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Objective: To investigate the in vitro and in vivo radiosensitization effect of an institutionally 

designed nanoliposome encapsulated cisplatin (NLE-CDDP).

Materials and methods: NLE-CDDP was developed by our institute. In vitro radiosensitization 

of NLE-CDDP was evaluated by colony forming assay in A549 cells. In vivo radiosensitization was 

studied with tumor growth delay (TGD) in Lewis lung carcinoma. The radiosensitization for 

normal tissue was investigated by jejunal crypt survival. The radiosensitization studies were car-

ried out with a 72 h interval between drug administration and irradiation. The mice were treated 

with 6 mg/kg of NLE-CDDP or CDDP followed by single doses of 2 Gy, 6 Gy, 16 Gy, and 28 

Gy. Sensitization enhancement ratio (SER) was calculated by D
0
s of cell survival curves for 

A549 cells, doses needed to yield TGD of 20 days in Lewis lung carcinoma, or D
0
s of survival 

curves in crypt cells in radiation alone and radiation plus drug groups.

Results: Our NLE-CDDP could inhibit A549 cells in vitro with half maximal inhibitory concen-

tration of 1.12 µg/mL, and its toxicity was 2.35 times that observed in CDDP. For in vitro studies 

of A549 cells, SERs of NLE-CDDP and CDDP were 1.40 and 1.14, respectively, when combined 

with irradiation. For in vivo studies of Lewis lung carcinoma, the strongest radiosensitization 

was found in the 72 h interval between NLE-CDDP and irradiation. When given 72 h prior to 

irradiation, NLE-CDDP yielded higher radiosensitization than CDDP (SER of 4.92 vs 3.21) and 

slightly increased injury in jejunal crypt cells (SER of 1.15 vs 1.19). Therefore, NLE-CDDP 

resulted in a higher TGF than did CDDP (4.28 vs 2.70) when SERs were compared between 

experiments in vivo and in jejunal crypt cell studies.

Conclusions: Our NLE-CDDP was demonstrated to have radiosensitization with TGF of 4.28 

when administrated 72 h prior to irradiation.
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Introduction
Cisplatin (CDDP) is a highly effective antitumor agent and is applied widely in the 

treatment of various cancers. Furthermore, CDDP is a commonly used radiosensitizer. 

However, after intravenous injection, the majority of CDDP is bound with plasma 

albumin to form an essentially irreversible complex with limited antitumor activity. 

In addition, the renal toxicity of CDDP limits its use. Therefore, it is important to study 

how to avoid or reduce plasma albumin binding of CDDP and improve its effective 

bioavailability.1–3

Liposome technologies, especially the long-circulating nanoliposome technologies, 

provide effective means to solve those problems.4,5 Liposomal CDDP can isolate agents 

from plasma albumin, and pegylated liposome is able to prolong the circulation time 
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of free CDDP in blood. Nanoliposome can penetrate the 

interendothelial cell gap of nascent tumor capillaries much 

easier than of normal tissues, then deposit in the tumor. Those 

natural characteristics can increase CDDP concentration in 

the tumor while reducing CDDP concentration in normal 

tissues, thereby decreasing its toxicity.6–8 In this study, we 

investigated the radiosensitization effect in vitro and in vivo 

of a newly developed agent, nanoliposomal encapsulated 

CDDP (NLE-CDDP).

Materials and methods
Preparation of NLE-CDDP
NLE-CDDP was produced in the School of Pharmacy, 

Shanghai Jiao Tong University, Shanghai, People’s 

Republic of China, by the reverse-phase evaporation 

method, which was originally introduced by Szoka and 

Papahadjopoulos.9 The lipid agents included hydrogenated 

soybean phosphatidylcholine (HSPC, NOF corporation, 

Tokyo, Japan), cholesterol (Sigma-Aldrich, St Louis, MO), 

and 2000PEG-1, 2-distearoyl-sn-glycero-3-phosphoeth-

anolamine (2000PEG-DSPE, NOF Corporation). CDDP 

was packed in central aqueous core of the liposomal nano-

particles at a ratio of 1:5 (CDDP vs lipid molar). The final 

NLE-CDDP consisted of small nanoliposomes of an average 

size of approximately 100 nm with CDDP concentration of 

1 mg/mL. The formulation was stable at room temperature. 

