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Abstract: Recently, hesperidin, a flavonone mainly present in citrus fruits, has emerged as a new
potential therapeutic agent able to modulate several cardiovascular diseases (CVDs) risk factors.
Animal and in vitro studies demonstrate beneficial effects of hesperidin and its derived compounds
on CVD risk factors. Thus, hesperidin has shown glucose-lowering and anti-inflammatory properties
in diabetic models, dyslipidemia-, atherosclerosis-, and obesity-preventing effects in CVDs and
obese models, and antihypertensive and antioxidant effects in hypertensive models. However, there
is still controversy about whether hesperidin could contribute to ameliorate glucose homeostasis,
lipid profile, adiposity, and blood pressure in humans, as evidenced by several clinical trials reporting
no effects of treatments with this flavanone or with orange juice on these cardiovascular parameters.
In this review, we focus on hesperidin’s beneficial effects on CVD risk factors, paying special attention
to the high interindividual variability in response to hesperidin-based acute and chronic interventions,
which can be partly attributed to differences in gut microbiota. Based on the current evidence,
we suggest that some of hesperidin’s contradictory effects in human trials are partly due to the
interindividual hesperidin variability in its bioavailability, which in turn is highly dependent on the
α-rhamnosidase activity and gut microbiota composition.
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1. Introduction

Cardiovascular diseases (CVDs) are the first cause of death in the world, causing about 31%
of all deaths worldwide [1]. The development of CVDs are usually associated with the presence
of several risk factors, some of them related with poor health habits [2–4]. Diet is a major external
factor for CVDs development, and recommendations for the improvement of dietary and lifestyle
routines and making them affordable and available for the general population are the primary approach
to the prevention of the onset of this pathology [5,6]. In this sense, differences between dietary
patterns, such as Mediterranean, Portfolio, Nordic, and vegetarian diet, are associated with different
cardio-metabolic outcomes [7]. Nowadays, common therapies based on drugs are administered to
patients who have already been diagnosed with any cardiovascular disorder [7]. Taking into account
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all the beneficial effects associated with the diet in CVDs development, the use of alternative treatments,
such as natural-based products has gained importance as a preventive strategy for improving some CVD
factors, such as hypertension, diabetes, cholesterol, and obesity [8]. In this sense, nowadays, research in
food bioactive compounds is in the spotlight to develop new functional foods and nutraceuticals aimed
at preventing and/or ameliorating CVD risk factors.

Polyphenols are a large group of bioactive plant compounds for which beneficial effects in the
prevention and treatment of different pathologies, including CVDs, have been described [9]. The main
classes of polyphenols are flavonoids, which include flavanols (e.g., tea), flavanones (e.g., citrus fruits),
and flavonols (e.g., tea, apples, and onions), and nonflavonoids, including hydroxycinnamic acids
(e.g., coffee) and anthocyanins (e.g., cherry) [10]. Of them all, flavanones, including hesperidin and
naringin as the principal molecules, are considered the main subclass of polyphenols [11]. Orange and
its fruit juice, which are considered rich sources of hesperidin and naringin, are the most common citrus
fruit products consumed among the European population [12,13]. Hesperidin and, far behind, naringin,
represent more than 90% of the flavonoids in sweet oranges [14,15]. The highest concentrations of
hesperidin are found in the solid tissues of citrus fruits, although considerable amounts are also found
in their juices [16]. In the form of supplements or nutritional complements, hesperidin is considered
innocuous, with limited adverse effects, due to its nonaccumulative nature [17].

Hesperidin and its derived intestinal metabolites are shown in Figure 1. The number and
specific position of hydroxyl groups in the flavanones aromatic rings, which produce important
changes in their biochemical structure, are considered to be crucial for the reported beneficial effects of
citrus polyphenols [18,19]. Some of these effects include antitumor, antioxidant, anti-inflammatory,
hypocholesterolemic, and hypoglycemic effects, related to an improvement in different pathologies,
such as cancer, neurodegenerative diseases or CVDs [20,21]. Regarding CVDs, the results of in vitro and
in vivo studies have shown that hesperidin treatment produces beneficial effects on different risk factors,
including the improvement of lipid and glucose metabolism, adiposity, and hypertension [22–26].
However, the results of human studies aiming to decipher possible beneficial effects of hesperidin on
CVD risk factors are inconclusive, as there are studies that do not demonstrate beneficial effects of
hesperidin on such factors.

Figure 1. Schematic representation of hesperidin metabolization in the colon. Enzymatic deglycosylation
of hesperidin to yield hesperetin: via hesperetin-7-O-glucoside by two specific monoglycosidases,
α-rhamnosidase and β-glucosidase, and via one-step deglycosylation through α-rhamnosyl-β-
glucosidase (αRβGl).

The molecular structure of hesperidin also affects its bioavailability and absorption levels [27].
Thus, the metabolism of citrus flavanones is determined by the sugar moieties and its removal degree
by intestinal bacteria. Citrus flavanones are resistant to stomach and small intestine enzymes and
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thus reach the colon intact. There, intestinal microbiota activity breaks down the hesperidin molecule,
releasing the aglycone form, named hesperetin [28,29] (Figure 1). Once inside the intestinal epithelium,
hesperetin is released into the bloodstream in form of glucuronide and sulfatate conjugates [30].
In addition, an important part of the metabolized hesperetin is transformed by the microbiota present
in the colon, generating some bioavailable and highly specific catabolites of hesperetin [30,31].

Bioavailability of hesperidin and its ability to produce beneficial effects can be modulated by
different factors. Some of them are related with the food matrix and the physical form in which they
are ingested (e.g., juice, soluble extract or capsules, among others), processing methods and storage
techniques, as well as the structure of the compound and the host intrinsic characteristics, including
intestinal microbiota composition [18]. All these factors affect the solubility of flavanones and their
uptake by the gastrointestinal tract [28,29].

Considering that the intestinal microbiota activity plays an important role in the bioavailability
of hesperidin and, as a consequence, its beneficial effects on CVD risk factors, it is tempting to shed
light on its intrinsic mechanisms [14,31,32]. Therefore, the present review aimed to describe the effects
of hesperidin consumption on CVD factors and to highlight hesperidin interindividual variability in
its bioavailability and effectiveness, a process in which the gut microbiota plays an important role.
This reported variability would explain the discrepancies observed between animal studies and human
studies on beneficial effects of hesperidin over CVD risk factors.

2. Beneficial Effects of Hesperidin on Cardiovascular Disease Risk Factors

2.1. Effects of Hesperidin on Glucose Homeostasis

Diabetes is one of the major risk factors for developing CVDs. The main complication of diabetes
is CVDs, and it is estimated that 65% of diabetic patients die from CVD complications [33]. In this sense,
several studies have shown beneficial effects of hesperidin in glucose metabolism at the preclinical
level, both in animal and in vitro models.

