSSs through integrative analysis of TSS-Seq data and epigenetic markers21–23. 
For example, miRStart was developed to model miRNA TSSs with a Support Vector Machine (SVM) integrating 
29 million CAGE tags from the FANTOM4 project, nearly 1 billion TSS-Seq data points, and H3K4me3 chroma-
tin signatures in human CD4 + T cells21. This approach led to the prediction of 847 miRNA TSSs. PROmiRNA 
integrated FANTOM4 CAGE data and sequence features such as conservation and CpG content to identify true 
miRNA TSS regions from background genomic regions based on an Expectation–Maximization algorithm22. 
However, pooling epigenetic marker information from different cell lines, these methods do not aim for condi-
tion-specific miRNA TSS identification.

A couple of most recent work attempted to identify condition-specific miRNA TSSs. For example, taking 
advantage of deeply sequenced RNA-Seq data and also integrating epigenetic markers in a condition-specific 
manner, microTSS was able to make high-resolution predictions7. Hua et al. created an alternative approach that 
does not require deeply-sequenced RNA-Seq data, which was able to identify condition-specific miRNA TSSs 
corresponding to 54 cell lines in the ENCODE project using sequence conservation measurements, H3K4me3 
and DNase-Seq information24. Instead of using CAGE TSS-Seq data, mirSTP directly extract miRNA TSSs from 
global/precision nuclear run-on RNA-Seq data (GRO-Seq) that are available for specific cellular conditions and 
use a probabilistic model to predict miRNA TSSs25. These existing computational methods have predicted a large 
number of miRNA TSSs and provided insights into miRNA gene regulation. However, high-resolution condition-
specific miRNA TSS annotation remains a challenging problem due to the lack of understanding of miRNA TSS 
features26. MiRNA TSS prediction algorithms from different studies often use different feature sets as predictors 
and their results are often inconsistent with each other18. Besides, most of the recent miRNA TSS predictions 
using epigenetic markers such as H3K4me3 profiles often lead to low-resolution predictions essentially due to the 
low-resolution properties of these markers. In terms of modeling algorithms, SVMs are the most commonly used 
models in literature for the miRNA TSS prediction task7,21, whereas deep learning models using multi-layered 
neural networks for modeling and prediction are the most recent development in machine learning field27. In 
fact, deep learning algorithms are capable of automatically extracting useful features and has recently shown 
superior performance in various types of bioinformatics problems compared to SVMs28. So far, deep learning 
based algorithms have not been tested on the specific problem of condition-specific miRNA TSS prediction.

This study designed a two-stream deep neural network model to integrate features at varied resolution levels 
towards miRNA TSS identification, abbreviated as D-miRT (http://hulab​.ucf.edu/resea​rch/proje​cts/DmiRT​/). 
D-miRT is structured as a two-component deep Convolution Neural Network (CNN). The first component is 
a CNN that is responsible for learning from low-resolution features, for example, epigenetic markers such as 
ChIP-Seq peak profiles of H3K4me3 and DNase-seq. In contrast, the second component is a CNN responsible 
for learning from high-resolution features, for example, single-base resolution nucleotides in input sequences. 
Unlike previous studies that focused only on sequence features that cannot detect cell-specific TSSs, or only on 
TSS-related chromatin features that lead to low-level resolution predictions, D-miRT is able to take into account 
different types of features and integrate them using a deep-learning framework. D-miRT also selects training 
and testing data from the 1357 human miRNA promoter regions under multiple cell conditions recently identi-
fied by the FANTOM5 project29. These newly annotated miRNA TSSs provide a relatively sufficient data set for 
training and benchmarking miRNA TSS predictions. By integrating both sequence features and features from 
high-throughput sequencing datasets, D-miRT has shown the ability to produce accurate, high-resolution, and 
condition-specific miRNA TSS predictions.

Materials and methods
Human data collection.  About 1900 miRNAs and their genomic coordinates were downloaded from 
the miRBase22 database and converted from hg38 to hg19 using CrossMap0.3.330. The recently available 1,357 
miRNA promoters were obtained from FANTOM529. The protein-coding gene TSSs were downloaded from 
GENCODE v3231. Seven cell lines GM12878, K562, HeLa-S3, HepG2, MCF7, A549 and hESC common to both 
FANTOM and ENCODE projects were selected for model training and/or evaluation. CAGE robust TSS peaks 
with coverage in transcripts per kilobase million greater than 10, for these seven cell lines were downloaded from 
the FANTOM5 project. H3K4me3 and DNase-Seq peak data for the seven cell lines were downloaded from the 
ENCODE project32. The complete human genome, together with its phastCons 46-way placental conservation 
score, was taken from the UCSC Genome Browser website33 (Supplementary Table S1).

