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Abstract: Endometrial cancer is the most common type of cancer of the female reproductive
tract. Although prognosis is generally good for patients with low-grade and early-stage diseases,
the outcomes for high-grade and metastatic/recurrent cases remain poor, since traditional
chemotherapy regimens based on platinum and taxanes have limited effects. No targeted agents
have been approved so far, although several new drugs have been tested without striking results in
clinical trials. Over the last decades, many efforts have been made towards the establishment
and development of preclinical models, aiming at recapitulating the structural and molecular
determinants of the disease. Here, we present an overview of the most commonly used in vitro and
in vivo models and discuss their peculiar features, describing their main applications and the value
in the advancement of both fundamental and translational endometrial cancer research.
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1. Introduction

Endometrial cancer (EC) accounts for 4.8% of all cancers diagnosed in women and is the fifth
most common type of cancer in developed countries [1–3]. It is the most common malignancy of the
female reproductive tract, with a cumulative risk of 1% by age of 75 years, while the death risk is
0.2% [1–3]. Around 320,000 new cases are diagnosed yearly worldwide, and 76,000 patients die every
year from the disease [1–3]. Around 75% of all ECs are diagnosed as FIGO (International Federation
of Gynecology and Obstetrics) stage I or II, corresponding with a 5-year overall survival that varies
between 74% and 91%. Patients diagnosed as FIGO stage III or IV have a 5-year overall survival rate of
57–65% and 20–26%, respectively [3–5].

Recognized risk factors for the development of EC are (i) exposure to unopposed estrogens or to
tamoxifen, (ii) diabetes, (iii) obesity, (iv) nulliparity, (v) early-onset menarche, and (vi) late-onset
menopause, amongst others [6]. The increasing aging of the population together with higher
frequencies of metabolic diseases and diabetes are possible explanations for the observed higher
incidence rates of EC in the developed world (i.e., Western Europe and Northern America), compared
to other regions [3]. Patients typically present with abnormal uterine bleeding and, in case of advanced
disease, possibly abdominal and pelvic pain [7]. Standard diagnostic procedures consist of pelvic
ultrasonography, endometrial biopsy, and hysteroscopy when the diagnosis is uncertain [3]. Treatment
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is primarily based on cytoreductive surgery, mostly total hysterectomy and salpingo-oophorectomy [3].
Depending on different prognostic factors such as tumor grade, histology, and myometrial and
cervical invasion, patients can be divided into low-risk or high-risk groups, related to a long and
short disease-free survival, respectively [8]. For high-risk patients and those with metastatic disease,
surgery is combined with adjuvant radiotherapy and/or chemotherapy such as cisplatin, carboplatin,
doxorubicin, and cyclophosphamide [6,8,9]. Since for recurrent and metastatic disease only limited
treatment options are available [10–13], the last decade saw growing interest in novel targeted therapies.

Traditionally, EC has been divided into two subtypes with distinct clinical, pathological,
histological and molecular behavior [14,15]. Type I EC are mainly low grade, estrogen-dependent,
hormone-receptor-positive adenocarcinomas with endometrioid morphology and are often referred
to as endometrioid endometrial cancers (EECs). EECs account for 85% of all ECs. Moreover, they are
mostly diagnosed at an early stage and are generally characterized by a good prognosis [3,16]. Type I
tumors often show alterations in the PI3K/Akt pathway, suggesting they could potentially respond to
anti-PI3K/Akt therapies [13]. Commonly mutated genes include phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha (PIK3CA), KRAS proto-oncogene, GTPase (KRAS), fibroblast growth
factor receptor 2 (FGFR2), and Catenin beta 1 (CTNNB1), amongst others [17]. The most frequently
altered gene is the tumor suppressor Phosphatase and tensin homolog (PTEN), in approximately 50%
of all cases, while the most common altered oncogene is KRAS, altered in 25% of cases [18]. Type II
ECs are characterized by non-endometrioid histology and include carcinosarcomas, serous and clear
cell carcinomas, and all tumors with different histology and molecular features [16]. Type II ECs are
generally high grade, hormone-receptor negative, and have poor survival rates [3]. Serous carcinomas
only account for 10% of all ECs, although they are responsible for 39% of the total EC deaths [19].
The overall survival rate for serous carcinoma and clear cell carcinoma is only 56% compared to the 86%
reported for endometrioid carcinoma [20]. Type II ECs are characterized by high frequencies of Tumor
protein p53 (TP53) mutations and other low-frequency genomic alterations, such as F-box and WD
repeat domain containing protein 7 (FBXW7) and AT-rich interaction domain 1A (ARID1A) mutations
and Erb-b2 receptor tyrosine kinase 2 (ERBB2) amplification [17].