At the in vitro level, neohesperidin (derived from hesperidin) treatment was shown to increase
glucose consumption in the hepatocyte cell line HepG2, which was associated with increased
phosphorylation levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) [34].
Xuguang et al. recently reported attenuated glucose content in culture medium and increased glucose
uptake in lipopolysaccharide (LPS)-induced insulin-resistant HepG2 cells treated with hesperidin.
These changes seemed to be associated with the regulation of the insulin receptor substrate 1 (IRS1)-
glucose transporter (GLUT)-2 pathway via toll-like receptor (TLR)-4 [23]. This positive effect over
glucose uptake was corroborated in another recent study, showing that both hesperidin and hesperetin
exert antidiabetic properties in L6 myotubes by inducing glucose uptake and reducing oxidative
stress and advanced glycation end-products (AGEs) formation [22]. Related to AGE formation, Irshad
and collaborators recently showed that a combination of trans-resveratrol and hesperetin is able to
dampen the rise of methylglyoxal levels caused by high glucose concentrations by increasing the
expression of Glyoxalase (Glo)-1 and decreasing the expression of hexokinase (HK)-2 in human aortal
endothelial cells [35].

There is accumulating evidence demonstrating the glucose-lowering effects and the improvement
in insulin resistance parameters exerted by hesperidin both in Type-1 diabetes (T1D) [36–41] and Type-2
diabetes (T2D) [42–46] rodent experimental models, thus demonstrating the antidiabetic properties
of hesperidin. These effects were shown to be achieved by the modulation of key glucose regulation
enzymes, such as an upregulation of glucokinase (involved in glycolysis) or a downregulation of the
gluconeogenic enzyme glucose-6-phosphatase [36,40,42–44]. Other effects of hesperidin treatment
in diabetic animals include a reduction in inflammatory parameters, such as tumor necrosis factor
alpha (TNFα), interleukin (IL)-6 or IL-1β, and the reduction of oxidative stress associated with
diabetes [38,39,45]. Akiyama and collaborators also reported a recovery of adiponectin levels mediated
by hesperidin both in T1D and T2D models [36,44]. In addition to the effects observed in diabetic
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models, improvement of glucose metabolism and insulin resistance were also described by our group
and others in other animal models of human diseases that are associated with alterations in glucose
metabolism, such as metabolic syndrome (MetS) and obesity [47–51].

Despite all evidence at the preclinical level, the effects of hesperidin consumption on glucose
metabolism in humans are not conclusive. In a recent randomized, double-blind, placebo-controlled
clinical trial, Yari et al. reported that daily consumption of hesperidin capsules (500 mg) for 12 weeks
significantly decreased fasting glucose levels, both compared with basal levels and with placebo group
in patients with MetS [52]. Decreases in insulin levels and in the homeostatic model assessment for
insulin resistance (HOMA-IR) index were also reported, although no significant differences vs. the
placebo group were observed in these parameters [52]. Ribeiro et al. reported a decrease of 18% in
insulin levels and a reduction of 33% in HOMA-IR index after 12 weeks of daily consumption of 500 mL
of orange juice (OJ) in obese individuals compared to control group [53]. Lima and collaborators also
reported significant decreases in blood glucose and insulin fasting levels, as well as in HOMA-IR index
after daily consumption of 300 mL of OJ during 60 days in a non-placebo-controlled clinical trial in
healthy women [54].

However, to date, there are several clinical trials performed in different populations (healthy,
obese, diabetic, or MetS) reporting no differences in glucose or insulin levels after chronic hesperidin
or OJ consumption [55–60]. One study reported an increase in glucose levels in OJ-treated obese or
overweight individuals, both in low and high hesperidin concentrations, which could be attributed to
the daily addition to the diet of 500 mL dietary OJ during 12 weeks or to a decrease in insulin levels,
which was also observed after the intervention [61].

2.2. Effects of Hesperidin on Lipid Profile and Adiposity

The dysregulation of lipid and lipoprotein metabolism contributes to the pathogenesis of multitude
of human diseases, including CVDs [62]. Several therapeutic strategies exist to modulate lipid
metabolism and prevent the development of metabolic diseases, but these strategies present some
inherent limitations. For instance, statin drugs, which have been widely used to improve lipid
profile and reduce atherosclerotic risk, present well recognized side-effects such as myalgia, arthralgia,
and temporary gastrointestinal upset [63]. Those patients presenting dyslipidemia associated with MetS
are unable to reach their lipid treatment goals by the administration of statin drugs [64]. Considering
this, flavonoids including hesperidin have emerged as new therapeutic agents that could prevent
alterations regarding lipid metabolism. In this sense, hesperidin has been shown to be especially
effective in modulating dyslipidemia associated with MetS, which is considered a major risk for
atherosclerosis, by exerting lipid-lowering properties in animal models and humans [47,54,58,65–69].
Jung et al. investigated the effects of hesperidin on lipid regulation in C57BL/KsJ-db/db mice,
a well-established model of obesity-induced T2D. The results of this study demonstrated that
hesperidin (0.2 g hesperidin/kg diet) was effective in lowering the plasma free fatty acids (FFAs)
and plasma and hepatic triglyceride levels after five weeks. Additionally, hesperidin reduced the
hepatic fatty acid oxidation and carnitine palmitoyl transferase activity. Hesperidin effects on lipid
regulation were attributable to a suppression of the hepatic fatty acid synthase, glucose-6-phosphate
dehydrogenase, and phosphatidate phosphohydrolase activities and to an increase in the fecal
triglycerides [43]. Furthermore, it was also demonstrated that hesperidin administration led to
a decrease in plasma and hepatic cholesterol levels through a downregulation of the hepatic
3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) reductase and acyl CoA: cholesterol acyltransferase
(ACAT) activities [43]. Wu et al. demonstrated similar lipid-regulating effects with neohesperidin.
Neohesperidin showed a potent hypolipidemic effect in HepG2 cells loaded with FFAs and reversed
the pathological changes of lipid in the acute or chronic dyslipidemia mouse model. They suggested
that neohesperidin regulates lipid metabolism in vivo and in vitro via fibroblast growth factor 21
(FGF21) and AMP-activated protein kinase/Sirtuin type1/Peroxisome proliferator-activated receptor
gamma coactivator 1α signaling axis [51]. Hesperidin treatment has also been shown to reduce lipid
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accumulation in adipocytes derived from human mesenchymal stem cells by reducing lipogenesis
and activating lipolysis [70]. Similar in vitro antiadipogenic effects have been observed in 3T3-L1
preadipocytes [71]. In addition, and related to lipid metabolism, Kim et al. have recently shown
that hesperidin treatment increases Uncoupling protein 3 (UCP3) expression in differentiated C2C12
myocytes, thus boosting energy consumption from lipids [72].