The CDDP remained at a concentration of 93% of the initial 

status even 1 month after preparation. In this study, NLE-

CDDP was prepared immediately prior to use. CDDP was 

taken as the control, which was obtained from Shandong Qilu 

Pharmaceutical Company (Lot number 060924).

Cell culture
A549 human lung adenocarcinoma cell line was used in 

this study, incubated in RPMI medium 1640 (GIBCO®, 

Invitrogen, Gaithersburg, MD) with 10% fetal bovine serum 

(Biochrom, Berlin, Germany) at 37°C in a humidified atmo-

sphere of 5% CO
2
. Logarithmic growth cells were harvested 

for experiments.

Methylthiazoltetrazolium (MTT) assay
A549  cells were seeded in 96-well plates with a density 

of 3000  cells/90  µL per well and incubated overnight. 

NLE-CDDP and CDDP solutions were prepared with RPMI 

1640 medium without serum and added to the cells, 10 µL per 

well, with final drug concentrations of 0.1 µg/mL, 0.3 µg/mL, 

0.5 µg/mL, 1 µg/mL, 3 µg/mL, 5 µg/mL, and 10 µg/mL in 

medium, respectively. Eight replicates were performed for 

each drug dose. Every well plate had two controls: saline and 

culture medium. After cells were incubated for 48 h, 20 µL 

3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenytetrazolium bromide 

was added in each well and remained for 4 h. Then 100 µL solu-

bilization solution was added into the medium. The absorbance 

of the colored solution was quantified by a spectrophotometer at 

570 nm with a reference wavelength of 630 nm. Inhibition of cell 

viability was calculated by the formula: [1 - (OD
test

 - OD
blank

)/

(OD
control

 - OD
blank

)], and half maximal inhibitory concentration 

(IC50) was derived from GraphPad Prism. Free liposomes were 

also tested for cell inhibition by MTT.

Colony forming assay
A549 cells were incubated in 25 cm2 flasks overnight then 

exposed to NLE-CDDP or CDDP at a concentration of 

0.5  µg/mL, or irradiated. Drugs were administrated 24  h 

before irradiation. Cells were irradiated using a 6 MV X-ray 

linear accelerator at a dose rate of 1.24 Gy/min. Two hours 

after irradiation, cells were trypsinized, counted, and seeded in 

6 cm dishes with 5 mL medium at appropriate concentrations. 

There were three dishes at each dose. The cells were incubated 

for 10 days and then stained with crystal violet. Colonies with 

more than 50 cells were counted. Cell survival curve was esti-

mated by a multitarget single-hit model (S = 1 - (1 - e-D/D0)N) 

(L-Q) and then D
0
 was calculated.

In vivo tumor inhibition test
The in vivo study was approved by the Animal Study 

Committee and was conducted in accordance with Fudan 

University guidelines and regulations on the use and care of 

laboratory animals. Lewis lung carcinoma was implanted 

in the right flank of C57BL/6N male mice (6 weeks old 

and weight 17  ±  1.8  g). Mice were purchased from the 

Experimental Animal Center, Chinese Academy of Sciences, 

Shanghai, and maintained in specific pathogen-free rooms. 

The in vivo study was started 5 to 7 days after implantation 

when flank tumors grew to diameters of 8–10 mm.