Data processing.  Various types of TSS distribution patterns such as narrow peak and broad peak distribu-
tions for different cell lines have been identified so far34,35. The training and test data were generated using the 
narrow CAGE peaks from the FANTOM5 depository for the aforementioned seven cell lines. The CAGE peaks 
with 0 tag or wider than 10 base pairs (bp) were filtered out. The CAGE peaks that did not contain a protein-
coding gene TSS were also filtered out. The final set of CAGE peaks were considered as “TSS peaks” for training 
the model. TSS peaks that occur within 1 kbp of each other were filtered out to reduce the data complexity. 
Every 1 kbp region containing a TSS peak was divided into 50 bins of size 20 bp each. Note that since a TSS peak 
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width cannot be more than 10 bp and the bin size is 20 bp, every TSS peak resided in only one of the 50 bins 
(Fig. 1A). In order to train the model about the location of the TSS in the input region, for every TSS peak, 10 
input samples were generated by sliding the 1 kbp region by 100 bp (5 bins) each time for 10 times. The 10 input 
samples (positive samples) are 1 kbp regions having the TSS peak in 10 different bins (Fig. 1A). In order to train 
the model about the input regions with no TSS, a 1 kbp flanking region of the TSS peak that did not contain any 
TSS peak was also included (negative samples). The output of the model is an 11 × 1 vector. The row numbers 
0 to 10, correspond to the probabilities that a region is from the negatives or each of the 10 types of positives 
(Fig. 1B). Representation of the input and output in such a way enables the model to answer both the questions 
“is there a TSS?” and “where is the TSS?”.

In order to predict a TSS within a region, D-miRT considers both the H3K4me3 and DNase-Seq profiles 
and the sequence features within the region. For every sample, a 50 × 2 matrix is generated with the DNase-Seq 
and the H3K4me3 peak coverages in the 50 bins of the corresponding input region. As to the sequence fea-
tures, the one-hot encoding of the sequence and its conservation score of every genomic location within the 1 
kbp TSS-containing region were used to create a 1000 × 5 input matrix. The one-hot encoding is a 1 × 4 vector 
representation of a nucleotide ([1 0 0 0] for A, [0 1 0 0] for T, [0 0 1 0] for C and [0 0 0 1] for G). After binning 
and shifting the TSS-containing regions 10 times and including the negative regions without TSS, the number 
of samples generated for the seven cell lines A549, GM12878, HeLa-S3, HepG2, hESC, K562 and MCF-7 are 

Figure 1.   The D-miRT architecture. (A) The input matrix for the first CNN component and the output labels of 
D-miRT are created by sliding and binning the 1 kbp region around a CAGE peak. The bin number containing 
the TSS peak is used as training label for an input positive sample. (B) Two separate CNN components for 
activation marker and sequence inputs, each one having 4 CNN blocks. The features learned by the two 
components are merged and fed through a three-layer fully connected neural network that outputs the 
probability of a TSS to be within a certain TSS-containing bin.
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83,897, 108,988, 109,802, 113,751, 100,133, 96,965 and 101,838, respectively, including both the positive samples 
and negative samples.

Deep‑learning model.  Deep Learning is a family of machine learning methods that are based on arti-
ficial neural networks. CNN is a class of deep neural networks that can capture local spatial patterns and use 
them to recognize higher-level features and patterns. Since commonly used epigenetic markers and sequence 
features exhibit local spatial patterns, CNN is a promising solution for the miRNA TSS prediction task. There-
fore, a CNN-based model D-miRT was designed for miRNA TSS prediction. A CNN model typically consists 
of convolutional, batch-normalization, max-pooling, and fully connected layers. The D-miRT model uses two 
independent CNN components (streams) to process the two sets of feature data and extract higher level features 
from them independently (Fig. 1B). Given that the two sets of feature data measure qualitatively different aspects 
of the miRNA TSSs, it is unlikely that there will be any meaningful pattern spanning them. It may confuse the 
training process if one CNN is used to extract higher-level features from both simultaneously. After the high-
level feature extraction steps are complete, the results are merged and analyzed together by a neural network to 
produce a prediction. The inputs for the two CNN components are a 50 × 2 matrix for peak data representing 
H3K4me3 and DNase-Seq signals in 50 bins of size 20 bp each covering a 1 kbp region; and a 1000 × 5 matrix for 
the sequence data, representing the one-hot encoding and its conservation score per nucleotide. The sequence 
and epigenetic marker information are processed independently by the respective CNN components. The out-
puts of the two CNN components are flattened and concatenated before being processed by a fully connected 
neural network with three layers. The third layer of this fully connected network is the output layer with soft-
max activations that predicts the 11 probabilities corresponding to the 11 types of samples. A probability score 
threshold of 0.8 is applied on the output 11 by 1 vector of 11 probabilities to make predictions (Fig. 1B). If one 
entry in the output vector has a probability larger than 0.8, there is a TSS in the corresponding bin of the input 
region. Otherwise, no TSS is in the input region.

