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Abstract

Motivation: Protein—protein interactions (PPIs) play a key role in diverse biological processes but only a small subset
of the interactions has been experimentally identified. Additionally, high-throughput experimental techniques that
detect PPIs are known to suffer various limitations, such as exaggerated false positives and negatives rates. The
semantic similarity derived from the Gene Ontology (GO) annotation is regarded as one of the most powerful indica-
tors for protein interactions. However, while computational approaches for prediction of PPls have gained popularity
in recent years, most methods fail to capture the specificity of GO terms.

Results: We propose TransformerGO, a model that is capable of capturing the semantic similarity between GO sets
dynamically using an attention mechanism. We generate dense graph embeddings for GO terms using an algorith-
mic framework for learning continuous representations of nodes in networks called node2vec. TransformerGO
learns deep semantic relations between annotated terms and can distinguish between negative and positive interac-
tions with high accuracy. TransformerGO outperforms classic semantic similarity measures on gold standard PPI
datasets and state-of-the-art machine-learning-based approaches on large datasets from Saccharomyces cerevisiae
and Homo sapiens. We show how the neural attention mechanism embedded in the transformer architecture
detects relevant functional terms when predicting interactions.

Availability and implementation: https://github.com/leremie/TransformerGO.

Contact: iilg17@soton.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

mass spectrometry (AP-MS) (Ewing et al., 2007; Gavin et al., 2006)
generate datasets complementary to the previously mentioned
method by detecting interactions appearing in protein complexes.
However, AP-MS is limited in its ability to detect transient interac-

1 Introduction

Identifying protein—protein interactions (PPIs) is a major challenge
in molecular biology, because it is fundamental for our understand-

ing of biological processes (BPs) and cellular activities, such as me-
tabolism, signal transduction pathways and immune response.
Advances in high-throughput methods allowed the discovery of PPIs
at the genome scale. However, experimental methods are time-
consuming, labour-intensive and the results suffer from high false
positive and negative rates. Yeast-two-hybrid experiments (Ito ez al.,
2001) report direct physical interactions and generate binary inter-
actome network maps. The noise found in the final datasets comes
primarily from the inability of the method to capture interactions
between proteins that rely on intermediary proteins (protein com-
plexes and post-translational modifications) and on expression lev-
els. On the other hand, experiments using affinity-purification and
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tions (Cafarelli ez al., 2017). Therefore, computational approaches
have been developed to infer PPIs i silico.

Multiple studies approached the prediction of PPIs using vari-
ous sources of information, such as the primary structure of the
protein (Chen et al., 2019; Hashemifar et al., 2018; Li et al.,
2018), the 3D protein structure (Bepler and Berger, 2021), gene
expression profiles (Chin et al., 2010) and Gene Ontology (GO)
annotation (Bandyopadhyay and Mallick, 2017; Jain and Bader,
2010; Kulmanov et al., 2019; Smaili et al., 2018, 2019; Zhang
etal., 2018, 2020).

The GO project is a collaborative effort to annotate genes and
the products of genes with useful descriptions of BPs across multiple
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databases and species (Gene Ontology Consortium, 2015). GO is
composed of the ontology graph and annotation databases. The
graph is structured as a directed acyclic graph (DAG) and is divided
into three orthogonal sub-ontologies, cellular component (CC), BP
and molecular function (MF). Nodes inside the graph denote GO
terms, which are descriptions of biological concepts and the edges
(‘is_a’, ‘part_of’, ‘regulates’, ‘has_part’) represent relations between
GO terms (Gene Ontology Consortium, 2015). Annotation data-
bases contain GO terms and the gene products they annotate to. The
semantic similarity in GO annotation is regarded as one of the most
powerful descriptors of PPIs (Gene Ontology Consortium, 2015;
Miller et al., 2005; Patil and Nakamura, 2005). The idea behind this
is that interacting protein pairs, such as protein complexes interact
in the same cellular location and functional modules participate in
the same cellular processes or MFs at different times. These two
types of interactions are closely related in terms of GO annotation
(Zhao et al., 2020).

Multiple semantic similarity measures on GO have been pro-
posed over the years (Jain and Bader, 2010; Resnik, 1995; Zhang
et al., 2018) that predict PPIs using semantic similarity in GO anno-
tation. However, classic semantic similarity measures are in general
handcrafted and fail to fully capture the specificity of GO terms. It
has also been shown that semantic similarity measures are difficult
to compare and are only performing well on some datasets
(Kulmanov and Hoehndorf, 2017). Depending on the downstream
application, different features should be more or less relevant in
defining the notion of similarity (Smaili et al., 2018). On the other
hand, while machine-learning approaches (Jansen et al., 2003;
Rhodes et al., 20035; Stelzl et al., 2005) can be trained in a supervised
fashion, the similarity is encoded as a simple feature vector indicat-
ing the common GO terms. Disregarding the structure of the ontol-
ogy would not allow for a correct evaluation of proteins that have
common terms but are too general (Guo et al., 2006). Several studies
apply techniques from the field of Natural Language Processing to
extract dense feature vectors for GO terms (Smaili et al., 2018,
2019; Zhang et al., 2020; Zhao et al., 2020; Zhong et al., 2019).
We find that previous work comparing feature vectors using cosine
similarity or using a fully connected neural network fail to capture
deep semantic similarity between the GO terms.

