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Abstract: Nowadays cancer is the second main cause of death in the world. The most known bacterial
carcinogen is Helicobacter pylori. Pathogens that can have an impact on cancer development in the
gastrointestinal tract are also found in the oral cavity. Some specific species have been identified
that correlate strongly with oral cancer, such as Streptococcus sp., Peptostreptococcus sp., Prevotella sp.,
Fusobacterium sp., Porphyromonas gingivalis, and Capnocytophaga gingivalis. Many works have also
shown that the oral periopathogens Fusobacterium nucleatum and Porphyromonas gingivalis play an
important role in the development of colorectal and pancreatic cancer. Three mechanisms of action
have been suggested in regard to the role of oral microbiota in the pathogenesis of cancer. The first
is bacterial stimulation of chronic inflammation. Inflammatory mediators produced in this process
cause or facilitate cell proliferation, mutagenesis, oncogene activation, and angiogenesis. The second
mechanism attributed to bacteria that may influence the pathogenesis of cancers by affecting cell
proliferation is the activation of NF-kB and inhibition of cellular apoptosis. In the third mechanism,
bacteria produce some substances that act in a carcinogenic manner. This review presents potentially
oncogenic oral bacteria and possible mechanisms of their action on the carcinogenesis of human cells.

Keywords: oral microbiota; oral cancer; colorectal cancer; Porphyromonas gingivalis; Fusobacterium
nucleatum; Streptococcus sp.; chronic inflammation; antiapoptotic activity; cancerogenic substances

1. Introduction

Nowadays cancer is the second main cause of death in the world. It is estimated that in 2018 about
9.6 million people will have died from cancer. Among men, the most common types of cancers are lung,
prostate, colorectal, and stomach cancers, while among women the most common are breast, colorectal,
lung, and cervix cancers [1]. Cancer of the oral cavity is one of the most common malignancies [2].
According to the World Health Organization (WHO), there are an estimated 657,000 new cases of
cancers of the oral cavity and pharynx each year, and more than 330,000 deaths [3]. Oral squamous
cell carcinomas (OSCCs) constitute more than 90% of oral and oropharyngeal cancer and the main
etiological factor is the synergistic effect of tobacco and alcohol use [4].

The most well-known bacterium associated with the development of cancer in humans is
Helicobacter pylori, which is defined as a class I carcinogen [5]. H. pylori is an etiological agent of peptic
ulcer disease, chronic gastritis, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue
(MALT) lymphoma, with intestinal metaplasia [6]. At the same time, there are data suggesting the role
of oral cavity bacteria in the development of cancer. Such bacteria can be responsible for oral cancers,
as well as tumors of the gastrointestinal tract. Some specific bacteria have been identified that correlate
strongly with OSCCs, such as Streptococcus sp., Peptostreptococcus sp., Prevotella sp., Porphyromonas
gingivalis, and Capnocytophaga gingivalis [7-13]. Oral cancer and epithelial precursor lesions are also
linked with bacteria from genera Fusobacterium, Veillonella, Actinomyces, Clostridium, Haemophilus,
and Enterobacteriaceae [14]. Many works have also shown that oral pathogens are essential in the
development of colorectal and pancreatic cancer. Two periopathogenic species in particular have been
frequently mentioned: Fusobacterium nucleatum and Porphyromonas gingivalis [15-21].
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Literature was searched from articles published in PubMed /MEDLINE between 2000 and 2018

voou ”ou

using combinations of the following keywords: “bacteria”, “microbiome”, “oral”, “oral cavity”,
“cancer”, “carcinogenesis”, “inflammation”, “cytokine”, “apoptosis”, and “carcinogen”. Titles and
abstracts of found papers were examined to order to determine which articles to exclude or include
in the review. From the references of included articles, additional works were selected. Finally,
ninety-eight articles were included in this narrative review.

In this review, potentially oncogenic oral bacteria are presented along with the possible

mechanisms of their action on carcinogenesis of human cells.