The Cancer Genome Atlas recently identified four distinct EC molecular subtypes, i.e.,
the Polymerase e (POLE) ultramutated, the microsatellite instability hypermutated, the copy-number
low microsatellite stable, and the copy-number high serous-like subgroups [17]. These subtypes show
increasing grade, TP53 mutations, and somatic copy number alterations as well as decreasing mutation
rates, respectively [17]. However, around 40% of all ECs belongs to a large nonspecific molecular profile
(NSMP) subgroup, characterized by the absence of POLE or TP53 mutations and microsatellite instability.
Recently, a somatic copy-number alterations (SCNA) analysis identified a different subgroup within the
NSMP EC, refining the molecular classification of these poorly-characterized tumors. The proposed
subgroup shows amplifications of 1q32.1, the locus where Double minute 4 protein (MDM4) is located,
and, importantly, this type of amplification has been identified as a prognostic marker [21].

Our knowledge about EC biology has been increased during the past decades and continues to
grow thanks to the use of many different preclinical models. With this review, we aim to discuss the
general aspects of the different preclinical models available, their peculiar features and refinements,
how they have been used to study EC, which progresses they enabled in our understanding of the
disease, and their future challenges and applications, as highlighted in the graphical abstract (Figure 1).
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Figure 1. Presentation of the different available preclinical models present for endometrial cancer (EC)
research. Cell lines and their derived xenografts are models for basic EC research however lack clinical
relevance. Better, in vivo models are transgenic, chemically induced and spontaneous models, however
they lack patient-derived properties. Patient-derived models (organoids, xenografts and humanized
mice) have the highest clinical relevance and are useful for translational and preclinical drug discovery
and validation, however they are less likely to be used for fundamental research.

2. Cell Lines and Cell Line-Derived Xenograft Models

Historically, in vitro cell lines have had a prominent role in anticancer drug development [22],
although such models may lack clinical relevance due to the immortalization and adaptation processes
induced by the continuous growth on plastic. The possibility of working under standardized conditions
makes cell lines extremely useful for the discovery of molecular mechanisms and biological pathways
related to an observed phenotype, while also allowing for cost-effective high-throughput screenings.
However, it is worth noting that they are exposed to altered oxygen levels and nutrient composition,
compared to the original tumors grown in the patients, and that they lack any sort of interaction with
the microenvironment [22].

For endometrial cancer, multiple different cell lines have been established during the last decades
(Table 1). The most commonly used cell lines—AN3CA, ECC-1, HEC1A, HEC1B, and Ishikawa—are
type I tumor-derived cell lines, harboring alterations in the PI3K/Akt pathway, thereby representing
the majority of EC tumors in the clinic. Short tandem repeat (STR) profiling of 10 of the most common
EC cell lines showed that HEC1A, HEC1B, HEC50, AN3CA, KLE, and RL-95-2 have unique STR
profiles, consistent with their originally derived tumors. Different variants of Ishikawa cell lines
showed polymorphic genomic regions; however, high similarity profiles indicate that they originate
from the same patient. Korch and colleagues genotyped different cell lines and found that the ECC-1
cell line does not match the original EnCa-101 tumor [23]. Therefore, the ECC-1 cell line has been
discontinued and is no longer commercially available. This example points to the importance of proper
annotation and to the need of a standardized authentication system for cell lines.
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Table 1. Endometrial cancer (EC) cell line information. Genomic alterations of the most commonly
used type I and type II EC cell lines.

Cell Line Tumor
Location Type PTEN KRAS TP53

PI3K/Akt
Pathways

Alteration(s)

Microsatellite
Instability

AN3CA Metastasis I Deletion wt Missense
mutation Yes High

ARK1 Primary II n/a n/a n/a Yes n/a
ARK2 Primary II n/a n/a n/a n/a n/a

ECC-1 1 Primary I Missense
mutation wt Missense

mutation Yes High

HEC1A Primary I wt Missense
mutation

Missense
mutation Yes High

HEC1B Primary I wt Missense
mutation

Missense
mutation Yes Low

HEC50co Metastasis n/a wt Missense
mutation Deletion n/a n/a

Ishikawa Primary I Deletion wt Missense
mutation Yes High

KLE Metastasis n/a wt wt Missense
mutation No Low

MFE-280 Primary I wt wt Splice site
mutation Yes Low

RL-95-2 Primary I Missense
mutation wt Deletion Yes High

SPEC2 Primary II Not expressed n/a n/a n/a n/a

n/a, not available; 1 ECC-1 has been retracted from the market after the study by Korch et al. [23].

Tumor cells isolated from one single patient can lead to different cell lines, as illustrated by
the HEC1A and HEC1B cell lines derived from the same surgical specimen [24], which differ in
their microsatellite instability phenotype. This observation highlights that most of the info related to
intra-tumor heterogeneity cannot be maintained in vitro by establishing only one cell line from one
tumor. However, where available, paired cell lines originating from the same patient are extremely
important to investigate this and other biological issues. Using the HECs cell lines, for example,
Glaab and colleagues showed the significance of mismatch repair endonuclease PMS2 (PMS2) in the
maintenance of genomic stability in human cells [24].