Inspired by previous work based on GO terms and current
advancements made in NLP, we propose a trainable approach called
TransformerGO that predicts PPIs using information extracted from
the GO graph. We apply node2vec (Grover and Leskovec, 2016) to
generate dense feature vectors for GO terms and then use the
Transformer model (Vaswani et al., 2017) to dynamically learn a
deep semantic similarity between sets of GO terms. We demonstrate
that TransformerGO outperforms classic similarity measures and re-
cent models that use a similar way of encoding the GO graph.
Furthermore, experiments that analyse the attention weights show
how semantic similarity is learned in the decoder and provide useful
visualizations that could aid future research on comparing proteins
at a functional level.

2 System and methods

2.1 Protein embeddings

With recent research on unsupervised representation learning, new
methods for creating latent representations of nodes and edges in
networks have emerged. DeepWalk (Perozzi et al., 2014) uses infor-
mation from truncated random walks to learn link features by
extending the Skip-gram model (Mikolov et al., 2013). The network
is represented as a document, and the nodes in the random walks
are the equivalent of words forming sentences. Node2vec (Grover
and Leskovec, 2016) is a framework that learns continuous feature
representations for nodes by maximizing the log-likelihood of pre-
serving the network neighbourhoods. Compared to the previous
method, Node2vec adds flexibility when defining the neighbour-
hoods by using biased random walks. The model has proven suc-
cessful in multi-label classification and link prediction, such as PPI
(Grover and Leskovec, 2016).

Table 1. Node2vec hyper-parameters

Window/neighbourhood size 10
Walk length 80
Number of walks 10
Search bias P 1

Search bias Q 1

Iterations 10
Dimensions 64

We use G = (V,E) to denote the GO graph, where V represents
the set of GO terms and E all the undirected edges named ‘is_a’ and
‘part_of’ appearing between the terms. Node2vec seeks to optimize
the objective Function 1, which maximizes the log-probability of
observing the neighbourhood N;(u#) of a node u, given its feature
representation. The neighbourhood, N, is defined by a biased ran-
dom walk, which interpolates the BFS and DFS search strategies and
the function f can be seen as a matrix of size |V| x d, where d is the
chosen embedding size. Node2vec extends the objective function by
making two standard assumptions: conditional independence and
symmetry in feature space. The likelihood is factorized such that the
likelihood of observing two different nodes in the neighbourhood is
independent given the feature representation. Two nodes in the
same neighbourhood also have a symmetry effect in the feature
space. Node2vec is trained using stochastic gradient ascent with
negative sampling to accommodate for large networks (Grover and
Leskovec, 2016).

mfaxz log P(Ns () f (u))- (1)

ueV

To create continuous feature representations for proteins, we use
S ={GOy,GO0,,,,GO,} to denote the set of all GO terms that are
annotated to a protein. Using the learned matrix defined by the func-
tion f from node2vec, we replace the GO IDs with the corresponding
rows, such that the resulting set would be of size |S| x d.

We use the code of node2vec provided by the authors to train
the model on the GO graph. The hyper-parameters used are sum-
marized in Table 1.

2.2 The architecture of TransformerGO

We introduce a framework developed for GO-based PPI prediction,
capable of analysing complex relations between sets of GO terms.
The model proposed is based on the Transformer (Vaswani et al.,
2017), which uses an attention mechanism to solve seq2seq tasks,
such as translation. In the recent years, multiple models have been
published that use the Transformer architecture to achieve state-of-
the-art results on natural language-processing tasks: the Vanilla
Encoder is used to train deep bidirectional representations from un-
labelled text by conditioning on both left and right context (Dai
et al., 2019; Devlin et al., 2018; Liu et al., 2019). While the
Transformer architecture is designed for seq2seq tasks, with differ-
ent modifications it can be used for biological prediction tasks. The
model proposed by Lifan, TransformerCPI (Chen et al., 2020), uses
the Transformer Decoder to model the protein—compound inter-
action, while the Encoder is replaced by a set of convolution blocks.
To the best of our knowledge, the Transformer model has not been
used to predict PPIs at a functional level. Inspired by the ability of
the model to capture deep connections between sequences, we devel-
oped TransformerGO to predict PPIs from sets of GO terms. An
overview of the model proposed is in Figure 1, where we made mod-
ifications to the attention-heads and changed the final layers.