2. Potentially Oncogenic Oral Bacteria

Mager et al. tested 40 bacterial oral species from a group of cancer-free individuals and from a
group of subjects with oral squamous cell carcinoma (OSCC). The levels of three species (Capnocytophaga
gingivalis, Prevotella melaninogenica, and Streptococcus mitis) were elevated in the saliva of patients
suffering from OSCC. These three bacterial species were suggested as diagnostic markers and were
found to predict 80% of cancer cases [8]. Studies by Nagy et al. have shown a higher number of oral
bacteria associated with keratinizing squamous cell carcinomas of the following species: Veillonella sp.,
Fusobacterium sp., Prevotella sp., Porphyromonas sp., Actinomyces sp., Clostridium sp., Haemophilus sp.,
Streptococcus spp., and Enterobacteriaceae [14].

Among streptococci, Streptococcus anginosus seems to be an especially relevant marker of head,
neck, and esophageal cancers [7,22,23]. In studies of Sakamoto et al., oral streptococci (Streptococcus
intermedius, S. constellatus, S. oralis, S. mitis, S. sanguis, S. salivarius) were the most common isolates from
cervical lymph nodes in patients with oral cancer. Among the anaerobic bacteria, Peptostreptococcus
spp. dominated [24]. Some papers have reported that other genera are linked with OSCCs. Lee et al.
revealed significant differences between epithelial precursor lesion and cancer patients in five genera:
Bacillus sp., Enterococcus sp., Parvimonas sp., Peptostreptococcus sp., and Slackia sp. [13], whereas
Pushalkar et al. highly associated OSCC tumor sites with the following species: Streptococcus sp.,
Peptostreptococcus stomatis, Gemella sp., and Johnsonella ignava [10].

Taking the above into consideration, the most often observed oral bacteria in OSCCs are
Streptococcus sp., Peptostreptococcus sp., Prevotella sp., Porphyromonas gingivalis, and Capnocytophaga
gingivalis [7-13].

Oral bacteria are also detected in tumors outside the oral cavity and appear in patients
with colorectal and pancreatic cancers. In cases of colorectal cancer, two species are especially
prominent: Fusobacterium nucleatum and Porphyromonas gingivalis [15-17,19,25,26]. A high abundance
of Fusobacterium (in particular F. nucleatum) at colorectal cancer sites has been associated with
regional lymph node metastases [15] and tumor location (2% in rectum and approx. 11% in
cecum) [27]. In pancreatic cancers, in addition to Fusobacterium nucleatum and Porphyromonas gingivalis,
strains of Aggregatibacter actinomycetemcomitans, Neisseria elongata, and Streptococcus mitis have been
described [18,20,21,28]. Oral bacteria from genera Capnocytophaga and Veillonella are reportedly present
in increased amounts in lung cancer patients [29].

Table 1 presents oral bacteria that are associated with specific cancer types.
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Table 1. Oral bacteria as biomarkers of specific cancer types.