The beneficial effect of hesperidin on atherosclerosis development was demonstrated in a study
conducted by Sun et al. using LDL receptor deficient (LDLr−/−) mice. The authors observed that
hesperidin ameliorated high fat diet (HFD)-induced hyperlipidemia and suppressed HFD-induced hepatic
steatosis, atherosclerotic plaque area, and macrophage foam cell formation. According to these results,
Sun et al. suggested that hesperidin reduced atherosclerosis in part via amelioration of lipid profiles,
inhibition of macrophage foam cell formation, its antioxidative effect, and anti-inflammatory action [47].

Therefore, results from in vitro and animal studies demonstrate a beneficial effect of hesperidin
treatment on lipid profile, but these findings are in contrast with some human intervention studies.
Thus, while the administration of glucosyl hesperidin to hypertriglyceridemic subjects for 24 weeks
resulted in a clear reduction in plasma triglycerides and apolipoprotein B levels [73], in other studies,
the administration of hesperidin capsules did not affect plasma total cholesterol, LDL-cholesterol,
or triglyceride levels in moderately hypercholesterolemic individuals [74].

Adipose tissue plays an important role in storing lipid in the form of triglycerides, as well
as secreting a variety of adipokines and cytokines [75]. However, adipose tissue dysfunction is
a determinant cause for the development of obesity, an independent risk factor for CVDs [75,76].
In this sense, there are several studies demonstrating that hesperidin exerts beneficial effects on lipid
accumulation and adiposity [71,72,77,78]. In animal models of obesity or MetS, a body-weight-reducing
effect has been widely reported in response to hesperidin treatment [47–51], as well as a reduction in
adipose tissue weight [25,48,50,51]. In contrast, Mosqueda-Solis et al. reported no significant changes
in body weight after a daily hesperidin administration (100 mg/kg body weight) for eight weeks in
Western-diet-fed rats, although hesperidin treatment resulted in a decreased size of adipocytes [78].

Similar to what has been observed in glucose and lipid metabolism, hesperidin or OJ treatment
in obese or overweight individuals do not clearly reflect the effects observed in obesogenic animal
models. Although Aptekmann and Cesar reported a significant reduction in body weight after
daily consumption of OJ over 13 weeks in hypercholesterolemic subjects, no significant differences
were observed between the intervention and control groups [68]. Rangel-Huerta and collaborators
also observed a significant reduction in body weight after daily consumption of OJ over 12 weeks
in obese or overweight subjects in a nonplacebo-controlled clinical trial [61]. By contrast, at least
three studies reported no significant changes between control group and hesperidin or OJ groups in
obese subjects [53,67,79].

2.3. Effects of Hesperidin on Blood Pressure and Endothelial Function

High blood pressure is one of the most significant risk factors for developing CVDs in all age
groups [80]. In fact, it is known that a reduction of 10 and 5 mmHg in systolic blood pressure
(SBP) and diastolic blood pressure (DBP), respectively, significantly decreases the relative risk of
all major cardiovascular outcomes [81]. An extensive number of animal studies evaluating the
cardioprotective role of hesperidin have shown its beneficial effects on high blood pressure [82–86].
The hypotensive effect after acute administration of hesperidin derivatives, hesperetin and glucosyl
hesperidin (G-hesperidin), was demonstrated by Yamamoto et al. [24] in spontaneously hypertensive
rats (SHR). In this study, a single oral dose of G-hesperidin (10 to 50 mg/kg) induced a dose-dependent
reduction in SBP in SHR, but had no effect in control Wistar Kyoto rats (WKY), discarding possible
hypotensive effects under normotensive conditions. The antihypertensive effect of hesperidin was
suggested to be mediated by the vascular nitric oxide (NO) synthase pathway. Similar effects were
reported by Liu et al., observing an increase in NO production in hesperetin-treated human endothelial
cells [87]. In this sense, Ikemura et al. [83] reported a preventive effect of hesperidin and G-hesperidin
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against age-related increase in blood pressure. This preventive effect of hesperidin seemed to be
mediated by an important increase in NO production in the groups supplemented with hesperidin
or G-hesperidin and by an improvement in the endothelial function [83]. The long-term effects of
hesperidin and G-hesperidin on blood pressure were also evaluated when administered to SHR
and to WKY. Chronic oral administration for 25 weeks of hesperidin and G-hesperidin resulted in
a decrease in blood pressure after 15 weeks of administration in SHR, while no changes occurred
in WKY [82]. Recently, it was also demonstrated that chronic administration of hesperidin for eight
weeks resulted in a significant reduction in SBP in cafeteria-fed rats, a well-stablished animal model for
diet-induced hypertension [84,88]. They observed that chronic administration of hesperidin in these
animals presenting diet-induced hypertension also resulted in lower secretion of inflammation and
oxidative stress-related metabolites. A reduction in inflammation and oxidative stress could be the
underlying mechanisms involved in hesperidin effects on blood pressure in these animals [84].

These findings suggest that a potential mechanism whereby hesperidin and its derivatives,
including G-hesperidin and hesperetin, exert their beneficial effects on hypertension through their
demonstrated antioxidant effect [20,83,89], enhancing NO bioavailability and protecting endothelial
function from reactive oxygen species. Besides, several studies indicate that not only NO enhancement
is involved in the antihypertensive effect exerted by hesperidin. The administration of hesperidin in
SHR reduced blood pressure by reducing oxidative stress by the suppression of the renin–angiotensin
system cascade [85]. In addition, hesperidin improved the reported oxidative stress observed under
hypertensive conditions as a consequence of an overexpression of NADPH oxidase via suppression of
this enzyme, which results in enhanced NO bioavailability [85,90,91].