The architecture of the two CNN components are similar and was adopted from the 16-layer version of the 
VGG model36. The VGG architecture was first developed for use in the object recognition application of Com-
puter Vision. It was chosen as a template for this method due to its success at the application of object recogni-
tion. Following the VGG architecture, each CNN component consists of four CNN blocks with different filter 
sizes. Each block is made of two convolution layers, a batch normalization layer and a max pooling layer. The 
convolutional layers are one dimensional, with filter length of three. The number of filters is different for the 
four CNN blocks within a CNN component. Part of the reason for this is that stacking multiple convolutional 
layers with a window size of three simulates the effect of a larger window size while also adding an element of 
implicit regularization. The aforementioned fully connected neural network, which processes the two CNN 
components, consists of three layers; the first two layers have 4096 nodes and the final output layer has 11 nodes. 
To circumvent overfitting, 50% dropout is applied after the first two layers of the fully connected network. The 
activation function used for each convolutional and the fully connected network layers is the Rectified Linear 
Unit (ReLU) function, with the exception of the output layer of the fully connected network, which uses a soft-
max activation function to output 11 probabilities. Training took place using a categorical cross entropy loss 
function37, and stochastic gradient descent optimization37. The learning rate was set to 0.01 with a momentum 
of 0.9, and a weight decay of 0.0005.

The samples in each of the seven cell lines were partitioned into 90% training and 10% test samples. Seven 
cell line-specific models were trained. To prevent overfitting, three measures were taken. First, as mentioned 
before, 50% dropout was applied after the first two layers of the fully connected neural network. Second, tenfold 
cross-validation was applied on the training samples. Third, early stopping was done. The training was done with 
20 epochs as the model accuracy did not change after that (Supplementary Figure S1A). As the performance 
evaluation metrics of the model, accuracy, precision, recall and F1-score were considered. Accuracy scores were 
calculated by the ratio of the truly predicted samples to the total samples. Recall scores were measured by the 
ratio of true positive samples to the total positive samples; while precision scores indicated how many of the 
predicted positive samples were true. The F1-score was calculated using the harmonic mean of precision and 
recall (Supplementary Figure S1B).

Model variations.  To assess the performance of D-miRT with different training data and different models, 
several model variations were implemented using high resolution data, low-resolution data, with two activa-
tion marker features or seven activation marker features, with or without a score threshold. All models were 
constructed and trained using Keras with the Tensorflow backend. The training was done on a single Tesla V100 
(16G) GPU on the university Newton GPU cluster. The time to train the model using the D-miRT architecture 
was around 2 to 3 h. The training time might be affected by the resource allocation of the GPU cluster.

High and low‑resolution data.  The 1 kbp TSS-containing regions with 50 bins of 20 bp used to train D-miRT 
were considered high-resolution data. As the low-resolution data, 5 kbp regions containing 50 bins of size 100 bp 
were considered.

Different architectures.  D-miRT uses an architecture with two parallel CNN streams independent from each 
other as described above. We also tested architectures with different parallel streams and different combinations 
of data types (DNase-seq, H3K4me3, sequence, conservation) in different streams. Moreover, since ten types of 
positive samples and one type of negative samples are used to train D-miRT, which results in much more positive 
samples, we also train a D-miRT model with 10% positives randomly chosen together with all negative samples.
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Two and seven activation markers.  In the D-miRT model, DNase-seq and H3K4me3 are the only epigenetic 
markers used as input to the first CNN component (Fig.  1B). Along with them, five other histone markers; 
H3K27ac, H3K27me3, H3K36me3, H3K4me1 and H3K9me3 are used in the model variations with seven 
marker features. The H3K4me3, H3K27ac, H3K4me1, H3K9me3 and H3K27me3 signals are also associated 
with TSSs, in which H3K27ac is an active marker, H3K4me3 and H3K4me1 can be active or poised markers, 
and H3K9me3 and H3K27me3 are markers for transcription repression. H3K36me3 is an active marker of gene 
transcription at gene bodies. The five histone marks are appended to the original DNase-seq and H3K4me3 
markers to create a 50 × 7 input matrix as an input to the second CNN component.

With or without a score threshold.  The D-miRT model outputs an 11 × 1 vector containing the probability dis-
tribution for the 11 types of samples. The score threshold corresponds to the minimum prediction probability 
in the output vector required for a region to be claimed as negative or accepted as positive with the TSS in the 
corresponding bins. D-miRT uses the threshold 0.8, which means, out of the 11 output, the type with at least 0.8 
probability gets the value 1, while others get the value 0. If there is no type with at least 0.8 probability, the input 
region is not predicted. In case of the model variations without the score threshold, only the type with the high-
est probability was assigned the value 1.

Comparison with other known prediction methods in terms of experimental evidence.  In 
order to support D-miRT model predictions with experimental evidence, the distributions of three TSS repre-
sentative signals, GRO-cap, CAGE and H3K4me3, were used around the D-miRT predicted TSSs located within 
50 kb region around the start positions of pre-miRNAs in miRbase 22. These distributions were then compared 
with two recently published TSS prediction methods, one by Hua et al. and the other called PROmiRNA22,24.

We also compared D-miRT with ADAPT-CAGE, microTSS, and PROmiRNA on HESC cell line, where 72 
experimentally determined miRNA TSSs were known based on the microTSS study. ADAPT-CAGE applies 
machine learning methods to filter CAGE signals and identify TSSs at 1 bp resolution. The input is three CAGE 
BAM files download from the FANTOM project (CNhs14067, CNhs14068, CNhs13964. We then converted the 
BAM files to the SAM files and ran ADAPT-CAGE with the following command: perl ADAPT-CAGE.pl –result_
directory_id = 13523-145F4 –species = hg19 –cage_file = CNhs14068_13523-145F4.sam –cage_file_type = sam 
–genome_file = hg19.fa. We directly used the predictions of microTSS in its original study as microTSS predicted 
TSSs. We ran PROmiRNA with the following command: python test_new_regions.py test_regions test_regions.gff.