Cancer Localization Oral Bacteria as Biomarkers Main Findings Reference
Oral squamous cell carcinoma (OSCC) Streptococcus anginosus S. anginosus infection is more common in OSCC [7]
Oral squamous cell carcinoma (OSCC) Capnocytophugu' gznglvulzs, Prevotella melaninogenica, L(?vels of mentioned bacteria were elevated in the saliva of patients 8]
Streptococcus mitis with OSCC
Oral squamous cell carcinoma (OSCC) Bacillus, Enterococcus, qummonas, Slgmﬁca'nt differences 'between gplthehal precursor lesion and cancer [13]
Peptostreptococcus, Slackia patients in presented five bacterial genera
Streptococcus sp. 058, S. salivarius, S. gordonii,
Oral squamous cell carcinoma (OSCC) S. parasanguinis, Peptostreptococcus stomatis, Gemella ~ Presented bacteria were highly associated with OSCC tumor sites [10]
haemolysans, G.morbillorum, Johnsonella ignava
Oral squamous cell carcinoma (OSCC) Cupnocytaphagu‘ gzngzvulzs, Prevotella 4me‘lam4nogemcu, Tl"he' high salivary counts of studied l:.>acter1a may be diagnostic [12]
Streptococcus mitis, Porphyromonas gingivalis indicators of oral squamous cell carcinoma
Gingival squamous cell carcinoma Porphyromonas gingivalis P. gingivalis was abundantly present in malignant oral epithelium [9]
Streptococcus intermedius, S. constellatus, S. oralis, Bacteria were the most common isolates from cervical lymph nodes in
Oral mucosal cancer . . S . . [24]
S. mitis, S. sanguis, S. salivarius, Peptostreptococcus sp.  patients with oral cancer
HNSCC saliva samples were associated with increased amounts of
Head and neck squamous cell carcinoma (HNSCC) Streptococcus sp. and Lactobacillus sp. Streptococcus and Lactobacillus and a decrease in Haemophilus, Neisseria,  [30]
Gemella, and Aggregatibacter
Head and neck squamous cell carcinoma (HNSCC) Streptococcus anginosus S. anginosus infection is implicated in the carcinogenesis of HNSCC [22]
Veillonella sp., Fusobacterium sp., Prevotella sp.,
Keratinizing squamous cell carcinoma Porphyromonas sp., Actinomyces sp., Clostridium sp., ~ Higher r}umbers of presented bacteria in keratinizing squamous [14]
Haemophilus sp., Streptococcus sp., and cell carcinoma
Enterobacteriaceae
Orodigestive cancer Porphyromonas gingivalis P. gm'gwal.zs is a biomarker for microbe-associated risk of death due to [31]
orodigestive cancer
Esophageal cancer Streptococcus anginosus, S. mitis, Treponema denticola Studied badené Cogld have a significant role in t he CATCIOBENIC 73
process by causing inflammation and by promoting the carcinogenesis
. The abundance of P. gingivalis is trended with higher risk of
Esophageal adenocarcinoma and esophageal L . . L .
- Porphyromonas gingivalis, Tannerella forsythia esophageal squamous cell carcinoma, and T. forsythia is associated [32]
squamous cell carcinoma o . .
with higher risk of esophageal adenocarcinoma
. Increased carriage of presented bacteria was found in patients with
Colorectal cancer (CRC) Fusobacterium sp., Porphyromonas sp. CRC; lower abundance of Clostridium sp. was simultaneously observed el
Colorectal cancer (CRC) Fusobacterium sp. Fusobacterium enrichment is associated with specific molecular subsets [26]

of colorectal cancers
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Table 1. Cont.
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Cancer Localization Oral Bacteria as Biomarkers Main Findings Reference
Fusobacterium sp. are enriched in human colonic adenomas.
Colorectal cancer (CRC) Fusobacterium sp. F. nucleatum increases tumor multiplicity and can promote [17]
tumor progression
Patients with low F. nucleatum levels had a significantly longer overall
Colorectal cancer (CRC) Fusobacterium nucleatum survival time than patients with moderate and high levels of the [19]
bacterium
Colorectal cancer (CRC) Fusobacterium sp. Oyerabundance of F usobucferlum in tumor has positive association [15]
with lymph node metastasis
Colorectal cancer (CRC) Fusobacterium sp. Fusobacterium sequences were enriched in CRC [25]
. Presented bacteria exhibited a higher abundance in cancerous tissues,
Colorectal cancer (CRC) Fusobacterium sp., Lactococcus sp. while Pseudomonas and Escherichia-Shigella were reduced [33]
Pancreatic cancer Porphyromonas gingivalis Ir}d1V1d1.1als with high l.evels of antibodies against P. gingivalis had a 1]
higher risk of pancreatic cancer
Pancreatic cancer Parphymmonus glr{gzvalzs, Aggregatibacter Carnage.of both pathogens was associated with higher risk of [21]
actinomycetemcomitans pancreatic cancer
. . Level of Fusobacterium species in the tumor is associated with a worse
Pancreatic cancer Fusobacterium sp. . . [20]
prognosis of pancreatic cancer
Pancreatic cancer Streptococcus mitis, Neisseria elongata Bacteria can be used as blomarkers‘for distinguishing patients with [25]
pancreatic cancer from healthy subjects
Lung cancer Capnocytophaga sp., Veillonella sp. Levels of presented bacteria were significantly higher in the saliva [29]

from lung cancer patients
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3. Mechanisms of Carcinogenic Action of Oral Bacteria