Despite the beneficial effects observed in animal and in vitro studies, the results shown by human
interventional studies are not consistent. Asgary et al. demonstrated that consumption of 500 mL/day of
OJ decreased SBP and DBP in healthy subjects after four weeks [92]. Similar results were also reported
by Morand et al. when evaluating the effect of daily consumption of OJ for four weeks in healthy
volunteers [60]. In this study, it was stated that the beneficial effects on blood pressure maintenance
induced by daily OJ consumption could be due to an improvement on endothelial function [60].
In another study, it was also demonstrated that six-week consumption of hesperidin improved blood
pressure in T2D patients. The authors suggested that hesperidin exerts its beneficial effects via
anti-inflammatory activity [93]. Furthermore, our group carried out a clinical study in which the
beneficial effects of the consumption of OJ with natural hesperidin content and a hesperidin-enriched
OJ on risk factors associated with CVDs, including its antihypertensive effects, in pre- and grade-1
hypertensive individuals were evaluated (submitted for its publication). However, the results of
a crossover study that included individuals with MetS presenting prehypertension did not reveal
changes in blood pressure after three-week supplementation with hesperidin [57]. Besides, a systematic
review and meta-analysis of randomized controlled trials that evaluated the efficacy of hesperidin
supplementation on blood pressure concluded that hesperidin intake is not associated with significant
changes in blood pressure [94]. Similar results were reported by Plà et al. [95], concluding that
hesperidin consumption effects on blood pressure were no conclusive.

There are many hypotheses that could explain why hesperidin lacks a significant effect on blood
pressure in humans, including its metabolization and absorption. In this sense, Yamamoto et al. [26] reported
that the hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3-O-glucuronide, was the
responsible agent for the demonstrated antihypertensive effect. Therefore, not all hesperidin metabolites
present the same biological effects when administered. In addition, few studies are available to clarify the
pharmacokinetics of hesperidin [96]. In consequence, it might be possible that hesperidin does not reach the
sufficient circulating concentrations that are needed for the regulation of blood pressure.

In conclusion, the results from in vivo and in vitro studies point out that hesperidin represents
a promising agent for the prevention and/or the treatment of CVDs. From these studies, it could be
concluded that the potential mechanisms by which hesperidin exerts its beneficial effects include the
regulation of gene expression and enzymatic activity of key proteins involved in pathways related to
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lipid and glucose metabolism, blood pressure control, and obesity development. Furthermore, it has
been demonstrated the antioxidant and anti-inflammatory activities of hesperidin that may explain,
at least in part, the observed beneficial effects on CVDs. However, despite all the evidences from
in vitro and animal models, there is still controversy about whether hesperidin and their derivatives
could contribute to ameliorating glucose homeostasis, lipid profile, adiposity, and blood pressure and
thus reduce the cardiovascular risk, especially in humans (Figure 2). A possible explanation for the
lack of conclusive results from human studies might be related to the presence of several important
factors, including interindividual differences and external factors that impact the effectiveness of
hesperidin in humans, including interindividual differences and external factors, with the variability of
hesperidin bioavailability due to differences in intestinal microbiota composition and activity among
individuals being a major factor. Although a low bioavailability of hesperidin has been described in
animal studies [97,98], the variability in studies with experimental animals is much lower than that
observed in clinical studies due to inbreeding, leading to a phenotypic uniformity between the animals.
Furthermore, external factors such as diet, physical activity, or seasonality are much more controlled
than in human studies, leading to lower variability in intestinal microbiota composition and activity.
Further well-designed clinical trials to specifically examine the effects of hesperidin on CVD risk
factors, considering the variability that exists in the response to treatment with hesperidin in humans,
are necessary. In this sense, intestinal microbiota may play a role in this interindividual variability,
as it has been shown to have a direct effect on the absorption and bioavailability of polyphenols,
such as hesperidin.

Figure 2. Summary of the most representative effects of hesperidin consumption and its derivatives on
cardiovascular risk factors, including glucose homeostasis, blood pressure and endothelial function,
and lipid profile and adiposity. SBP: systolic blood pressure; DBP: diastolic blood pressure; NO: nitric
oxide; FFA: free fatty acids; TG: triglycerides; Chol: cholesterol.
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3. Hesperidin and Intestinal Microbiota Interaction

The gastrointestinal tract is colonized by more than 1011 cells per mL of content, with the five main
microbiota phyla being Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia [99].
The intestinal microbiota is a complex ecosystem that varies between individuals and environmental
conditions [100]. The gut microbiota plays an essential role in physical health status, and it is responsible
for protecting the intestinal gut barrier mucosa against several pathogenic microorganisms, modulating
the immune system, and producing some molecules that are beneficial for their hosts, such as vitamins
or short chain fatty acids (SCFAs) [101].

3.1. The Gut Microbiota Assists in The Assimilation of Polyphenols

The gut microbiota present in the colon promotes absorption of some nutrients from the diet,
including polyphenols, forming more bioactive and absorbable molecules than the original compounds
directly consumed in food [102]. Both polyphenols and microbiota-derived metabolites may act on
metabolic pathways and confer health benefits [103]. In addition, polyphenol metabolites derived from
microbiota activity may contribute to the host with numerous health benefits [104], which are mainly
summarized by two of their characteristics: (1) polyphenol antioxidant properties and (2) polyphenol
antimicrobial capacity over various microorganisms, including some pathogenic bacterial species.

3.2. Hesperidin: A Flavonol That May Promote a Healthier Profile of the Microbiota

Some clinical studies have demonstrated the role of polyphenols, supplemented in several food
products, in maintaining the intestinal health and preserving microbial homeostasis by promoting
the growth of beneficial bacteria and inhibiting the progression of pathogenic bacteria [105]. Indeed,
polyphenols and hesperidin can modulate gut microbial composition or functionality, which affects
the release of microbial-derived metabolites [106]. Flavonols are active inhibitors against some
Gram-negative bacteria, such as Prevotella spp., Porphyromonas gingivalis, Fusobacterium nucleatum,
E. coli, Pseudomonas aeruginosa, and Clostridium spp. [107,108] (Figure 3). In addition, hesperidin and
other flavonols also inhibit the growth of some Gram-positive bacteria, such as Staphylococcus aureus and
Lactobacillus acidophilus [107,108]. Besides their inhibitory capacity, phenolic compounds may modify
gut microbiota by selectively promoting the growth of beneficial bacteria of the genera Lactobacillus
or Bifidobacterium [109,110].