Both the Encoder and Decoder receive as input an embedded set
of GO terms, which are used to define the protein at a functional
level. Through self-attention mechanisms, GO terms are weighted
accordingly to the contribution they have as an interaction descrip-
tor. Replacing the Masked Multi-Head Attention with a Multi-
Head attention allows the model to attend to subsequent positions,
a change that transfers the architecture from an autoregressive task
to a classification task (Chen et al., 2020). Given that the order of
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Interaction Probability Table 2. TransformerGO hyper-parameters and settings
Embedding size 64
64 Number of layers 3
eighted attention Number of heads 8
Feed forward dimension 64x4
Interaction Sequence Learning rate le—04
{X1, sz. .Xm} m X 64 Batch size 32
( N Dropout 0.2
Add & Norm
Feed
Forward : : . o :
transform this sequence into a final probability vector. Given the
1 x 64 ( interaction sequence {Xi,X,...X,}, we modify the volume by
s N Add & Norm using a weighted sum of the attention vectors. Therefore, the input
(Src) Multi-Head to the final Linear layer is given by Equation (3), where
Attention 3x I1X:13
attn; = S,
Z il
=1
3x M
Add & Norm Add & Norm input = Z attn; X;. 3)
= Unmasked i—1
(el Mt (Self) Multi-Head
Attention The entire architecture is trained to optimize the Binary Cross-
4 Entropy Loss, given the binary nature of the PPI prediction:
194 g y p
\_ Encoder) \Decoder Y,
nx 64 m x 64 Loss = —[y,logx, + (1 — y,)log(1 — x,)], (4)
Positional Positional
Encoding X~ «X Encoding where v, is the label of the class and x,, a function returning the pre-

000000

%

=> 888 § @@=[V11-V12----V1d]

D 000 word2vec| @= [va1, V22, - - - Vadl

. ™ @=[V31, V32, . . . Vad]

: e @=[V41, Va2, - - . Vad]

‘ ------ ®= [Vn1, Vn2, - - - Vnd]
Random walks

GO Embeddings
corpus

'is_a', 'part_of' relations

|

GO-set of Protein A
nx1 {aq,az,...ap}

Node2vec Embeddings

GO-set of Protein B
{bq,bg,...byn} M X 1

Fig. 1. The architecture of our framework, with labels in red, highlighting the
dimensionality of the data passing through the computational graph. The drawing is
based on the original Transformer architecture. Positional encodings are not
injected into the input GO-sets, and the mask for future positions is removed from
the decoder. The lower part of the figure shows the generation of GO embeddings.
The text corpus for training the word2vec model is created by performing biased
random walks on the GO graph

the GO terms should not be relevant in predicting interactions at the
functional level, the positional encodings are not injected in our in-
put, which enables annotated GO terms to be treated as a set.

The key component of the Transformer network is the Scaled-
Dot-Product-Attention, which allows the model to focus on certain
parts of the input. The attention function can be described as map-
ping a query and a set of key—value pairs to an output. In practice, the
attention is computed on a set of queries using a matrix as follows:

Attention(Q, K, V) = soft max (QKT> v, (2)

Vi

where O, K and V are matrices for the set of queries, keys and values
and \/dy, is a scalar factor.

Multi-Head-Attention blocks allow the model to attend at differ-
ent positions and subspaces by linearly projecting the input using
learned weights before performing the attention function. This
mechanism enables the Decoder to focus dynamically on certain
parts of the Encoder’s output to learn semantic similarities between
GO terms that could be important when predicting PPIs.

After extracting deep semantic similarities between GO terms,
the output of the Transformer consists of an interaction sequence,
which has the same shape as the input of the Decoder. We apply the
same method used in TransformerCPI (Chen et al., 2020) to

dicted probability of class ‘1°.

TransformerGO was implemented in PyTorch (Paszke er al.,
2017) and trained using the Adam optimizer (Kingma and Ba,
2014). We reduced the size of the Transformer from six layers to
three and the embedding size from 512 to 64, but we kept the num-
ber of heads to eight as this did not increase training time. The train-
ing hyper-parameters and the model settings are summarized in
Table 2.

2.3 Datasets
2.3.1 GO graph and GO annotation data

* GO graph (Ashburner et al., 2000)—a filtered version of the
ontology graph is downloaded, which guarantees that the gener-
ated graph is acyclic and there are no relationships that cross the
three GO hierarchies. The file’s release date is September 19,
2018 to ensure a fair comparison with previous work.

* GO annotation data—we adopted the files provided by Jain’s
work (Jain and Bader, 2010). Electronically inferred annotations
that lack manual review are included and named IEA+.

2.3.2 PPI datasets

Jain’s datasets (Jain and Bader, 2010)—contain positive and nega-
tive interactions for Saccharomyces cerevisiae and Homo sapiens
organisms. A number of 4598 positive interactions and 2077 re-
spectively, were retrieved using the Database of Interacting Proteins
(Xenarios et al., 2000). These were further split into three smaller
datasets (BP, MF and CC) with both proteins annotated to terms
(other than root) in their respective ontologies (Tables 3 and 4). For
S.cerevisiae, an equal number of negative interactions are generated
at random by selecting protein pairs from the GO annotation file
that are not part of all known yeast PPIs appearing in the iRefWeb
database (45 448 yeast PPIs) (Razick et al., 2008). For H.sapiens, an
equal number of negative interactions are generated at random from
a pool of all possible interactions and then removing those which ap-
pear in the iRefWeb database (43 935 human PPIs).