Zhang et al. [34] suggest three mechanisms of action of oral microbiota in the pathogenesis of
cancer (Figure 1). The first is bacterial stimulation of chronic inflammation. Inflammatory mediators
produced in this process cause or facilitate cell proliferation, mutagenesis, oncogene activation, and
angiogenesis. Regarding the second mechanism, bacteria may influence the pathogenesis of cancers by
affecting cell proliferation, cytoskeletal rearrangements, activation of NF-«B, and inhibition of cellular
apoptosis. As for the third mechanism, bacteria produce some substances that may be carcinogenic [34].

Bacterial infection
A,

i

Chronic Anti-apoptotic Cancerogenic
inflammation activity substances

CANCER

Figure 1. The influence of oral bacteria in the pathogenesis of cancer.
3.1. Chronic Inflammatory Process

Oral bacteria, especially anaerobic species such as Porphyromonas, Prevotella, and Fusobacterium,
are responsible for periodontal diseases and lead to chronic inflammatory processes. These bacteria
stimulate production of inflammatory mediators and have harmful effects on fibroblasts, epithelial
and endothelial cells, and extracellular matrix components. Periodontal pathogens affect growth of
local concentrations of various cytokines including interleukin-1 (IL-13), IL-6, IL-17, IL-23, tumor
necrosis factor-a (TNF-w), and matrix metalloproteinases MMP-8 and MMP-9 [35].

In tissues of the periodontium, monocytes/macrophages, neutrophils, fibroblasts, and mast cells
are the primary sources of IL-13. Among others, these cells synthesize IL-1f3 in response to activation
from the influence of lipopolysaccharide (LPS), the main component of Gram-negative bacteria cell
walls. IL-1§3 causes osteoclast formation and bone resorption, which leads to local inflammatory
changes in the periodontium. Moreover, this cytokine stimulates the release of phospholipase A2,
prostaglandins (PG), acute phase proteins, as well as proinflammatory cytokine IL-6, tumor necrosis
factor (TNF), and many metalloproteinases (MMPs) [36,37]. IL-1[3 activates endothelial cells to produce
vascular endothelial growth factor (VEGF) and other proangiogenic factors (e.g., TNF) which provide
an inflammatory microenvironment for angiogenesis and tumor progression [38]. High IL-1(3 content
is associated with tumor invasiveness, migration, and more aggressive tumor phenotype [39,40].
In the study by Wang et al., IL-13 was linked to lower expression of E-cadherin, which promotes cell
migration [41]. Low E-cadherin expression is correlated with disorders of cellular functions, growth
inhibition, apoptosis, cell cycle arrest, and differentiation. It leads to aggressive carcinoma, higher
invasiveness, and low patient survival [42,43]. Simultaneously, IL-13 induces MMP-9, which has a role
in local extracellular matrix degradation and tumor invasion. The loss of E-cadherin-mediated adhesion
and increase of MMP-9-induced migration are important markers of the transition of epithelial tumors
from a benign to an invasive state [41].