There is growing evidence suggesting that polyphenols may induce changes in the microbiota
towards a more favorable composition and activity, including the production of SCFAs in the large
intestine. These polyphenols derived metabolites have many known biological effects: (1) they are
used as energy source for enterocytes [111]; (2) they improve gut barrier function [112]; and (3) they
inhibit inflammation processes [112,113]. However, gut microbiota alteration, also known as dysbiosis,
might also reduce the synthesis of SCFAs [106]. Concretely, butyric acid is used as an energy
source for colonocytes and improves gut barrier integrity by promoting mucus secretion and
increasing tight junction protein expression (essentially zonulin and occludin), which is translated to
a reduced bacterial transport across the epithelium [114]. Propionic acid attenuates the secretion
of several inflammatory cytokines and chemokines [115] and regulates key liver processes, such as
gluconeogenesis [116]. Acetic acid may induce liver lipogenesis [116]. Firmicutes are the main
butyrate producing bacteria in the human gut, especially Clostridium leptum, Faecalibacterium prausnitzii,
Roseburia spp., and Eubacterium rectale. In addition, propionate and acetate are mostly produced
by the Bacteroidetes phylum [117]. The negative effects of dysbiosis are partially compensated by
hesperidin, as has been demonstrated in different animal studies, playing a dual role over both
beneficial and harmful microbes [112]. Hesperidin selectively promotes the growth of some beneficial
Lactobacillus species [113] and inhibits the growth of some harmful species, such as Helicobacter ganmani or
Helicobacter hepaticus [112]. In contrast, hesperidin treatments also inhibit the growth of beneficial species
as Bifidobacterium pseudolongum or Mucispirillum schaedleri [112] and promote the presence of harmful
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species as Staphylococcus sciuri and Desulfovibrio [112]. Additionally, hesperidin supplementation
reduces gut inflammation by decreasing plasma levels of key proinflammatory cytokines (IL-1β,
TNF-α, and IL-6) [112], reducing the colon mRNA expression of a key proinflammatory mediator,
the inducible nitric oxide synthase (iNOS) [112], and increasing the small intestine IgA content [113].
Besides, hesperidin maintains intestinal gut barrier integrity, reducing key markers of intestinal
integrity such as colon length, and plasma levels of intestinal fatty acid binding protein (iFABP)
and lipid binding protein (LBP) [112]. In addition, hesperidin also promotes the expression of the
three main tight junction components: claudin 2, occludin, and zonula occludens-1 [112]. These results
show the immunomodulatory actions of hesperidin on the gut and reinforce its role as a prebiotic;
however, deeper studies of hesperidin effects on gut microbiota are necessary to completely understand
these potential discrepancies.

3.3. The Gut Microbiota Dysbiosis is Associated with Increased CVD

Gut microbiota dysbiosis and microbial infections are associated with several metabolic chronic
disorders, including obesity, T2D, MetS, and CVDs. Fortunately, and as pointed in previous sections,
polyphenols can promote a healthier state by improving the lipid and glucose metabolism [118],
but at the same time, metabolic diseases may modify the gut microbiota composition [119]. In fact,
the gut microbiota may regulate the development of metabolic disorders, not only by modulating
nutrient absorption, but also by regulating intestinal barrier health, the low-chronic inflammation state
and fat storage, processes that are tightly associated with the development of CVD risk factors [120,121].
In this line, numerous studies have demonstrated that obese subjects present a reduction in gut
microbiota diversity compared to lean subjects [122] and, at the same time, subjects with low bacterial
richness showed an increased dyslipidemia, adiposity, insulin resistance, and inflammatory state [120].
These evidences were confirmed when obese subjects were transplanted with the gut microbiota
of lean donors [123]. After the transplantation, the gut microbiota of obese subjects presented
an increase in bacterial diversity, with an associated increase in butyrate-producing bacteria and
subsequent increase in insulin sensitivity [123]. Similar results were observed in animal models
of transfected gut microbiota [120]. In this sense, germ-free mice transplanted with the microbiota
of obese mice (ob/ob) donors, which harvest more energy than their lean counterparts, presented
an increase in plasma leptin levels and elevated fasting glucose, which was translated with a systemic
insulin resistance [124]. These results can be partly explained by the increased hepatic lipogenesis,
which would be a consequence of the gut microbiota metabolization of indigestible polysaccharides
into monosaccharides that posteriorly could be absorbed in the colon [120,125].

Moreover, obese subjects also exhibit an increase in Firmicutes, which leads to an increased
Firmicutes/Bacteroidetes ratio [122]. A higher Firmicutes/Bacteroidetes ratio is associated with higher
energy absorption from food, increased low-grade inflammation, and the development of obesity and
insulin resistance [122,126]. In fact, gut microbiota dysbiosis is considered as a key contributor to the
growing prevalence of obesity and associated cardiometabolic disorders, such as MetS or T2D [104].
Thus, Akkermansia muciniphila, a bacterial species increased by dietary polyphenols, was correlated
with increased levels of some hormones such as glucagon-like peptide (GLP)1 and GLP2, which in
turn promote insulin sensitivity [116]. In addition, A. muciniphila presence is reduced in obesity, and its
levels are inversely related to adipose tissue mass and plasma glucose levels [125].
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Figure 3. Illustrative diagram of hesperidin absorption in the colon. The flavones present in oranges
reach the colon almost unchanged in their structure. In the lumen of the colon, hesperidin is converted
to its active form by the α-rhamnosidase activity of the microbiota (Bifidobacterium pseudocatenulatum),
releasing the rutinose moiety and hesperetin for further absorption by the colonocytes. In the colon,
hesperidin promotes the growth of some beneficial bacteria species, with a key role in the SCFA production
(Bifidobacterium spp., Lactobacillus spp., or Akkermansia muciniphila). SCFAs are absorbed with healthy
effects in the permeability of the gut barrier and in distal organs and tissues. Moreover, hesperidin
has other beneficial effects by inhibiting the proliferation of detrimental bacteria, such as Escherichia coli,
Pseudomonas aeruginosa, Prevotella spp., Porphyromonas gingivalis, and Fusobacterium nucleatum, among
others. SCFAs: short chain fatty acids.

In gut dysbiosis, LPS, a key component of the Gram-negative bacterial membrane, promotes
macrophage infiltration in adipose tissue, which in turn induces inflammation through the TLR4.
LPS activates the inflammatory response by binding and activating TLR4, which triggers a signaling
cascade that promotes the translocation of nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) into the nucleus, where it stimulates the transcription of several inflammatory
cytokines. However, some diet polyphenols, such as hesperidin, can increase the abundance
of Faecalibacterium prausnitzii, which inhibits NF-kB activation and consequently attenuates the
inflammatory response [9]. Increased LPS plasma levels disrupts the gut barrier permeability,
probably due to reduced expression of key proteins that compose the tight junction, zonulin and
occludin. These proteins contribute to form an impermeable intestinal epithelial barrier that prevents
bacterial translocation and prevents harmful products derived from bacterial action reaching the
bloodstream [115]. The intestinal mucosa may be considered as a complete immunological organ
which contains immune cells, immunoglobulins (essentially IgA), and the microbiota [127].