STRING-DB datasets: To analyse the performance of
TransformerGO on larger datasets, we obtained two protein inter-
action networks for S.cerevisiae and H.sapiens from the STRING
database (Szklarczyk et al., 2016, downloaded on November 17,
2021), which account for 1 988 592 and 11 938 498 interactions.
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Table 3. Distribution of positive interactions for H.sapiens

IEA+ IEA—

Ontology PPI Self-PPI  Nodes PPI Self-PPI  Nodes

CC 1387444 147 1115 1022 +32 125 832
BP 1391+44 150 1119 1163 +41 135 920
MF 1397+44 149 1119  1246+42 140 978

Note: The bold PPIs represent redundant interactions, which appear in the
dataset. The Nodes represent unique protein IDs that appear in the dataset.
Self-PPI are interactions between the same protein.

Table 4. Distribution of positive interactions for S.cerevisiae

IEA+ IEA—
Ontology  PPI Self-PPI  Nodes  PPI Self-PPI  Nodes
CC 4469 194 2187 4425 190 2146
BP 4385 192 2123 4326 189 2076
MF 3858 177 1847 3583 173 1731

Table 5. Distribution of positive interactions for S.cerevisiae and
H.sapiens in the STRING-DB dataset

Organism PPI Self-PPI Nodes
S.cerevisiae 120 386 0 5966
H.sapiens 252984 0 16 814

After filtering the interactions that have a score above 700 (high
confidence), the S.cerevisiae dataset is composed of 120 386 interac-
tions from 5966 proteins and H.sapiens is composed of 252 984
interactions from 16 814 proteins. We used gene annotation files for
both organisms from the STRING website along with the GO graph.
We filtered down annotations inferred electronically (IEA) and
annotations where there is no biological data available. We gener-
ated an equal number of negative interactions by randomly choosing
pairs of proteins from the positive dataset that do not appear in the
STRING database (Table 5).

To allow for a fair comparison with previous methods, we also
train and test the TransformerGO model on a benchmark contain-
ing 420 534 human interactions and 119 051 yeast interactions
(Kulmanov et al., 2021) retrieved from the STRING database. The
difference between our proposed dataset and the benchmark is the
use of up-to-date files and the method of generating negative interac-
tions. We consider negative interactions, pairs of proteins for which
there is no association in the STRING database, while the previous
proposed benchmark considers interactions under the confidence
score (700) to be negative. We also found the use of ‘mirror’ interac-
tions where we consider both A — B and B — A interactions to be
redundant for training, and we do not include them in our proposed
datasets.

3 Results and discussion

3.1 The order of the input sequence

Zhang’s work (Zhang et al., 2020) proposes a new method called
protein2vec that differs from classic semantic similarity measures
between GO terms. Here, a protein is characterized by a vector
according to the annotated GO terms. A network embedding algo-
rithm is applied to generate dense feature vectors for each GO term,
then the resulting sequence of embeddings becomes input to a long
short-term neural network. To model the interaction between two
proteins, the outputs from the LSTM network are fed into a feed-
forward neural network which outputs an interaction probability,

Table 6. AUC values on S.cerevisiae from a 5-fold cross-validation
experiment

IEA+ IEA—

CcC BP MF CC BP MF
protein2vec 0.91 0.89 0.88 0.90 0.90 0.87
Sorted input* 0.921 0915 0917 0.899 0912 0916
Shuffled input*  0.905 0.897 0.895 0.888 0.894 0.892

Note: The values present in the table represent the mean AUC value. The
standard deviation is <0.01 in all cases. The results highlighted with ‘*” are

from a re-implementation of protein2vec.

Table 7. AUC values on H.sapiens from a 5-fold cross-validation
experiment

IEA+ IEA—
CcC BP MF CC BP MF
TCSS-max 0.82 0.92 0.85 0.80 0.89 0.80
Resnik-max 0.81 0.92 0.84 0.80 0.89 0.80
HVSM 0.84 0.93 0.88 — — —
Protein2vec 0.85 0.87 0.82 0.85 0.89 0.82
TransformerGO  0.936 0.933 0.939 0912 0.927 0.912

Note: HVSM does not report the results on the datasets without electronic-
ally inferred annotations. The standard deviation of TransformerGO is <0.01
across all datasets.