Another important pro-inflammatory cytokine is IL-6. It is produced by many cells of periodontal
tissues in response to stimulation under the influence of LPS and proinflammatory cytokines IL-1f3
and TNE. IL-6 induces bone resorption and stimulates synthesis of acute phase proteins, chemokines,
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and PGE2 [44,45]. IL-6 induces oxidative stress and can lead to a transient accumulation of H,O,
in mitochondria and consequently to mitochondrial damage [46,47]. IL-6 also affects the process
of invasion and metastasis by increasing the expression of matrix metalloproteinases (MMPs) [48].
Additionally, this cytokine upregulates the expression of various adhesion molecules (ICAMs) and
endothelial leukocyte adhesion molecules (ELAMs), which cause adhesion of tumor cells to endothelial
cells, and therefore have an impact on tumors spreading [49]. Most genes that are targeted by IL-6
are involved in cell cycle progression and suppression of apoptosis. By influencing anti-apoptotic
pathways, IL-6 may have an impact on cancer development [50].

Also, one of the major cytokines of the inflammatory response is TNF-«. This cytokine is
synthesized among others by monocytes/macrophages, neutrophils, fibroblasts, lymphocytes, and
mast cells. This cytokine is secreted in response to many factors, including bacterial LPS. TNF-«
strongly induces the production of reactive oxygen compounds, leukotrienes, prostaglandins, and
metalloproteinases [51]. TNF leads to a reduction in the number of osteogenic cells and fibroblasts [52].
In contrast to high doses of TNF-«, which are related to tumor destruction, exposure to low doses of this
molecule are related to tumor promotion [53]. Activation of oncogenic signaling pathways in epithelial
cells, including Wnt and NF-«B, is critical for TNF-a-induced tumor growth [54]. Also, TNF-«x
possesses the ability to induce DNA damage by production of reactive oxygen species [55]. TNF-«
has been shown to influence processes of motility and invasion by induction of MMPs expression [56]
and simulation of the production of various angiogenic factors, such as interleukin-8, VEGF, and basic
fibroblast growth factor [57].

3.2. Antiapoptotic Activity

Porphyromonas gingivalis acts antiapoptotically by modulation of several pathways [58].
Intracellular P. gingivalis activates antiapoptotic Jak1/Akt/Stat3 signaling, which controls intrinsic
mitochondrial apoptosis pathways [59,60]. This pathogen also accelerates progression through the
S-phase of the cell cycle by manipulation of cyclin/CDK (cyclin-dependent kinase) activity and
reduces the level of the p53 tumor suppressor [61]. P. gingivalis causes significant phosphorylation
of pro-apoptotic Bad at the mitochondrial membrane, and its inhibition, with enhancement of
the ratio of Bcl2 (anti-apoptotic) and Bax (pro-apoptotic). P. gingivalis inactivates pro-apoptotic
Bad through Akt and simultaneously inhibits caspase-9 independently of Akt [62]. Nakhijiri et al.
showed that P. gingivalis can inhibit apoptosis in gingival epithelial cells by upregulation of the
anti-apoptotic molecule Bcl-2, whereas Bax levels were transiently elevated and then declined after 24 h
stimulation [63]. P. gingivalis can also inhibit gingival epithelial cell apoptosis induced by ATP ligation
of purinergic receptor P2X7, which plays a critical role in promoting cell growth, neovascularization,
metastasis, and secretion of inflammatory cytokines. This bacterium has shown the ability to
secrete an anti-apoptotic enzyme nucleoside diphosphate kinase (NDK), which cleaves ATP and
prevents activation of the proapoptotic P2X7 receptor, therefore modulating ATP/P2X7-signaling [64].
Secretion of the NDK P. gingivalis can additionally modulate ATP-induced cytosolic and mitochondrial
reactive oxygen species (ROS), as well as antioxidant glutathione response generated through
P2X7/NADPH-oxidase interactome [65]. ROS can serve as a key mediator in the activation of
transcription factors associated with inflammation and cancer development [66]. Moreover, P. gingivalis
produces cysteine proteinases named gingipains, which can cleave the MMP-9 pro-enzyme, changing
it into its mature active form. This process is NF-kB-dependent. Activation of MMP-9 by gingipains
causes degradation of basement membrane structure, which promotes carcinoma cell migration
and invasion [67]. Interactions between Porphyromonas gingivalis and epithelial cells that can affect
development of oncogenic phenotype are presented in Figure 2.
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Figure 2. Interactions between Porphyromonas gingivalis and epithelial cells that can affect development
of oncogenic phenotype. Based on Gholizadeh et al. [58] and Whitmore and Lamont [61]. Akt: protein
kinase B; ATP: Adenosine triphosphate; Bad: Bcl-2-associated death promoter; Jak1: Janus kinase 1;
MMP: metalloproteinase; NDK: nucleoside diphosphate kinase; NF-kB: nuclear factor kappa B; P2X7:
Purinergic receptor; p53: Tumor protein p53; ROS: reactive oxygen species; Stat3: Signal transducer
and activator of transcription 3.