In conclusion, studies investigating the effect of flavanones derived from oranges on the intestinal
or fecal microbiota were mainly focused on their ability to inhibit the growth of pathogens, to increase
beneficial species such as Bifidobacterium spp. and Lactobacillus spp., and to stimulate the production of
SCFAs (Figure 3). In fact, the relation between polyphenols and the gut microbiota is bidirectional.
In the case of hesperidin, this flavanone can promote specific favorable bacterial species [128] and at
the same time, hesperidin can be metabolized by specific microbiota bacteria [129,130].
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3.4. Hesperidin Conversion to Hesperetin by the Microbiota Action

After food intake, hesperidin is poorly absorbed in the small bowel [10,29]. In fact, hesperidin
absorption is highly dependent on the conversion to its active form, hesperetin, by the microbiota,
and this phenomenon occurs mainly in the large intestine, where gut microbiota releases the rutinose
moiety for further absorption by the colonocytes [129] (Figure 3). This conversion of hesperidin to
hesperetin can be promoted by some specific microorganisms such as Bifidobacterium pseudocatenulatum,
which can hydrolyze specific rutinose-conjugated polyphenols, which in turn release the aglycone
form [130]. Therefore, B. pseudocatenulatum may potentially contribute to improving the bioavailability
of hesperidin, which is particularly relevant because Bifidobacteria and polyphenols are significant
components of the human diet, becoming a potential probiotic to improve the hesperidin absorption [29].

Deeper investigations are necessary to decipher the effects of hesperidin on the gut-associated
lymphoid tissue, where hesperidin reaches first and, moreover, where it can interact with the gut
microbiota, contributing to the crosstalk between gut bacteria and intestinal immune tissue. As stated
above, polyphenols are extensively metabolized in the colon by the gut microbiota into several
lower molecular weight and more absorbable parts, which might be responsible for the beneficial
health effects [131], as occurs in the case of hesperidin. After absorption, these catabolites reach the
bloodstream and are distributed systemically to the whole body, thereby altering the metabolome and
influencing host health [84]. Summing up, thanks to the gut microbiota activity, flavanones, specifically
hesperidin, are catabolized in the colon, increasing their bioavailability [132] and thus their potential
beneficial effects on health. Among the species with the capability to produce these transformations are
Bifidobacteria and Lactobacillus species, which are used as probiotics in many commercial food products
and dietary supplements [114,133].

4. Hesperidin Bioavailability

For hesperidin to exert its beneficial effects, except for its effects on the colon, its metabolites and
catabolites arising from the intestinal microbiota must be bioavailable and absorbed to be distributed
through the bloodstream. In this sense, several bioavailability studies in humans showed a scarce
and variable hesperidin absorption among individuals. Thus, in a clinical study with pure hesperidin
intake of 89.1 mg, a cumulative urinary recovery in urine of 2% was observed [134]. Most studies on
hesperidin bioavailability have been performed with OJ. In these studies, the consumption of between
250 mL and 1250 mL OJ resulted in a total flavonoids metabolites recovery (including hesperidin and
naringin metabolites) in urine between 2.9% and 24% [30,31,135–138] (Table 1).

Hesperidin bioavailability studies show that there is a high interindividual variability in its
bioavailability [30,31,134,135,138,139]. In fact, the stratification of individuals as high, intermediate,
or low hesperidin metabolite excretors has been proposed, as assessed by urinary excretion of hesperidin
metabolites [30,31,134,135,138,139].

The clinical studies discussed above described hesperidin bioavailability by quantifying hesperidin
metabolites excreted in urine in the form of glucuronide or sulphated conjugates relative to the amount
of hesperidin consumed. Nevertheless, a substantial portion of hesperetin is further metabolized by
the microbiota present in the colon to bioavailable catabolites, including highly specific catabolites of
hesperetin such as 3-(3′-hydroxy-4′-methoxyphenyl) propionic acid (HMPPA) as well as less specific
catabolites like hippuric acid, 4-hydroxyhippuric acid and 3-(3′-hydroxyphenyl) hydracrylic acid
(HPHPA), which may also result from other phenolic sources [31]. Interestingly, it has been described
that bioavailability of hesperidin increases considerably if the catabolites generated by the intestinal
microbiota, such as HMPPA, are considered. In fact, different bioavailability studies in humans that
included the measure of these catabolites observed a wide spectrum of urinary excretion levels of
hesperidin metabolites and catabolites relative to the consumed flavonoid of 45.9% [31], 64.2% [30],
and 100% [137] (Table 1). As a result, quantifying metabolites and catabolites generated by the
microbiota provides a new perspective in the bioavailability of hesperidin.
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Table 1. Hesperidin bioavailability expressed as percent urinary excretion in human intervention studies.

Administration Form Hesperidin Dose
(µmol) Population Measured Metabolites Relative Urinary Excretion

(%) Reference

Conventional Hesperidin
Micronized Hesperidin

Encapsulated Hesperidin

146.1
146.1
146.1

18 healthy subjects
(10 men and 8 women)

Hesperetin glucuronides and
sulfates metabolites

2.2 ± 0.3
4.3 ± 0.9
5.4 ± 0.8

[134]

400–760 mL commercial OJ 206.6 ± 42.6 8 healthy subjects
(3 men and 5 women) Total hesperetin metabolites 5.3 ± 3.1 [135]

500 mL commercial OJ 180.3 ± 6.1 5 healthy men Total hesperetin metabolites 4.3 ± 1.2 [136]
1000 mL commercial OJ 360.6 ± 12.1 6.4 ± 1.3

500 mL commercial OJ 250 10 males in
trained conditions

Hesperetin glucuronides and
sulfates

metabolites/catabolites
3.8 ± 2.3/51 [30]

10 males in
detrained conditions 4.8 ± 2.8/59

250 mL pulp enriched OJ 348 12 healthy subjects
(6 men and 6 women)

Hesperetin glucuronides and
sulfates

metabolites/catabolites
17.5 ± 2.0/26.2 [137]

400 g orange fruit 1477 ± 88 11 healthy subjects Total hesperetin
metabolites/catabolites 1.5 ± 0.5/20.3 [31]

719 g commercial OJ 636 ± 17 2.9 ± 1.1/40.4

150 g orange fruit 130.6 ± 29.0 20 healthy subjects
(10 men and 10 women) Total hesperetin metabolites 4.3 ± 3.4 [138]

300 g commercial orange fruit 117.7 ± 13.3 4.6 ± 3.1
400 mL commercial OJ 191.5 ± 2.0 10 healthy subjects Hesperetin glucuronides 5.4 ± 1.2 [139]
400 mL commercial OJ 352.8 ± 5.2 (5 men and 5 women) 1.7 ± 0.4

400 mL pulp enriched OJ 461.0 ± 2.0 10 healthy subjects Hesperetin glucuronides 1.0 ± 0.5 [139]
400 mL OJ with flavanone extract 722.6 ± 10.5 (5 men and 5 women) 4.6 ± 1.0