We argue that the annotated GO terms should not be modelled
as a sequence due to the nature of the information they hold. GO
terms are simple labels that should not act as words in a sentence.
We re-implemented the model proposed by Zhang (Zhang et al.,
2020) and performed experiments by changing the order of the
terms in the sequence. As shown in Table 6, there is a decrease in ac-
curacy for all subsets, showing that the LSTM is modelling the inter-
action based on the order of the GO terms in the sequence.
Therefore, some improvement in accuracy comes from the model’s
bias over the ordering of the input.

3.2 TransformerGO performance on Jain’s datasets

We choose two classic semantic similarity measures, TCSS and
Resnik (Jain and Bader, 2010; Resnik, 1995), to compare perform-
ance on Jain’s datasets along with two more recent approaches,
HVSM and protein2vec (Zhang et al., 2018, 2020). We use the
receiving operating characteristics (ROC) curve, which is a method
used widely to measure the performance of binary classifiers. ROC
is defined by plotting the true-positive rate (sensitivity) TPR =
% against the false-negative rate (1-specificity) FPR = FP’;%,
where TP stands for the number of true-positives, FP for false posi-
tives and TN for true negatives. We report the area under the curve
(AUC) as a measurement of performance (Fawcett, 2006). Note that
semantic similarity measures do not require a training phase of the
algorithm, therefore the validation results are reported on the entire
dataset. To fairly compare our work with these measures, we per-
form a 5-fold cross-validation on S.cerevisiae and H.sapiens and re-
port the average AUC values.

In Tables 7 and 8, the results of the proposed methods are
shown, with the TransformerGO performance marked in bold. We
can observe that classic semantic similarity measures along with the
Hierarchical Vector Space Model perform relatively poor compared
to machine learning models. TransformerGO improves the perform-
ance on average with 5% across all subsets, indicating that semantic
similarities methods fail to capture the true meaning of the GO
graph and use it to predict PPIs. While protein2vec uses a similar
way of encoding GO terms as TransformerGO, the LSTM is
designed to capture features from sequences where the order of the
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Table 8. AUC values on S.cerevisiae from a 5-fold cross-validation
experiment

Table 10. AUC values on S.cerevisiae and H.sapiens—STRING
dataset

S.cerevisiae H.sapiens

IEA+ IEA—
cc BP MF CC  BP MF
TCSS-max 0.83 089 075 083 089 0.73
Resnik-max 0.83 089 075 083 089 0.73
HVSM 0.83 090 074 — — —
Protein2vec 091 089 0.88 090 090 0.87
TransformerGO  0.927  0.929 0.924 0.921 0926 0.926

Table 9. AUC values on S.cerevisiae and H.sapiens—STRING
benchmark

S.cerevisiae H.sapiens
Resnik 0.87 0.89
Onto2vec 0.80 0.77
Opa2vec 0.88 0.88
El Embeddings 0.93 0.90
Node2vec_COS 0.847 0.845
Node2vec_ NN 0.952 0.958
TransformerGO 0.961 0.974

Note: The best AUC values are marked in bold. Node2vec_COS adds all
the embeddings together and predicts PPI using cosine similarity.
Node2vec_NN trains a simple feed-forward neural network on top of the
embeddings.

‘words’ has a deep meaning. Furthermore, protein2vec only uses a
feed-forward network to capture the semantic similarity features be-
tween two gene products. The decoder in our approach focuses its
attention dynamically on the output of the encoder to capture inter-
action features of the two sets of GO terms.

3.3 TransformerGO performance on STRING-DB

datasets

Taking into consideration that the Transformer network requires a
large training corpus, and it is easy to overfit on small datasets (Qiu
et al., 2020), we trained our model on two considerable larger data-
sets retrieved from STRING database (Szklarczyk ez al., 2016). We
randomly split the datasets into 80% training, 20% testing, and use
20% of the training dataset as a validation set to choose the best
performing model. This would allow for a better analysis of the
TransformerGO performance on an external test set and the effects
of a larger training corpus.

We benchmark our model against recent work on generating fea-
ture vectors for GO terms and proteins. Onto2vec (Smaili ez al.,
2018) is a method that learns representations for classes in an ontol-
ogy and biological entities annotated with these classes. To generate
feature vectors for GO terms and proteins, it trains a skip-gram
model on the set of all axioms appearing in the GO. Opa2vec
(Smaili ez al., 2019) extends this method by including meta-data
from the ontology (natural language statements) into the training
corpus and using transfer learning from biomedical literature. El
Embeddings (Kulmanov et al., 2019) embeds classes by minimizing
a set of loss functions that preserve the axioms inside an ontology.
In Table 9, we observe that the classic semantic similarity, such as
Resnik outperforms some unsupervised methods. El Embeddings
has good performance on the task of PPI prediction by exploiting
more axioms from the ontology. Adding all the GO terms generated
by node2vec together, combined with cosine similarity outperforms
opa2vec. This suggests that most of the information contained in the
GO can be captured by exploiting the graph neighbourhoods gener-
ated by the ‘is_a’ and ‘part_of’ relations. As it has been shown be-
fore (Smaili et al., 2018, 2019), the main advantage of generating