Examples of Fusobacterium nucleatum LPS-activated inflammatory cytokines are include IL-1f3,
IL-6, and TNF-«. The chronic inflammatory process leads to the loss of periodontal attachment and
tissue damage [68]. F. nucleatum infection modulates several antiapoptotic pathways. Bacteria induce
NF-kB signaling as a consequence of Toll-like receptor (TLR) activation [69]. Of importance in the direct
relationship between F. nucleatum and cancer is the fusobacterial adhesin/invasin FadA, which binds
to E-cadherin on carcinoma cells and activates 3-catenin signaling. This pathway results in enhanced
transcriptional activity of Wnt, activation of pro-inflammatory cytokines, oncogenes, and stimulation
of cancer cells proliferation [70]. FadA is a key virulence factor of F. nucleatum and alters macrophage
infiltration and methylation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) promoter in cancer
lesions [71]. F. nucleatum may also activate 3-catenin signaling through its LPS. In this process, the
enhancement of the expression of (3-catenin, and oncogenes C-myc and cyclin D1, is observed [72,73].
Additionally, F. nucleatum activates p38, resulting in the secretion of MMP-9 and MMP-13, which
play very important roles in the invasion of cancer cells and metastasis [74]. Interactions between
Fusobacterium nucleatum and epithelial cells that can affect the development of oncogenic phenotype
are presented in Figure 3.
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Figure 3. Interactions between Fusobacterium nucleatum and epithelial cells that can affect development
of oncogenic phenotype. Based on Gholizadeh et al. [58] and Whitmore and Lamont [61]. CDK:
cyclin-dependent kinase; FadA: fusobacterial adhesin/invasin; LPS: Lipopolisaccharide; MMP:
metalloproteinase; NF-kB: nuclear factor kappa B; p38: Mitogen-activated protein kinase p38.

3.3. Cancerogenic Substances

We have little knowledge of cancerogenic substances produced by oral bacteria. Substances that
may have a carcinogenic effect include the following: reactive oxygen species (ROS) and reactive
nitrogen species (RNS), volatile sulfur compounds (VSC), and organic acids. The metabolization of
alcohol to acetaldehyde by micro-organisms also plays an important role in the development of cancer.

During an inflammatory response, under the influence of TNF-«, IL-6, and TGF-f3, epithelial
and immune cells trigger reactive oxygen species (ROS) and reactive nitrogen species (RNS) [75,
76]. Production of ROS and RNS occurs through induction of NADPH oxidase and nitric oxide
synthase (NOS), respectively. NADPH oxidase catalyzes the superoxide anion (O, -) leading to
superoxide dismutase-(SOD™)-mediated hydrogen peroxide (H,O,) production. Simultaneously,
NOS generates nitric oxide (NO), which can be converted into nitrogen dioxide (NO;), peroxynitrite
(ONOQO™), and dinitrogen trioxide (N»Os3) [77]. Some species in the oral cavity involved in this process
produce hydrogen peroxide (H,O,). Known peroxigenic oral bacteria include: Streptococcus oralis,
S. mitis, S. sanguinis, S. gordonii, S. oligofermentans [78], Lactobacillus fermentum, L. jensenii, L. acidophilus,
L. minutus, and Bifidobacterium adolescentis [79]. Increased expression of NADPH oxidase, nitric oxide
synthase, and their reactive oxygen and nitrogen species have been identified in various cancers. These
findings support the connection of free radicals with chronic inflammation and their role in cancer
development and malignant progression [80,81].