400 mL water with flavanone extract 339.7 ± 2.0 8.9 ± 2.9
Commercial OJ

Commercial OJ supplemented
with hesperidin

100.0
314.7

16 healthy subjects
(8 men and 8 women) Total hesperetin metabolites 4.6 ± 1.8

8.9 ± 3.8 [27]

250 mL commercial OJ
250 mL commercial OJ and 150 mL full

fat yogurt

168
168

8 healthy subjects
(4 men and 4 women)

Hesperetin glucuronides and
sulfates

6.3 ± 2.0
6.4 ± 2.0 [140]

400 mL hand squeezed OJ 62.0 18 healthy subjects Hesperetin glucuronides and 8.1 ± 1.4 [141]
400 mL high pressure homogenized OJ 169.6 (10 men and 8 women) sulfates 4.8 ± 1.1

400 mL pasteurized OJ 184.9 3.3 ± 0.5

786 mL processed OJ 199.2 ± 60.8 24 healthy subjects
(12 men and 12 women)

Hesperetin glucuronides
and sulfates 4.1 ± 3.3 [142]

786 mL fresh OJ 60.8 ± 5.2 3.8 ± 2.2

OJ, orange juice.
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4.1. Factors Affecting Hesperidin Bioavailability

4.1.1. Microbiota Composition and α-L-Rhamnosidase Activity

The low bioavailability of hesperidin has been attributed to the sugar moiety (the rutinose disaccharide)
conjugated to the hesperetin molecule, which hampers absorption in the small intestine [27,143], leading
to the vast majority of hesperidin ingested having to be metabolized in the colon by the α-rhamnosidase
and the β-glucosidase activity of intestinal microbiota to form hesperetin, its aglycone form [144]. It has
been described that α-rhamnosidase is the limiting step of the formation of hesperetin due to low levels of
this enzymatic activity in the intestinal microbiota [130]. Thus, it is conceivable that intestinal microflora
composition may have a large impact on hesperidin bioavailability due to variations in the activity of
the α-rhamnosidase enzymes. Interestingly, a high negative relationship has been observed between
excretion levels of hesperidin metabolites and excretion levels of hesperetin catabolites from the intestinal
microbiota, such as HMPPA [31], indicating that the microbiota of high and low hesperidin excretors
have different activities associated with hesperidin metabolism. However, despite the potential effects
of α-rhamnosidase activity on hesperidin bioavailability and its biological effects, there are no available
studies to clearly demonstrate these effects. Therefore, further in vivo studies in humans are needed to
clarify the effect of α-rhamnosidase activity on the bioavailability of hesperidin.

4.1.2. Stereochemical Properties of Hesperidin

The hesperidin molecule has a chiral carbon that generates two diastereoisomers, –R and –S;
however, in nature, the predominant form is the –S diastereoisomer [145]. Hesperidin is present in the
fresh fruit products, including OJ, in a S:R ratio of at least 92:8 in favor of the 2S-epimer [145].

The stereochemical properties of flavonoids have been reported to influence their bioavailability [146].
Specifically for hesperidin, the effects of its stereochemical properties on plasma and urinary kinetics of
hesperetin have been described [147,148], and may thus affect both the intestinal metabolism and transport
of hesperetin as well as its biological effects [149]. In an in vivo study, the administration of racemic
hesperetin to rats demonstrated that R-hesperetin had a significant 3.3-fold higher area under the serum
concentration–time curve (AUC), a 1.9-fold longer half-life, and a 2.3-fold higher cumulative urinary
excretion compared to S-hesperetin [148]. Furthermore, Yez et al. observed that oral administration of
racemic hesperidin to a single rat revealed a slightly (~15%) increased cumulative 24 h urinary excretion of
R-hesperetin compared to S-hesperetin [147]. In an in vitro study with human small intestinal microsomes,
the authors observed a higher affinity and capacity towards S-hesperetin resulting in an overall 5.2-fold
higher catalytic efficiency for the formation of S-hesperetin glucuronides as compared to R-hesperetin
glucuronides [149]. This is important because although hesperidin naturally exists mainly as the 2S-epimer,
which upon intake is subsequently transformed into S-hesperetin, practically all research on hesperidin and
hesperetin using “pure” compounds is on racemic mixtures, because the vast majority of current hesperidin
products are commercially available as a mixture of both diastereoisomers [149]. Due to these scenarios,
there are companies that are investigating producing hesperidin products consisting of 100% S-hesperidin.

4.1.3. Food Matrix and Food Processing

The bioavailability of hesperidin can be influenced by the food matrix in which it is consumed.
In this sense, the term bioaccessibility refers to the fraction of a compound that is released from its
matrix in the gastrointestinal tract and thus becomes available for intestinal absorption. In a clinical
study by Mullen et al., the impact of a full-fat yogurt on the bioavailability of OJ flavanones was
investigated. Hesperidin levels in urine and plasma were measured after the consumption of 250 mL
of OJ, with and without 150 mL of full-fat yogurt. The results demonstrated that although the quantity
of flavanone metabolites excreted 0–5 h after OJ ingestion was significantly reduced by yogurt, over the
full 0–24 h urine collection period, the amounts excreted were not affected by the addition of yogurt to
the drink. The authors concluded that the full-fat yogurt had little effect on the bioavailability of the OJ
flavanones probably due to the low amount of fats in the yogurt [140].
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Related to the food matrix factor, the solubility of a given metabolite is a requirement to enter the systemic
circulation and exert a physiological effect. For hesperidin, a low solubility has been described, especially in
aqueous systems [150]. In a crossover clinical study with 10 volunteers, Vallejo et al. evaluated the effect of
hesperidin concentration and solubility of orange beverages on its bioavailability. Participants consumed five
different beverages with different hesperidin concentrations. The results showed that hesperidin excretion
and maximal concentration (Cmax) in plasma were correlated with the soluble hesperidin concentration in
juice, whereas no correlation was observed with the total hesperidin intake. The authors concluded that the
solubility of hesperidin in the juice was a key factor for the bioavailability [139].

In a study that evaluated the in vitro bioaccessibility of hesperidin in different matrix sources,
it was observed that the bioaccessibility of hesperidin increased significantly upon juice extraction
compared to orange segments [151]. The authors concluded that the lower flavonoid levels in OJ as
compared to orange segments might be less relevant regarding their intestinal absorption, because low
flavonoid solubility may be the limiting factor [151]. In a clinical study evaluating the bioavailability
of hesperidin from orange fruit and from OJ, despite the higher hesperidin dose delivered with the
orange fruit, urinary hesperetin excretion did not differ from that observed after the consumption
of OJ, suggesting that release, absorption, and metabolism of dietary flavanones are saturated when
intake exceeds a certain limit. Another possible explanation was the entrapment of hesperidin within
the fiber-rich matrix of orange fruit [31]. Supported by these findings, it is assumed that the higher
hesperidin level in orange fruits compared to OJ offers only a limited nutritional benefit. Nevertheless,
in another clinical study by Brett et al., no differences were observed in bioavailability, based on total
urinary hesperetin excretion of human subjects after consumption of orange fruit and OJ matrices [138].