Results
The deep learning model, D-miRT, aims to identify whether a sequence of DNA contains a TSS by learning 
features from integrating low-resolution epigenetic markers and high-resolution sequence features. The perfor-
mance of D-miRT was evaluated in comparison with the designed model variations (Material and Methods). 
The performance of D-miRT was also analyzed on the task of predicting TSSs specific to the seven cell lines of 
training data sets. The supporting experimental evidence on D-miRT predicted TSSs was presented in compari-
son with the approach to predict cell-specific TSSs by Hua et al. and another approach called PROmiRNA22,24. 
Finally, specific areas in the input regions were identified that helped D-miRT learn to identify miRNA TSSs.

D‑miRT performance on validation and test data.  D-miRT was trained with 90% of the training 
data in each of the seven cell lines to generate seven cell-specific models. The tenfold cross-validation process 
was performed separately on the seven cell-specific models. The accuracy, precision, recall and F1-score of the 
D-miRT models all were around 95% on average during the tenfold cross-validation process (Supplementary 
Table S2). When evaluated on the 10% test data for the respective cell lines, which were not used for training, 
D-miRT models for the seven cell lines showed around 92–96% of precision, recall and F1 scores on average 
with the default score threshold (Table 1). The performance of the models was still high without the threshold. 
We also trained 2-layer models in K562 and GM12878, in which we trained a model to predict whether a region 

Table 1.    The performance of the cell-specific D-miRT models on the 10% test data. The numbers in 
parenthesis are those without threshold values. The #Pos and #Neg are the number of positive samples and 
negative samples used to test the trained cell-specific models. The two rows with “*” next to cell line names are 
from the two-layer models.

Cell line # Pos # Neg Accuracy Precision Recall F1-score

A549 7645 742 0.9577 (0.8660) 0.9629 (0.8753) 0.9511 (0.8503) 0.9570 (0.8626)

GM12878 9935 943 0.9329 (0.8081) 0.9473 (0.7971) 0.9215 (0.8129) 0.9342 (0.8049)

GM12878* 9935 943 0.9243 (0.8491) 0.9420 (0.8608) 0.9219 (0.8490) 0.9293 (0.8509)

Hela-S3 9968 960 0.9410 (0.8302) 0.9422 (0.8254) 0.9379 (0.8320) 0.9400 (0.8287)

HepG2 10345 986 0.9418 (0.8381) 0.9509 (0.8316) 0.9332 (0.8444) 0.9420 (0.8379)

hESC 9120 873 0.9450 (0.8425) 0.9511 (0.8620) 0.9447 (0.8229) 0.9479 (0.8420)

K562 8019 762 0.9479 (0.8722) 0.9310 (0.8722) 0.9534 (0.8712) 0.9421 (0.8717)

K562* 8019 762 0.9388 (0.9079) 0.9386 (0.9160) 0.9385 (0.9079) 0.9385 (0.9096)

MCF-7 9259 901 0.9470 (0.8531) 0.9505 (0.8293) 0.9341 (0.8973) 0.9422 (0.8619)
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contained a TSS and then trained another model to predict which bin in this region contained a TSS. Tested on 
the 10% hold-out data, the D-miRT models showed better performance than the two-layer models (Table 1).

The performance of the seven cell-specific D-miRT models was then compared with different model varia-
tions on the 10% test data (Table 2). The model performance scores were not too much affected by the change of 
resolution of the test data. As expected, all model performance scores dropped when the threshold was removed 
from consideration. The threshold improved the model performance because a positive sample with a TSS bin 
was likely to be detected several times while a negative sample was unlikely to have any bin scored high. Also, the 
consideration of five more activation markers in addition to the two used by D-miRT (DNase-seq and H3K4me3) 
did not have much impact on the performance. This observation obviates the need for more features than the 
ones currently used in the D-miRT. Moreover, more streams slightly decreased the performance, likely because 
more complicated architectures require more time and resources to train the models accurately. In addition, the 
D-miRT models trained with 10% of positive samples reduced their accuracy because of much smaller training 
samples used.

The D-miRT model showed high performance on both cross-validation and test data. Also, the performance 
comparison of the model variations presented a consistently high performance of the D-miRT architecture for the 
seven cell lines. Although the consideration of threshold played a part in increasing the model performance, the 
performance was also high enough without threshold. The performance indifference of the model variations with 
more epigenetic marker features proves the additional marker features to be redundant in the TSS prediction task.