Some oral bacteria (e.g., Porphyromonas gingivalis, Prevotella intermedia, Aggregatibacter
actinomycetemcomitans, and Fusobacterium nucleatum) produce volatile sulfur compounds (VSCs), such
as hydrogen sulfide (H,S), methyl mercaptan (CH3SH), dimethyl sulfide ((CHz3),S), and dimethyl
disulfide (CH3SSCH3). H,S occurs in the highest concentration in the air inside the mouth, while in
the gingival pockets the dominant compound is CH3SH [82,83]. Even at low concentrations, VSCs are
toxic to tissues and play a role in the pathogenesis of periodontitis and in the development of chronic
inflammation [84]. H,S is a known genotoxic agent and may lead to genomic instability or cumulative
mutations [85]. Increased expression of various HyS-producing enzymes has been observed in cancer
cells, particularly in cancers of the colon and ovaries. Overexpression of cystathionine-f3-synthase
causes the production of increased amounts of H,S, which affect tumor growth and spread by activation
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of proliferation, migration, and invasive signaling pathways, and enhance tumor angiogenesis [86].
Recently, H,S has been found to have dichotomous effects (stimulatory and inhibitory) on several
gastrointestinal processes such as inflammation, cancer, and apoptosis [87].

Some oral bacteria belonging to genera Lactobacillus, Lactococcus, Bifidobacterium, Streptococcus,
Leuconostoc, and Pediococcus produce lactic acid [88]. Hooper et al. reported that most taxa isolated
from within the tumor tissue of oral squamous cell carcinoma represent saccharolytic and aciduric
species, mainly streptococci [89]. These microorganisms are acidogenic and aciduric, and by producing
lactic acid have an influence on lowering the pH in the local environment [90]. Some species are
capable of producing more acids (e.g., aciduric Peptostreptococcus stomatis produces acetic, butyric,
isobutyric, isovaleric, and isocaproic acids) [91]. Production of such acids may contribute to the acidic
and hypoxic microenvironment of tumors, thereby increasing metastatic efficiency [92,93].

Oral micro-organisms are capable of metabolizing alcohol to acetaldehyde, which is indisputably
carcinogenic. Several oral microbial species such as streptococci S. gordonii, S. mitis, S. oralis, S.
salivarius, S. sanguinis [94], and Candida yeasts possess the enzyme alcohol dehydrogenase (ADH),
which metabolizes alcohol to acetaldehyde [95]. ADH-containing micro-organisms present a risk
for carcinogenic acetaldehyde production, with subsequent potential for the development of oral
cancer [96,97]. Muto et al. showed that the genus Neisseria had extremely high ADH activity and
produced significant amounts of acetaldehyde in vitro. Neisseria’s ability to produce acetaldehyde was
more than 100-fold higher than that produced by Streptococcus sp., Stomatococcus sp., or Moraxella sp.
The authors suggested that Neisseria can be a regional source of carcinogenic acetaldehyde and may
thus play an essential role in alcohol-related carcinogenesis in humans [98].

4. Conclusions

Bacteria of the oral cavity play an important role in the development of oral, colorectal, and
pancreatic cancers. The most well-confirmed is the carcinogenic effect of oral periopathogens:
Fusobacterium nucleatum and Porphyromonas gingivalis. Others playing an essential role in cancerogenesis
seem to be Streptococcus sp., Peptostreptococcus sp., Prevotella sp., and Capnocytophaga gingivalis. Bacteria
can have an oncogenic effect on human cells in three ways: leading to chronic inflammation, acting
as an antiapoptotic, and producing carcinogenic substances. However, further research is needed to
clearly define specific oral bacteria as carcinogens.
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