Lewis lung carcinoma-bearing mice were randomly 

assigned to one of the following groups: CDDP alone, 

NLE-CDDP alone, irradiation alone, CDDP followed by 

irradiation, NLE-CDDP followed by irradiation, and control 

with no treatments. Drugs were injected through the mouse 

tail vein at a dose of 6 mg/kg. In order to investigate whether 

NLE-CDDP can enhance the radiation effect even after a 

long time, we designed experiments with different intervals 

between drug administration and irradiation. A single dose 

of 6 Gy irradiation was delivered 1 h, 24 h, and 72 h after 

drug delivery. To further investigate the interval for the 72 h 
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group, single doses of 0 Gy, 2 Gy, 6 Gy, 16 Gy, and 28 Gy 

were given in the irradiation-alone and combination of 

irradiation and drugs groups.

Tumors were measured three times a week until the death 

of the mice or 60 days after treatment. Tumor volume was 

calculated by V = (a*b2)/2, where a was the maximum diam-

eter and b was the orthogonal diameter. However, a relative 

tumor volume was used, which was a ratio of tumor volume 

after treatment versus the pretreatment volume. Tumor growth 

curves were constructed according to the Gompertz model 

with the equation y = V
0
*exp(k*(1 - exp(-a*X ))), where V

0
 

was the original tumor volume; k and a, coefficient; X, irra-

diation dose, and y tumor growth delay (TGD) time. TGD 

in days was defined as the difference between T
5V0

 of treated 

tumors compared with untreated tumors. T
5V0

 was the days 

needed for tumor growth from the original size to five times 

its original volume.

Enhancement of irradiation  
injury in intestinal epithelium
A total of 75 mice was divided into three groups: radiation 

alone, CDDP and radiation, and NLE-CDDP and radiation. 

Each group included five subgroups that received total abdo-

men irradiation of 0 Gy, 8 Gy, 10 Gy, 12 Gy, and 14 Gy, 

respectively. Irradiation was carried out 72  h after NLE-

CDDP or CDDP injection. The mice were sacrificed 3.5 days 

after irradiation. Then a segment of jejunum was removed 

and its transverse slices were sectioned for hematoxylin 

and eosin staining. The number of crypts per circumference 

was counted under microscope, and crypt survival was then 

calculated. The jejunal crypt survival curves were deter-

mined by linear-quadratic model (L-Q) with the equation 

y = exp (−α*D − β*D2), where α and β were coefficient; 

D, irradiation dose; and y, survival faction. Sensitization 

enhancement ratio (SER) was the ratio of β value of the 

combination to radiation alone group.

Statistics
Comparisons of mean value were performed by Student’s 

t-test and one-way analysis of variance (ANOVA). 

Comparisons of tumor growth were performed using 

repeated-measures ANOVA. The impact of irradiation and 

drugs on tumor growth was analyzed by the general linear 

model, and the differences among groups were compared 

by the Games–Howell method. The significance level was 

set at P , 0.05.

For A549 cells, SER was defined as the ratio of D
0
 in 

radiation alone over D
0
 in the drugs and radiation groups. 

The biological endpoint was defined as a TGD of 20 days 

for in vivo Lewis lung carcinoma, and SER was the ratio of 

radiation dose needed to reach the endpoint in the irradiation 

alone versus irradiation dose in combination groups. SER 

was the ratio of D
0
 in the radiation alone group over D

0
 in 

the drugs and radiation group for jejunal crypt.

Results
NLE-CDDP and CDDP  
cytotoxicity in vitro
No toxicity was detected in A549 cell line for free liposomes, 

whereas the survivals trend increased compared with that in 

the control group. Both NLE-CDDP and CDDP demonstrated 

inhibitions of A549 cells (Figure 1). IC50 of NLE-CDDP 

and CDDP was 1.12 µg/mL and 2.63 µg/mL, respectively. 

NLE-CDDP was more toxic than CDDP when drug con-

centrations were 3 µg/mL (P , 0.05), whereas when the 

concentrations increased to 5 µg/mL and 10 µg/mL, both 

drugs showed similar inhibition.