D‑miRT performance on unseen cell lines.  In order to analyze the ability of D-miRT to predict TSSs in 
unseen cell lines, we trained D-miRT on the samples from six of the seven cell lines and then tested the trained 
models on the samples of the seventh cell line (Table 3). The model performance on each unseen cell line was 
almost always better than the corresponding cell-specific models trained in Table 1 with and without the thresh-
old, which was likely due to the much larger number of training data here than those in Table 1. It also suggested 
that the cell-specific epigenetic markers and their genomic features could already predict the cell-specific TSS 
usage. The trained D-miRT models captured such relationship and accurately predicted the TSS in unseen cell 
lines with the cell-specific activation signals. The values of the four performance metrics were consistently high 
for all cell lines and ranged from 95 to 99% with threshold for different cell lines. Without the prediction thresh-
old, the performance did go down a little bit but was still high enough. The model showed stable high prediction 
metrics with and without the threshold for each of the unseen cell lines. This indicates that the cell independent 

Table 2.    Performance of D-miRT in comparison to the model variations.

Model variations Accuracy Precision Recall F1-score

Low resolution 0.8643 0.8495 0.8647 0.8570

Low resolution + threshold 0.9324 0.9458 0.9154 0.9304

High resolution 0.8859 0.8864 0.8859 0.8861

High resolution + threshold (D-miRT) 0.9479 0.9310 0.9534 0.9421

High resolution + more features 0.8622 0.8622 0.8612 0.8617

High resolution + more features + threshold 0.9395 0.9285 0.9435 0.9359

Quad stream 0.8729 0.8734 0.8730 0.8732

Quad stream + threshold 0.9293 0.9297 0.9286 0.9291

Triple (H3K4me3, DNase, sequence + cons) 0.8738 0.8736 0.8740 0.8738

Triple (H3K4me3, DNase, sequence + cons) + threshold 0.9388 0.9386 0.9385 0.9386

Triple (H3K4me3 + DNase, sequence, cons) 0.8698 0.8701 0.8701 0.8701

Triple (H3K4me3 + DNase, sequence, cons) + threshold 0.9376 0.9375 0.9371 0.9373

D-miRT with 10% positives 0.8708 0.8441 0.8317 0.8379

D-miRT with 10% positives + threshold 0.9211 0.9107 0.8907 0.9006

Table 3.    The performance of D-miRT models on unseen cell line data The numbers in parenthesis are those 
without threshold values.

Cell line # Pos # Neg Accuracy Precision Recall F-1 Score

A549 76252 7627 0.9808 (0.9453) 0.9862 (0.9558) 0.9770 (0.9390) 0.9816 (0.9473)

GM12878 98985 9907 0.9589 (0.8923) 0.9643 (0.9018) 0.9497 (0.8692) 0.9569 (0.8852)

HeLa-S3 99747 9975 0.9717 (0.9199) 0.9714 (0.9237) 0.9820 (0.9063) 0.9767 (0.9149)

HepG2 103381 10340 0.9694 (0.9267) 0.9618 (0.9161) 0.9697 (0.9300) 0.9657 (0.9230)

hESC 90965 9098 0.9597 (0.9025) 0.9742 (0.9288) 0.9461 (0.8819) 0.9600 (0.9048)

K562 88131 8815 0.9823 (0.9485) 0.9859 (0.9498) 0.9800 (0.9371) 0.9830 (0.9434)

MCF-7 92488 9252 0.9710 (0.9295) 0.9674 (0.9226) 0.9785 (0.9379) 0.9729 (0.9302)
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features might be more decisive in recognizing a TSS than cell-specific ones and D-miRT could pick up these 
features.

Experimental support for the D‑miRT predicted TSSs in K562 and GM12878.  D-miRT’s per-
formance on finding TSSs on the upstream regions of pre-miRNA start locations was analyzed with experi-
mental evidence and then compared with two recently published approaches, one by Hua et al. and the other 
called PROmiRNA22,24. Here, the 50 kbp upstream regions of the pre-miRNA start locations (miRbase 22) were 
extracted. Within the 50 kb region, every one kbp region window slid by 100 bp was considered as D-miRT 
input, resulting in 491 input regions for each pre-miRNA. The epigenetic markers, DNase-Seq and H3K4me3, 
sequences and conservation scores across the regions were extracted and processed for the input to D-miRT. 
The 20 bp bin locations, which passed the score threshold 0.8, were considered the predicted TSSs of D-miRT. 
Because of the sliding window approach, a TSS should be predicted multiple times in different bins. Therefore, 
only the TSSs predicted at least twice were considered as the predicted TSS.

To support D-miRT’s performance by experimental evidence, the GRO-cap data from the NCBI GEO data-
base (GSM1480321 and GSM1480323) was considered. GRO-cap is a modified form of GRO-Seq that can identify 
the 5′ end of cap-protected nascent RNAs38. To evaluate the result, the two cell lines K562 and GM12878 were 
chosen as an additional test case because they are widely used cell lines for TSS prediction and the only cell lines 
with the GRO-cap data available. GRO-cap profiling in the one kbp regions around the D-miRT predicted TSSs 
in the cell lines GM12878 and K562 showed that most GRO-cap tags are located at the center of the regions 
(Fig. 2A).