CC BP MF ALL CcC BP MF ALL
0.941 0966 0.935 0973 0.924 0948 0.900 0.958

Note: Each column represents the AUC value of TransformerGO trained
and evaluated on a filtered dataset with ALL or only GO terms from a specific
sub-ontology. The bold values represent the top AUC results.

embeddings for GO terms is that it allows a downstream model to
learn semantic similarity in a supervised way. TransformerGO
improves AUC values on the S.cerevisiae and H.Sapiens STRING
benchmark with up to 7% compared to the second-best method.
Using a simple feed-forward neural network with three layers (200,
400 and 200 neurons) on top of the embeddings performs better
than cosine similarity, but it fails to match the performance of our
model. This again validates the importance of the Decoder in our
network, which is able to capture deep semantic similarities between
GO terms.

Semantic similarity has been used to capture similarities between
gene products from different perspectives. In the case of GO-based
semantic similarity, the CC terms build up a context, which could
be used to validate physical interactions and localization-dependant
functions or processes. Furthermore, the BP aspect offers insight
into indirect interactions of proteins involved in the same process
network (Pesquita et al., 2009). To investigate the (interaction) de-
scription power of each sub-ontology, we train and test
TransformerGO on our dataset with features derived from CC, BP
and MF sub-ontologies. Considering that there are no edges in the
GO DAG between the sub-ontologies, there is no information leak-
age within the node2vec generated embeddings, allowing for a cor-
rect evaluation of the performance. In Table 10, we observe that the
model which combines features from all the sub-ontologies performs
consistently better than those trained on filtered datasets. This
reflects the ability of the model to extract information from relations
appearing between GO terms which belong to different sub-
ontologies. Similar to previous work (Xu ez al., 2008; Zhang and
Tang, 2016), we find that the performance for BP and CC is better
than MF. However, proteins in the dataset have on average less MF
annotations than BP and CC. This raises the question if annotation
size has an effect on performance.

Protein interaction networks have been used to infer properties
and functions of proteins through a ‘guilt by association principle,
which states that proteins that are associated (interact) are more
likely to have similar functions (Oliver, 2000). Recent studies (Gillis
and Pavlidis, 2011, 2012) show that function can be extracted from
interactions networks without using ‘guilt’ and only using the node
degree as input. This proved to be successful because genes that have
more interacting partners are more likely to have multiple functions
(GO terms). To explore if TransformerGO is biased towards pro-
teins with more annotations (multifunctional), we train and test the
model using datasets filtered at different annotation sizes. We con-
sider the annotation size to be the size of the GO-set containing all
the GO terms annotated to both interacting proteins. In Table 11,
we observe that in the most conservative case where interactions are
defined by only up to six terms, there is a considerable drop in per-
formance. This suggests that interactions between proteins with few
known functions are difficult to predict, due to a decrease in chance
of finding similar or semantic similar GO terms. For interactions
with a higher number of GO terms associated, there is a clear im-
provement in AUC values. However, it is interesting to see that the
performance drops when the model is trained and evaluated using
interactions, which contain proteins with a high number of annota-
tions (above 20 for S.cerevisiae and 30 for H.sapiens). This suggests
that the model is not biased towards proteins with a high number of
annotations, but capturing semantic similarity between proteins
with a few annotations proves to be a difficult task.
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Table 11. AUC values on S.cerevisiae and H.sapiens—STRING
dataset

S.cerevisiae H.sapiens

GO-set size AUC GO-set size AUC
(0, 6) 0.822 (0, 6) 0.711
(0, 10) 0.948 (0, 10) 0.840
(10, 20) 0.973 (10, 30) 0.953
(20, =) 0.963 (30, =) 0.951

Note: AUC values of TransformerGO trained and evaluated on a filtered
dataset containing only interactions where the aggregated number of GO
terms is within a specific range. The bold values represent the GO set size
defining the interaction.
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Fig. 2. The frequency of each GO term that appears in the H.sapiens dataset (String
database) along with the attention value, which is computed by summing over the
columns of the matrix M. CC and MF terms have high attention values similar to
the background frequency. On the other hand, BP terms have low attention values
despite appearing frequently in the dataset. This demonstrates the ability of
TransformerGO to ignore noise and focus on terms that are more important when
predicting PPIs. On the right side of the figure, the top 25 terms where the attention
value is higher than the background frequency are highlighted. Note that there are
no BP terms that have this property