In vitro colony forming assay
Cell survival curves are illustrated in Figure  2. D

0
s was 

1.406 Gy, 1.235 Gy, and 1.005 Gy, respectively for the 

irradiation-alone, CDDP plus irradiation, and NLE-CDDP 

plus irradiation groups. SERs of CDDP and NLE-CDDP 

were 1.14 and 1.40, respectively (P = 0.043).

In vivo drug radiosensitization when 
combined with 6 Gy at different intervals
Tumor growth curves are shown in Figure 3 and TGD in 

Table 1. Irradiation of 6 Gy alone yielded a TGD of 1.83 days, 

which was significantly different from the control (P , 0.05). 
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Figure 1 Effect of free liposomes, NLE-CDDP, and CDDP on A549 cells.
Abbreviations: CDDP, cisplatin; NLE-CDDP, nanoliposome encapsulated cisplatin.
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NLE-CDDP alone resulted in a longer TGD of 11.95 days 

rather than 3.27  days in CDDP. For combination groups, 

NLE-CDDP produced significantly longer TGD than CDDP 

did in 1 h, 24 h, and 72 h interval groups, with P values of 

0.000, 0.001, and 0.0003, respectively. Moreover, longer drug 

treatment time produced longer TGD, but statistical signifi-

cance was found only in the NLE-CDDP group between the 

1 h and 72 h treatment groups (P = 0.007). Variance analysis 

was performed and the impact of different intervals on TGD 

was statistically significant, with F of 6.610 and P value of 

0.000.

In vivo drug radiosensitization  
when combined with irradiation  
at 72 h interval
In this experiment the interval was 72  h when drugs and 

irradiation were combined. The tumor growth curves are 

shown in Figure 4 and TGD in Table 2. With an increase in 

irradiation dose, tumor growth became slow and TGD was 

gradually extended in the irradiation-alone, NLE-CDDP, 

and CDDP groups. Drug plus irradiation prolonged TGD 

but was more pronounced for NLE-CDDP and irradiation 

(P = 0.002).

Dose response curves were generated for the irradiation-

alone, NLE-CDDP plus irradiation, and CDDP plus irradiation 

with a 72 h interval in combination groups (Figure 5) from 

data in Table 2. In Figure 5 the curves are nearly parallel when 
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Figure 2 Cell survival curves after treatments with radiation alone (R) or combined 
with 0.5 µg/mL NLE-CDDP (NLE-CDDP + R) or CDDP (CDDP + R) (P = 0.00 for 
CDDP vs R; P = 0.00 for NLE-CDDP vs R; P = 0.043 for CDDP vs NLE-CDDP).
Abbreviations: CDDP, cisplatin; NLE-CDDP, nanoliposome encapsulated cisplatin.
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Figure 3 Tumor growth curves after irradiation of 6 Gy, 6 mg/kg of NLE-CDDP or 
CDDP or combinations of 6 Gy and NLE-CDDP/CDDP. A) Tumors treated with 
6 Gy, NLE-CDDP, CDDP, or combinations of 6 Gy and NLE-CDDP/CDDP with 
1 h interval between drugs and irradiation (P = 0.000). B) Tumors treated with 6 Gy, 
NLE-CDDP, CDDP, or combinations of 6 Gy and NLE-CDDP/CDDP with 24 h 
interval between drugs and irradiation (P = 0.000). (P = 0.001). C) Tumors treated 
with 6 Gy, NLE-CDDP, CDDP, or combinations of 6 Gy and NLE-CDDP/CDDP with 
72 h interval between drugs and irradiation (P = 0.000). (P = 0.0003). (Relative tumor 
volume: a ratio of tumor volume after treatment versus the pretreatment volume.)
Abbreviations: CDDP, cisplatin; NLE-CDDP, nanoliposome encapsulated cisplatin.