Hesperidin in OJ exists as both soluble in the juice serum and precipitated in the juice cloud. It has
been suggested that hesperidin associated with the juice cloud may be available to enzymatic action
in the gastrointestinal tract at different rates than the soluble form [152]. Furthermore, it has been
demonstrated that the distribution of hesperidin in OJ is influenced by commercial juice processing
and storage techniques [141,152–154], with total concentrations of soluble hesperidin being higher in
hand squeezed OJ than in commercially processed OJ [141,153,154], while freezing and cold storage
of processed juice decreases hesperidin solubility [152]. However, a clinical study that measured the
bioavailability of hesperidin after single doses of hand-squeezed OJ or commercially processed OJ in
healthy humans showed no statistically significant difference in the percentage of urinary-excreted
hesperidin between both different styles of OJ products [142], suggesting that absorption of the OJ
flavanones was not appreciably influenced by the distributions of soluble and precipitated forms [142].

Efforts have been made to overcome the drawbacks of poorly water-soluble hesperidin to enhance
its absorption. In this sense, the use of nanotechnology to encapsulate hesperidin represents a promising
strategy to circumvent hesperidin physicochemical and bioavailability constraints, since it might
enhance hesperidin’s solubility and absorption [155]. In fact, in a clinical study that evaluated the effect
of hesperidin encapsulation and particle size reduction on hesperidin bioavailability, it was observed
that both hesperidin micronization and encapsulation increased hesperidin bioavailability compared to
conventional hesperidin. The authors concluded that particle size reduction and hesperidin dispersion
are two ways to enhance its bioavailability. Furthermore, the results suggested that micronization
can be used to overcome the need for gut microbiota α-rhamnosidase hydrolysis by enhancing
hesperidin solubility and reducing particle size to facilitate the interaction with intestinal cells and
gut microbiota [134].

In recent years, several delivery nanocarrier-based formulations have been developed to modulate
the release of bioactive compounds, including polyphenols such as catechins, quercetin, eugenol,
epigallocatechin, curcumin, and tea polyphenols, demonstrating improvements in the solubility of
these bioactive molecules, improving their bioavailability, absorption, and biological effects [155,156].
In this sense, in the past years, nanosuspensions, polymeric nanoparticles, nanocapsules, nanofibrous
scaffolds, nanoemulsions, and nanoliposomes, among others, have been investigated to deliver
polyphenols and improve its bioavailability and bioactivity [155,157]. However, concerns related to
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the nanoencapsulation of polyphenols have been reported, due to their varying structures, solubility,
and fast oxidation under basic conditions [155]. Furthermore, various wall materials, preparation
methods, encapsulation processes, and release mechanisms, as well as several main factors including pH
values, temperatures, particle sizes, and additives, can strongly influence the encapsulation processes
and efficacy [158]. Therefore, efforts should be made to evaluate the effects of nanoencapsulation on
the metabolism, bioavailability, and efficacy of hesperidin.

5. Future Remarks

Large interindividual variability regarding hesperidin bioavailability may explain some of the
discrepancies observed among the results from different clinical trials reporting the effects of hesperidin
on CVD risk factors. Volunteer stratification into high, medium, and low urinary metabolites
excretors or metabotypes may explain, at least partly, this large interindividual variability. In turn,
this interindividual variability can be determined by several factors, such as age, sex, genetics, or gut
microbiota. Personalized nutrition is a way to address interindividual differences, since it aims to
deliver nutritional intervention or nutritional advice suited to the particular characteristics of each
person, in order to maximize the beneficial effects of diet and dietary compounds on health [159].

Two approaches to reach personalized nutrition have been defined. Thus, personalized nutrition,
or also named individually tailored nutrition, attempts to deliver nutritional intervention or nutritional
advice suited to each individual, whereas stratified nutrition, or tailored nutrition, attempts to group
individuals with shared characteristics and to deliver nutritional intervention or nutritional advice
that is suited to each group. Tailored nutrition has been based primarily on the analysis of genetic
variations to cluster individuals according to genetic set up. However, the benefits for public health
have been limited [160]. In this context, the use of metabolomics and metabolite profile analysis
allows one to tackle personalized nutrition thoroughly, since the interaction and outcome of different
factors, such as genes, diet, microbiota, and environmental factors, are included in metabolite profiles,
provide complete information on the biological processes of the organism [161]. The concept of
metabolic phenotype, or metabotype, refers to the combination of specific metabolites to classify
individuals into groups or clusters based on a similar metabolic phenotype. In the context of nutrition,
metabolic phenotyping allows one to examine the response of individuals to dietary interventions and
to deliver dietary advice adapted to individuals depending on their specific metabotype [161].

As an example of the use of metabotyping for individual clustering to personalize nutrition,
in a clinical study, the authors observed that individuals may be classified based on the metabotype
associated with the ellagic acid polyphenol (metabotype A, B, or 0) according to the metabolite
profile excreted in their urine after ingestion of this polyphenol [162,163]. By this classification,
supplementation of the diet with a pomegranate extract, which is rich in ellagic acid, was able to lower
blood cholesterol levels in those individuals with a specific profile of metabolites of the metabotype
B, while no significant differences on the cholesterol concentration were observed when the effects
were analyzed in all the study subjects. In addition, the distribution of these metabotypes among the
population was different depending on their state of health, with a higher frequency of metabotype B
in obese people and those with MetS [162].

Given that the intestinal microbiota plays an important role in hesperidin metabolism and
absorption through α-rhamnosidase activity, and that the activity of this enzyme can vary considerably
depending on the composition of the microbiota, the metabotype associated with hesperidin
consumption will be closely linked to the microbial profile. However, the relation between the
hesperidin metabotype (low, medium, or high urine metabolites excretors) and α-rhamnosidase activity
has not been studied in humans. In addition, these different metabotypes have not been associated
with specific enterotypes (e.g., a profile of the characteristic microbiota), which would help to explain
the role of the microbiota in the bioavailability of hesperidin.

In conclusion, animal and human studies are necessary to clarify the relationship between the
composition of the intestinal microbiota, the activity of α-rhamnosidase, the metabotypes of hesperidin
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consumption, and the effects of this flavonoid on human health. Furthermore, clinical trials to
evaluate the beneficial effects of hesperidin consumption on health should be considered, as well as
the classification of individuals according to metabotypes.
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