3.4 Model interpretation

One desirable outcome along a semantic similarity value between
two proteins would be to determine what GO terms are more im-
portant and in what manner they relate to each other when predict-
ing an interaction. For example, when modelling the interaction
between two binding proteins, the CC should be more important
than their ability to regulate other proteins (Smaili ez al., 2018).
This is one of the reasons why negative interactions are usually
generated to include proteins from different CCs or BPs
(Bandyopadhyay and Mallick, 2017). Our understanding of the suc-
cess behind the Transformer networks is limited, but recent work in
the field of NLP brings light in the interpretation of attention
(Kovaleva et al., 2019; Rogers et al., 2020). In the field of
Bioinformatics, attention has been used to show how it captures the
folding structure of proteins and target binding sites (Vig et al.,
2020). We follow this work to analyse the attention weights of
TransformerGO and observe the patterns learned when modelling
semantic similarity between sets of GO terms. We define an indi-
cator function f that takes as input interacting proteins A, B and
returns one if the pair of GO terms determined by the index pair
(¢, 7) is present in the interaction, and zero otherwise. We compute
the attention matrix M that aggregates the attention weights over
all the GO term pairs in the ontology and all the interactions in
dataset X as follows:

= Y f(AB)x;(A,B)/ > f(AB), (5)

(A,B)eX (A,B)eX

where o;; denotes the attention from GO term 7 to GO term j in the
input interaction.

We use a model trained on the H.Sapiens STRING-DB bench-
mark dataset and analyse the attention using Equation (5).
Compared to the training corpus used in NLP models, the dataset is
relatively small, therefore, we only analyse the average attention
over all layers and attention-heads. In Figure 2, we can observe that
the attention of CC and MF terms is highly dependent on the
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Fig. 3. The mean attention of GO terms residing at different depths of the GO graph
(the longest path to the root), along with the mean background frequency. There is
a strong correlation between attention values and background frequency. CC terms,
which are closer to the root are preferred, while terms from other ontologies have
attention values distributed more equally

background frequency in the dataset. This could suggest that the
model is considering frequent terms a good indicator of interaction,
due to an increase chance of finding semantic similarity between
protein pairs. However, there is a considerable discrepancy in GO
term frequency and attention values for BP terms: the Decoder
allows the model to capture complex semantic relations between
GO terms, disregarding information that comes in the form of noise,
which does not contribute towards interaction prediction. On the
right side of Figure 2, the top 25 terms that have attention values
greater than the background frequency are shown. It is interesting
that the model is paying more attention to CC terms, which define
complex like structures. In other words, the interaction is easier to
predict if we know that both proteins are part of the same complex.
Similar for BP, a few terms which focus on the binding activity are
being picked up. One important question that arrives is why does
the model disregard most of the MF information, considering that
training on this part of the ontology alone showed top performance.
Our intuition suggests that TransformerGO finds it ‘easier’ to model
terms, which define the interaction in broader terms than focussing
on terms, which have a more granular view of a possible association
between proteins.

Previously, classic semantic similarity measure has been shown
to be biased towards the depth of annotation classes (Kulmanov and
Hoehndorf, 2017), with GO terms, which are more specific show-
ing, on average, an increase in similarity score to other terms. To
evaluate the effects of depth when it comes to modelling GO terms,
we consider the depth as the longest path to the root of the ontology
and analyse the attention accumulated per level. In Figure 3, we can
see that the attention values are similar with the background fre-
quency, suggesting that the model is not focussing on certain parts
of the GO graph to extract information about protein interactions.
Another interesting aspect is that TransformerGO ‘pays’ the same
attention to all BP terms, regardless of the depth at which they ap-
pear in the GO graph. This shows again that BF terms are more
granular and when used in isolation, they provide more information
about protein interactions, therefore, achieving top performance.
We also observe that in the case of CC and MF terms, there is high
attention at the root of ontology, highlighting the fact that terms
which define complexes act as ‘clique-like’ structures in contrast to
other terms (Gillis and Pavlidis, 2012). In other words, GO terms,
which have high learnability in the network data can act in ‘reverse’
and be used to predict interactions: CC terms, which define com-
plexes and MF terms, which define binding processes.

To further analyse what the model is paying attention to when
predicting the interactions, we map the positive interactions from
the H.sapiens dataset (String benchmark) to the BioGRID database
(Oughtred et al., 2019). This allows us to compare which GO terms
are more significant in predicting the interaction depending on the
type of experiment that determined it. A number of 23 923 interac-
tions are labelled as ‘High Throughput’ and 11 729 as ‘Low
Throughput’, while the rest of the interactions were not found in the
BioGRID database. In Figure 4, we computed the attention heatmap
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Fig. 4. The attention values of the top 30 GO terms according to the information
aggregated from the self-attention block of both the Encoder and Decoder when
predicting human interactions experimental validated using ‘High Throughput’
methods. At this stage, ‘box like’ patterns appear on the diagonal, highlighting se-
mantic similarity between terms that are one level apart
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Fig. 5. The attention values of the top 30 GO terms according to the information
aggregated from the source-attention of the Decoder when predicting human inter-
actions experimental validated using ‘High Throughput’ methods. The importance
of binding terms is being picked up, along with the BP term ‘Neutrophil
degranulation’

using the self-attention weights when the model gets as input inter-
actions labelled as ‘High Throughput’. We further filtered down the
heatmap to contain only the top 30 GO terms that have high atten-
tion values. We can observe that a diagonal pattern appears similar
to previous work of analysing BERT’s self-attention weights
(Kovaleva et al., 2019). This could suggest the model’s inability to
capture semantic similarity at an early stage when the GO terms are
analysed in isolation (the other protein in the interacting pair is
not seen). However, there are similarities captured within the CC
ontology between terms, which are one level apart: ‘Extracellular
region’ — ‘Extracellular space’ and ‘Endoplasmic reticulum’ —
‘Endoplasmic reticulum membrane’. One common motif that
appears across the heatmaps is the importance of GO terms that de-
fine binding functions, e.g. ‘DNA, RNA, protein, enzyme binding’.
This could suggest that proteins, which have a binding behaviour
are more likely to interact.