Table 1 Tumor growth delay in Lewis lung carcinoma after NLE-
CDDP plus 6 Gy or CDDP plus 6 Gy with different intervals

Group T5V0 (days) TGD (days)

Control 6.12 0
6 Gy 7.95 1.83
NLE-CDDP 18.07 11.95
CDDP 9.39 3.27
NLE-CDDP-1 h-6 Gy 18.33 12.21
NLE-CDDP-24 h-6 Gy 19.16 13.04
NLE-CDDP-72 h-6 Gy 26.97 20.85
CDDP-1 h-6 Gy 10.85 4.73
CDDP-24 h-6 Gy 11.11 4.99
CDDP-72 h-6 Gy 12.77 6.65

Abbreviations: CDDP, cisplatin; NLE-CDDP, nanoliposome encapsulated cisplatin; 
TGD, tumor growth delay; T5V0, the days needed for tumor growth from the original 
size to five times the original volume.
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TGDs were between 15 and 25 days. Thus, TGD of 20 days was 

taken as a biological endpoint. To achieve a TGD of 20 days, 

38.1 Gy, 24.83 Gy, and 7.74 Gy were needed, respectively, for 

the irradiation-alone, CDDP plus irradiation, and NLE-CDDP 

plus irradiation groups. Therefore, when drugs were admin-

istrated 72 h before radiation, SER was 3.21 (24.83/7.74) for 

CDDP and 4.92 (38.1/7.74) for NLE-CDDP.

Drug radiosensitization  
for jejunum crypt cells
Mice were sacrificed 3.5 days after treatment in order to count 

jejunum crypts. The number of survived jejunal crypts and 

survivals for each group are illustrated in Figure 6. When 

drugs were injected intravenously 72 h before irradiation, 

SERs were 1.15 for NLE-CDDP and 1.19 for CDDP based 

on the regression curves and L-Q model.

Therapeutic gain factor (TGF)
When drugs were used 72 h before irradiation, TGF was 4.28 

(4.92/1.15) for NLE-CDDP and 2.70 (3.21/1.19) for CDDP 

when SERs were compared between in vivo and jejunal crypt 

cell experiments.
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Figure 4 Tumor growth curves treated with a single dose of irradiation, NLE-
CDDP plus irradiation, or CDDP plus irradiation with 72 h interval. A) Tumor 
treated with single doses of irradiation. B) Tumor treated with 6 mg/kg of NLE-
CDDP followed by irradiation. C) Tumor treated with 6 mg/kg of CDDP followed 
by irradiation.
Abbreviations: CDDP, cis-platinum diammine dichloride; NLE-CDDP, nanolipo
some encapsulated cisplatin.

Table 2 Tumor growth delay (days) in Lewis lung carcinoma 
after NLE-CDDP plus irradiation, or CDDP plus irradiation with 
72 h interval

Group 0 Gy 2 Gy 6 Gy 16 Gy 28 Gy

Irradiation-alone 0 0.4 1.83 1.99 7.48
NLE-CDDP + irradiation 11.95 15.29 20.85 19.54 56.88

CDDP + irradiation 3.27 3.96 6.65 13.38 21.98

Abbreviations: CDDP, cisplatin; NLE-CDDP, nanoliposome encapsulated cisplatin.
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Figure 5 Dose-response curves from irradiation combined with NLE-CDDP 
or CDDP administered 72 h prior to irradiation in Lewis lung carcinoma.
Abbreviations: CDDP, cis-platinum diammine dichloride; NLE-CDDP, nanoliposome 
encapsulated cisplatin; R, radiation alone.
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Figure 6 Jejunal crypt cell survivals after irradiation (R), combinations of CDDP and 
irradiation (CDDP + R), or NLE-CDDP and irradiation (NLE-CDDP + R) with 72 h 
interval. L-Q model: Irradiation alone: y = exp (0.18*d - 0.026*d2), R2 = 1.000 NLE-
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Abbreviations: CDDP, cis-platinum diammine dichloride; NLE-CDDP, nanoliposome 
encapsulated cisplatin; R, irradiation-alone.
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Discussion
Nanoliposomes have been widely studied in cancer 

treatments as a vector to deliver chemicals into tumor cells, 

but clinically evident results were limited. The aim of the 

current study was to synthesize a new NLE-CDDP that could 

yield a higher tumor concentration and extended CDDP 

release, and to study its use in combination with radiation 

as a radiosensitizer.