Figure 2.   Experimental evidence for D-miRT predicted TSSs. (A) The average distribution of GRO-cap, CAGE 
tags and H3K4me3 in the ± 500 bp regions surrounding the predicted TSSs by D-miRT, Hua et al., 2016 and 
PROmiRNA in GM12878 and K562 cell lines. (B) The distributions of GRO-cap, CAGE tags and H3K4me3 in 
K562 cell line for two example miRNAs across the ± 500 bp regions surrounding the predicted TSSs by D-miRT, 
Hua et al., 2016 and PROmiRNA.
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The GRO-cap, CAGE and H3K4me3 peak coverages around D-miRT predicted TSSs in the 50 kbp region were 
compared with the predictions made by Hua et al.24 and PROmiRNA22 (Fig. 2A). Using the weighted sum of the 
GRO-Cap tags in the 1 kbp region around the predicted TSSs as a score measuring the spread of GRO-Cap tags, 
predictions by Hua et al. were found to have significantly larger GRO-Cap tag spread than D-miRT predictions 
(Mann–Whitney test p-value 3.44E-17 in GM12878 and 5.88E-12 in K562) and thus were less consistent with 
GRO-Cap experiments. The distribution of H3K4me3 and CAGE tags within the ± 500 bp around the D-miRT 
predicted TSSs, also support the TSSs predicted by D-miRT (Supplementary Table S3). GRO-cap and CAGE 
tags are known to accumulate around the TSS while H3K4me3 signals are more spread. The distributions of the 
three signals around PROmiRNA predicted TSSs were more consistent with the distributions around D-miRT 
predicted TSSs than Hua et al. (Supplementary Table S3).

We also compared the difference between the distribution of the three signals (GRO-Cap, CAGE and 
H3K4me3) in the 1 kb region surrounding the known TSS and the predicted TSS by the three tools. To calculate 
this difference, a 50 × 1 vector was generated for each type of signal, which showed the distribution of the signal in 
50 bins (20 bp each) around a TSS (known or predicted). The mean absolute difference between the 50 × 1 signal 
distribution vectors around the known and the predicted TSSs gives a quantitative score about the reliability of 
the prediction. For both cell lines and all three types of signals, the difference between the vectors around the 
known TSSs and the D-miRT predicted TSSs was less than those by the Hua et al. and those by PROmiRNA 
predicted TSSs (Supplementary Table S4, Mann–Whitney test p-value 3.57E-10 and 1.64E-6, respectively). The 
distribution of GRO-cap, CAGE tags and H3K4me3 signals around the D-miRT predicted TSSs for individual 
miRNAs show the concentration of GRO-cap and CAGE tags in the vicinity of the predicted TSS bin, while the 
H3K4me3 signals are high around ± 400 bp and low at the center of the predicted TSS bin (Fig. 2B).

In addition, the robustness of the TSSs predicted by D-miRT was measured by the number of sequence 
motifs found in the vicinity of the TSSs. The motifs in the ± 10 bp region around the D-miRT predicted TSSs 
were scanned using FIMO39. More than 600 highly significant motifs (p-value < 0.05) were identified in each cell 
line. The list of top 10 TFs in terms of the number of binding sites within ± 10 bp of the predicted miRNA TSSs 
included 5 common TFs; MAZ, SALL4, SP1, SP2, VEZF1; for all seven cell lines (Supplementary Table S5). MAZ 
plays a role in both transcription initiation and termination40. SALL4 is known to regulate gene transcription41. 
SP1 and SP2 can activate and repress transcription42,43. VEZF1 binds to CT/GC-rich promoter regions and medi-
ates transcription activation44. Several motifs indicating the CpG islands around the predicted TSSs were also 
identified (Supplementary Figure S2). These identified TSS-proximal motifs suggest that the predicted miRNA 
TSSs are likely to be biologically sound.

Experimental support for the D‑miRT predicted TSSs in hESC.  We tested D-miRT on the 72 miR-
NAs with validated TSSs by Georgakilas et al. in the hESC cell line as well7. This was the only cell line shared by 
our study and the Drosha knockout study by Geogakilas et al. 2014. To predict TSSs of these miRNAs, we started 
from the 1 kb long windows immediately upstream of the annotated precursors of these 72 miRNAs and slid 
100 bp upstream every time to obtain a new window until we reached the upstream 100 kb of these miRNAs. 
To show that D-miRT is superior to or at least comparable with existing methods, including the CAGE-filtering 
methods, we compared D-miRT with ADAPT-CAGE, microTSS, and PROmiRNA on these windows. In these 
comparisons, all windows that overlapping with a given neighborhood (± 50 bp, ± 200 bp, ± 500 bp, or ± 1 kb) 
of the 72 known TSSs defined by Georgakilas et al. were considered as positives and the remaining windows 
were negatives. Since the windows overlapping with the 72 known TSSs are essentially 72 positives, it may make 
more sense to consider to have only 72 positives and have the number of negatives unchanged (Criteria I). On 
the other hand, we considered all windows overlapping with the neighborhood of the 72 known TSSs as inde-
pendent positives and kept the negatives the same (Criteria II). The difference between the two criteria was that 
multiple predicted positives in the neighborhood of a true TSS were considered as the same prediction, although 
the positive and negative windows were the same in both criteria.