The heatmap in Figure 5 drawn from the source-attention
weights highlights specific semantic relations between GO terms,
which are part of different sub-ontologies. Such important terms ap-
pear as vertical line patterns, e.g. ‘(BP) Neutrophil degranulation’,
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Fig. 6. The attention values of the top 30 GO terms according to the information
aggregated from the source-attention of the Decoder when predicting human inter-
actions experimental validated using ‘Low Throughput’ methods. In this case, most
of the attention is ‘paid’ to binding terms

‘(CC) Cytosol’. Similar patterns appear in the attention heatmaps
for yeast, e.g. (CC) Nucleus’ and ‘(MF) structural constituent of
ribosome’ (Supplementary Figs S1-S4).

The difference in important GO terms when predicting interac-
tions determined by ‘Low Throughput’ methods compared to ‘High
Throughput’ is minimal (see Fig. 6). In both cases, CC terms have
high attention values even if the terms are close to the root of the
ontology. While the background frequency of CC terms is higher
than BP and MF terms, the model has the ability of disregarding un-
important terms. Therefore, the presence of large number of CC
terms with high attention is not necessarily due to a background fre-
quency. One explanation could be that the model views CC terms as
valuable because proteins that are localized in the same CC are
more likely to interact. This is similar to previous work (Shin et al.,
2009) that demonstrated that observed frequencies of co-location do
not arise by chance.

4 Conclusions

Multiple methods that compute semantic similarity between GO
terms have been proposed in the recent years, but the choice of ap-
propriate use still depends on the application, as the performance
can vary for different applications. Thus, they fail to answer which
method is the most appropriate measure given the biological ques-
tion (Mazandu et al., 2017). Furthermore, classic similarity meas-
ures have been shown to be biased due to the number of
annotations, difference in annotation size and depth of specificity of
annotation classes when predicting PPIs (Kulmanov and Hoehndorf,
2017). We proposed TransformerGO, a method that uses recent ad-
vancement from Deep Learning to predict PPIs using network infor-
mation extracted from the GO graph. One clear advantage of our
model compared to semantic similarity measures is the ability to use
generalized feature vectors of GO terms and then weight them ac-
cordingly in the training phase using an attention mechanism. This
overcomes a limitation of manually created semantic similarity
measures to judge how each relation between terms should contrib-
ute towards the end goal (Smaili ez al., 2018). TransformerGO
improves performance compared to recent machine-learning
approaches due to a careful design that captures the semantic simi-
larity between GO sets. Onto2vec and Opa2vec (Smaili ez al., 2018,
2019) encode the GO terms similarly as TransformerGO, but the
prediction of the interaction is modelled by a simple cosine similar-
ity or a shallow fully connected neural network. While protein2vec
(Shin et al., 2009) uses an LSTM to model the protein representa-
tion, the input is considered a sequence of terms and the interaction
is still predicted by a fully connected layer.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac104#supplementary-data

2276

l.leremie et al.

A new trend is to allow these methods to take into consideration
modern high-throughput technologies from various datasets
(Mazandu et al., 2017). TransformerGO takes as input feature vec-
tors of GO terms and can be trained to solve other biological ques-
tions, such as predicting the type of interactions between protein
pairs.

Transformers are neural networks that use attention to acceler-
ate training (Vaswani et al., 2017) and are the main component of
state-of-the-art NLP architectures, such as BERT (Devlin et al.,
2018). Interpreting attention is an active and well-known area of re-
search (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019), but the
application to biological sequences is still lagging behind. We pro-
pose a visualization of the attention-heads that extends previous
work to the field of semantic similarity-based prediction of protein
interactions. Unlike classic semantic similarity measures, the source-
attention offers valuable insights that explain the similarity between
GO terms. We find that CC terms are an important indicator of
interacting proteins and that there are cases where semantic similar-
ity is being picked up across different ontologies.

While we demonstrated TransformerGO’s performance on the
task of PPI prediction, semantic similarity is still far from reaching
the status of other similarity measures between gene products, such
as the sequence-based ones (Pesquita et al., 2009).

We expect future research on attention based models to offer
more comprehensive analysis of protein to protein interactions,
thorough model interpretation of the semantic similarity at a more
granular level.
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