Burger et  al reported that NLE-CDDP could enhance 

the cytotoxicity and significantly increase cell death up 

to 1000 times, compared with the same concentration of 

CDDP.10 In our study, IC50 of CDDP against A549  cells 

was 2.35 times that of NLE-CDDP (2.63  µg/mL vs 

1.12 µg/mL), which was higher than the 1.34 times reported 

by Carvalho et al.11 In addition, in vivo tests also demon-

strated much stronger tumor inhibitions in NLE-CDDP than 

those in CDDP, indicating that the cytotoxicity of our NLE-

CDDP was more significant than the cytotoxicity of CDDP. 

The strong toxicity of NLE-CDDP may be attributed to its 

small size (100 nm), which is smaller than that reported in the 

literature (174 nm).11 Nanoliposome encapsulated CDDP in 

liposomes and prevented CDDP from immediately binding 

with proteins, then CDDP was gradually released directly 

to the tumor cells through adsorption, lipid exchange, 

endocytosis, and fusion, by which cell killing was increased.12 

Ramachandran et al also found that the uptake of nanoparticle 

formations of CDDP by cells was much easier.13

CDDP is a radiation sensitizer and has been widely used 

with radiation therapy for cancer treatment.14 The mecha-

nism of CDDP enhancement of irradiation effect had been 

studied by Lu and Kalantari et  al, who revealed that the 

cytotoxicity was enhanced by low-dose cisplatin combined 

with radiotherapy. The underlying mechanism was the 

electron-transfer reaction of cisplatin with electrons gener-

ated in ionizing irradiation.15,16 This finding was similar to 

what was found in hypoxic cell radiosensitizers, an electron 

affinity agent. In Lu’s study, a low dose of CDDP (50 µM) 

increased irradiation-induced single and double DNA strain 

breaks, resulting in more cell killing.

In clinical trials, a daily dose of CDDP before 

radiotherapy was thought to be the best way to improve 

the efficacy of radiotherapy, but it also caused the long 

duration of gastrointestinal tract symptoms.17 Therefore, 

although daily low-dose CDDP has a proven radiosensiti-

zation effect, its routine use in practice is limited because 

of its toxicities and inconvenience of administration via 

intravenous infusion.

Our NLE-CDDP developed in this study was prepared 

by reverse phase evaporation with a new formulation of 

sustained release CDDP (100 nm in size, modified by poly-

ethylene glycol on the surface), resulting in slow-release, 

passive targeting, and long-cycle characteristics. The lipid 

compositions of the liposome were nontoxic in vitro toxicity 

tests, suggesting that the liposomes could be potentially used 

in animals or humans safely.

Our in vitro study demonstrated that both CDDP and 

NLE-CDDP possessed radiosensitization properties. This 

was shown by smaller shoulder and slope of cell survival 

curves in CDDP/NLE-CDDP compared with those of irra-

diation alone. However, NLE-CDDP has a stronger radio-

sensitization effect than CDDP (SER of 1.40 vs 1.14). Our 

in vivo study of combination treatments confirmed that the 

interval between the delivery of NLE-CDDP and irradiation 

impacted tumor inhibition, with the strongest effect in 72 h 

intervals. Thus, in our in vivo radiosensitization study, we 

used a 72 h interval.