We found that D-miRT predicted at least one TSS in the neighborhood of the 72 true TSSs, even when 
the neighborhood size considered was 50 bp (Supplementary Table S6). From the smaller neighborhood size 
(50 bp) to the larger ones (1 kb), about 83% to 61% of bins in the corresponding neighborhood of true TSSs were 
predicted as TSSs (the corresponding numbers in the parentheses in Supplementary Table S6). On the other 
hand, ADAPT-CAGE, microTSS and PROmiRNA predicted TSSs were within about 95%, 60%, and 78% of the 
neighborhood of the 72 true TSSs, respectively.

Despite the higher recall and sensitivity, D-miRT had the worst precision compared with ADAPT-CAGE 
and PROmiRNA (Fig. 3). This is likely because other methods essentially filter all windows with low CAGE 
signals in advance and apply machine learning methods to predict whether the remaining windows are likely 
to contain TSSs. In other words, we hypothesized that it is not these methods but the CAGE filtering achieving 
higher precisions. To validate this hypothesis, we overlapped the predicted positive windows by D-miRT with 
the CAGE peaks defined by FANTOM 5. We found that the resulted predictions indeed had much higher preci-
sions, although the recall was significantly decreased (D-miRT (CAGE)). To have a higher recall and precision, 
we simply considered the predicted positive windows by D-miRT with at least 5 CAGE signals in the ± 100 bp 
neighborhood of the corresponding predicted bin as positive windows, which we called D-miRT (CAGE > 5). 
The CAGE signal was calculated based on the same BAM files used by ADAPT-CAGE. We found that the fil-
tered D-miRT predictions, which we called D-miRT (CAGE > 5), indeed had a superior or at least comparable 
performance compared with all other methods under both criteria of the defined positives and negatives (Fig. 3).

In Summary, D-miRT is a valuable method for miRNA TSS predictions, especially when there is no CAGE 
data available. With available CAGE data in a cell line or a cell type, the simply-applied CAGE filtering methods, 
D-miRT (CAGE > 5) is at least comparably with other CAGE-filtering methods. By combining CAGE signals 
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into the training of the D-miRT model may thus further improve the precision and recall of the miRNA TSS 
prediction here.

Features learned by D‑miRT.  In order to identify the localized impacts of the epigenetic markers and 
the sequence features on the classification decision, the class activation mapping technique was adopted45. This 
technique helped find exact positions of the input region the model considers important in different inputs. In 
both CNN components of D-miRT, after the last CNN layer of each CNN block, a 1D average pooling layer was 
added with a window size spanning the entire output. This converted the output from a C x L matrix to a C × 1 
column vector, which was later transposed into a 1 × C row vector and multiplied by the CNN output to obtain a 
1 × L row vector representing the average activation at each position in the output. The average activation value 
after each CNN block provided insight into which portions of the input the model was learning to focus on 
when it was processed by successive layers. This whole process was carried out using “iNNvestigate” toolbox46. 
The average activation of the last CNN block (block 4) was examined for class activation mapping (Fig. 4). The 
DNase-seq, H3K4me3, sequence and conservation scores were examined. Upon reaching the last CNN block 
of the first stream, for DNase-seq features, the network’s attention was primarily focused on the center of the 1 
kbp input, while the focus area was more spread throughout the input region for H3K4me3. The patterns agree 
with the known facts that the DNase-seq signals get concentrated in the vicinity of the TSS while the H3K4me3 
signals are low at the TSS location and more spread along with the upstream and downstream of the TSS. Among 
the sequence features, changes of C and G nucleotides had the most impact on the activation of block 4. Over-
all, changes of A and T nucleotides did not contribute as much to the activation of the last CNN block, as the 
changes of C and G. This observation agrees with the known fact that the surrounding area of a TSS is rich in 
CpG islands47. The changes in the conservation scores near the TSS and downstream of the TSS triggered the 
activation of block 4 than the upstream, indicating the higher contributions of the conservation features across 
the gene body.

Sequence features were the most important feature to D‑miRT.  The contribution of the four types 
of inputs, DNase-seq, H3K4me3, sequence and conservation, in training the D-miRT model was analyzed by 
input omission technique. Four different models were trained with one of the four types of inputs removed from 
the training data each time. The accuracy, precision, recall and F1-score of the four models were measured to 
check the effect of the removed feature. The four metric scores for the two activation marker inputs (DNase-seq 
and H3K4me3) were similar, with DNase-seq showing higher importance, which may be due to the narrower 
peaks of DNase-seq compared with HK4me3 peaks (Table 4). The removal of the sequence input affected the 
performance of the model the most. This indicates the importance of the sequence-specific features in TSS iden-
tification. Eliminating conservation input did not affect the model performance to the same degree, suggesting 
that not all neighboring regions around TSSs are conserved, and conservation only helps the identification of 
certain TSSs (Table 4).

To investigate the contribution conservation score input, the conservation input was removed from the 
D-miRT design and the GRO-cap, CAGE and H3K4me3 patterns around the predicted TSS were compared with 
the corresponding signal patterns by the original D-miRT model. Although not obvious, the GRO-cap, CAGE 
and H3K4me3 patterns looked smoother around the TSSs predicted by the model with the conservation input 
than the model without the conservation input. The activation of the last CNN block (similar to the previous 
subsection) with the change in the sequence features became clearer when the conservation input was used in the 
model (Supplementary Figure S3). All these results suggested that although the contribution of the conservation 

Figure 3.   Performance comparison of ADAPT-CAGE, PROmiRNA, microTSS, D-miRT and the two versions 
of D-miRT with CAGE filtering on their predictions of 72 miRNA TSSs with ± 50 bp neighborhood. Here the 
performances were shown using two definition criteria of the positives.
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feature in TSS identification may be less than other features, it actually helped the model to understand other 
inputs by filtering extraneous noise.

Discussion
Condition-specific miRNA TSS prediction is critical to the understanding of miRNA gene regulation. However, 
predictions by existing methods were often either in very low-resolution or not condition-specific. To overcome 
these challenges, we presented the two-stream CNN-based deep learning model D-miRT for condition-specific 
miRNA TSS prediction. Tested by cross-validation and on independent data, we showed the good accuracy of 
the D-miRT model. Compared with two existing methods, D-miRT also showed superior performance.

The motivation of the development of D-miRT is threefold. First, most current methods use SVM-based 
algorithms to identify miRNA TSSs. They often take in manually curated features. However, features such as 
DNA sequence motifs are not completely annotated48,49. The incompletely or inconsistently defined feature sets 
for SVMs have potential negative consequences on the prediction accuracy and consistency, whereas, deep 
learning-based methods are able to extract features automatically. Without the necessity of manual feature 
curation, deep learning models are more suitable for miRNA TSS identification. Second, the two-stream CNN 
model is a natural fit for the problem since it is specifically designed to integrate features at different resolutions. 
Last, although deep learning strategies have achieved a large degree of success when applied to bioinformatics 

Figure 4.   Average activation of CNN Block 4 in terms of the change of the DNase-seq, H3K4me3, sequence (A, 
G, C, T) and conservation values in different locations within 1 kbp around the D-miRT predicted TSSs. The 
activations are shown for GM12878 and K562. The heatmap was created using python V3.7 (https​://www.pytho​
n.org/).

Table 4.    The impact of input features on D-miRT training.

Data type Accuracy Precision Recall F1-score

DNase-seq 0.8627 0.8774 0.8350 0.8557

H3K4me3 0.8813 0.8878 0.8646 0.8761

Sequence 0.7612 0.8052 0.7570 0.7804

Conservation 0.9174 0.9111 0.9258 0.9184

https://www.python.org/
https://www.python.org/
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problems including miRNA target prediction and pre-miRNA prediction, they have not been applied to study 
condition-specific miRNA TSS prediction so far. To our knowledge, this is the first computational approach to 
flexibly integrate multiple types of features for miRNA TSS predictions.

Large-scale CAGE experimental data and other genomics/epigenomics data enabled the development of 
D-miRT. As shown in the Results section, D-miRT models trained by data from seven cell lines separately were 
able to achieve sufficiently high accuracy on the test and validation data. D-miRT design was robust enough 
to perform highly with both high and low resolution data. D-miRT outperformed other possible model vari-
ations. For unseen TSSs, D-miRT performed equally well as it did with the test data. The D-miRT predicted 
TSSs in the 50 kbp upstream of pre-miRNAs were supported by experiential evidences like GRO-cap, CAGE 
and H3K4me3 signals. The predicted TSSs were also rich in motifs representing CpG islands. Application of 
the input perturbation technique showed the importance of specific DNase-seq and H3K4me3 patterns, C and 
G nucleotides abundance near the TSS. The prediction resolution of D-miRT is currently set to 20 bp regions, 
which is among the highest resolutions compared with the state-of-art TSS annotation tools that use the same 
types of data as inputs. Note that methods such as FANTOM5 and Hua et al., 2016 achieved a single bp resolution 
by post-processing the predictions through the identification of the nucleotide location with maximal tag count 
in a predicted region. Besides, the D-miRT framework is flexible and not limited by the current input formats. 
Given more reliable training and testing data available in the future, the resolution can be further increased. 
However, current miRNA TSS annotation is still far from complete26. There are potentially various types of noises 
embedded in the training data. The prediction accuracy is also highly dependent on the data quality of the input 
features for a given experimental condition.

MiRNA transcription is a complex process, and various patterns of TSSs have been reported based on the 
study of large-scale CAGE experiments50–52. Observing the predicted TSS regions, we can analyze both epigenetic 
marker and sequence feature patterns D-miRT has discovered. However, current understanding of the RNA 
world is still very limited. The training of D-miRT here is only limited to the TSSs defined as narrow peaks by 
FANTOM project. Therefore, D-miRT is trained to only predict TSSs supported by narrow-peak patterns but 
not broad-peak patterns in its current format. One potential future study would be integrating the TSSs defined 
by broad peaks of FANTOM project to train additional models and combine that for more general miRNA TSS 
prediction. Applying task-specific training data concerning features at different-level of resolutions, D-miRT 
can also be extended to model other non-coding RNA TSSs. Recent development of GRO-Seq and PRO-Seq 
technology has also generated a large amount of data on nascent transcript detection. Future application of 
D-miRT may also include integrating the GRO-Seq data for training and modeling to improve condition-specific 
miRNA TSS prediction further.
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