The in vivo study demonstrated that both CDDP and 

NLE-CDDP possessed radiosensitization with an SER of 

3.21 for CDDP and 4.92 for NLE-CDDP, indicating that 

NLE-CDDP had stronger radiosensitization. The stronger 

radiosensitization of NLE-CDDP was probably the benefit 

of its features of in vivo controlled release and passive 

targeting, which was consistent with the outcome in a slow-

release formulation of CDDP combined with radiation.18,19 

Our pharmacokinetic study also demonstrated that free 

platinum in serum could remain at a concentration of 

1.04 µg/mL 72 h after injection of NLE-CDDP (6 mg/kg) 

through the tail vein, but it could not be detected only 2 h 

after CDDP administration, which suggests that NLE-

CDDP could extend in vivo circulation time and maintain 

a certain concentration for a long time.20 In addition, our 

previous study also confirmed the nanoparticle could 

aggregate in tumors passively, resulting in concentration 

of NLE-CDDP in tumors higher than that of CDDP.20 Due 

to its release function, our NLE-CDDP could be accumu-

lated in tumors and released slowly and continuously, like 

a drug delivery pump, thereby keeping the tumor exposed 

to drug continuously. When tumors were irradiated, the 

drugs deposited in tumors played the role of radiosensi-

tizer. In contrast, injected CDDP was quickly bound with 

proteins and excreted from the body, maintaining a low 

concentration in tumor for a short time. This elucidates 

the potential underlying mechanism for the stronger 

radiosensitization of NLE-CDDP than of CDDP.
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It has been reported that CDDP increased irradiation 

injury.21 We used jejunal crypt cell assay to investigate 

whether our NLE-CDDP would increase toxicity. When com-

bined with irradiation, NLE-CDDP yielded lower survival 

of crypt cells than did irradiation alone, with SER of 1.15, 

whereas CDDP also sensitized irradiation injury of jejunal 

crypt cell with SER of 1.19. Nevertheless, NLE-CDDP did 

not show significant increased intestinal injury compared 

with CDDP. The explanation for less radiosensitization of 

NLE-CDDP for jejunal crypt cell than for tumors was due 

to the difference in drug distribution. NLE-CDDP could 

accumulate in tumors much easier than in normal tissues 

due to the enhanced permeability and retention (EPR) 

effect. EPR effect is a property by which certain sizes of 

molecules, typically liposomes or macromolecular drugs, 

tend to accumulate in tumor tissue much more than they do 

in normal tissues.22–24 In general, tumor vessels are usually 

abnormal in form and architecture. They are poorly aligned 

defective endothelial cells with wide fenestrations, lacking 

a smooth muscle layer or innervation with a wider lumen, 

and with impaired functional receptors for angiotensin II. 

All those factors will lead to abnormal molecular and fluid 

transport dynamics, especially for macromolecular drugs. 

The EPR effect helps to carry the nanoparticles and spread 

them in tumors. However, there is no EPR effect for normal 

tissue because of their normal vessels.

TGF was 4.28 for NLE-CDDP and 2.70 for CDDP in both 

SERs for Lewis lung carcinoma (in vivo) and jejunal crypt 

cell. Therefore, the NLE-CDDP developed in the current 

study showed its potential as a radiosensitizer in irradiation 

therapy and warrants further investigation.

In summary, NLE-CDDP could inhibit A549 cells in vitro 

with an IC50 of 1.12 µg/mL, and its toxicity was 2.35 times 

that of CDDP. When combined with irradiation, an in vitro 

study of A549 cell line confirmed its radiosensitization with 

SER of 1.40. An in vivo study showed that the strongest 

radiosensitization was found in the 72 h interval between 

NLE-CDDP and irradiation. When used 72 h prior to irra-

diation in Lewis lung carcinoma-bearing mice, NLE-CDDP 

yielded SER of 4.92. In both in vitro and in vivo studies, 

SERs were higher for NLE-CDDP than those for CDDP. 

NLE-CDDP also enhanced radiation injury to jejunal crypt 

cells with SER of 1.15, but TGF was 4.28.
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