Nevertheless, peculiar molecular aberrations have been shown to be maintained when passaging
a tumor in vitro. Specifically, alterations in the PI3K/Akt pathway have been observed in both EEC
patients’ tumors and EEC cell lines. Weigelt et al. analyzed 24 commercial EEC cell lines and described
mutations in PTEN, PIK3CA, PIK3R1, and KRAS [25], with frequencies comparable to those seen in
human EEC samples [25–28]. An analysis of gene copy number aberrations in the five most common
EC cell lines—Ishikawa, HEC1A, HEC1B, EEC-1, and AN3CA—showed that the PI3K/Akt and Wnt
pathways are commonly affected [29]. Furthermore, the PI3K/Akt/mTOR pathway has been validated
as a potential target for novel targeted therapies [25], and Philip and colleagues recently showed that
a combination of PI3K and Poly (ADP-ribose) polymerase (PARP) inhibition has synergistic effects
in PTEN mutated cells [30]. Using EC cell lines, Lin et al. showed that cisplatin, which is a main
therapeutic agent, exerts its effect by regulating autophagy through the PI3K/Akt pathway and that
PI3K/Akt inducers could reverse cisplatin activity [31].

Chemoresistance and metastatic dissemination remain major hurdles for EC patients, and different
chemotherapy resistance mechanisms have been described [12,32]. Recently, it has been shown that
non-coding RNAs (e.g., of miR-139-5p and miR-143) might play a role in tumor growth, therapy
resistance, and metastasis [33]. A different report indicated that the long non-coding RNA homeobox
transcript antisense RNA (HOTAIR) contributes to platinum resistance in vitro [34] and that miR-205
is able to inhibit cell growth in progesterone-resistant Ishikawa cells [35].

Other fields of interest that make use of EC cell lines, often as starting models, are summarized
in Table 2.
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Table 2. Potential applications of EC cell lines for preclinical research.

Research Category Field of Application References

Fundamental
Research

Molecular Biology

- Proliferation and migration [23,25,29,36,37]
- Tumorigenesis and dissemination mechanisms
- Therapy resistance mechanisms
- Pathways analysis and identification

Epigenetics

- DNA/histones modifications [33–35,38–44]
- Post-translational protein modification
- Non-coding RNAs

Metabolism [45–49]

- Hormone metabolism
- Glucose/glutamine metabolism
- Fatty acid metabolism
- Other

Functional analysis [50]

- New technologies development

Translational
Research

Drug discovery and validation

- Targeted therapies
- Overcoming therapy resistance [25,30,36,49,51,52]

Biomarkers discovery

- Distinguish different EC types [36,43,53]
- Identification of signatures linked to treatment response

The use of large-scale omics technologies revealed marked intra- and inter-tumor heterogeneity
in patients, which cannot be captured by single cell lines. Therefore, nowadays large cell line panels
are often used to try to recapitulate as much as possible in vitro tumor heterogeneity and to identify
genomic determinants of drug sensitivity. The most known panels are the National Cancer Institute 60
(NCI60) platform [54] and the Japanese Foundation for Cancer Research 39 (JFCR-39) [55], which do not,
however, list EC lines, as well as the Center for Molecular Therapeutics 1000 (CMT1000), where ECs
are represented by different cell lines [22,56].

Since the information about cell lines established decades ago is often scattered and lacks
systematic annotations, the Broad Institute launched the Cancer Cell Line Encyclopedia (CCLE)
initiative in 2012, with the aim of compiling genomic datasets and pharmacological response profiles
of different cancer cell lines to selected compounds. Today, the CCLE counts more than 13,000 unique
datasets (for gene expression, chromosomal copy number analyses, and mutational sequencing) from
1457 cell lines, of which 28 are ECs.

3. Organoids and Organs-on-a-Chip Models

The high attrition rates observed for novel compounds in oncology, due to the discrepancies
between results obtained in preclinical and clinical settings, has been for long imputed to the use of
suboptimal models, lacking predicting value in terms of therapeutic response. Two important factors
that strongly limit the clinical relevance of the conventionally used cancer cell lines are the lack of
interaction with the stromal compartment and the scarcity of normal tissue-derived counterparts.
For this reason, significant efforts have been spent in the last decade to develop new ex vivo models
that would better mimic the original tumors’ physiology.
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3.1. EC Organoids Models

The discovery that both healthy and tumor tissues can grow in vitro as self-organizing
three-dimensional (3D) structures under specific growth conditions opened new perspectives
for organoid cultures. Organoid models have been established from healthy human or mouse
endometrium by Boretto et al. [57], as well as from endometrial cancer patients by Turco and
colleagues, who adapted conditions used to grow adult human stem cells-derived organoids [58].
EC organoids maintained the architecture of the original tumors under a chemically defined medium,
could be grown for extended periods of time (5 months), and showed genetic and molecular stability.
Since the healthy endometrium is a dynamic and plastic tissue adapting and regenerating in response
to hormonal cycles, the role of stem/progenitor cells is also being investigated during malignant
transformation. Interestingly, it has been shown that endometrium progenitor cells display a high
capacity to differentiate into cytokeratin-positive organoid cultures [59] and that cells highly expressing
ALDH (alcohol dehydrogenase), a stemness marker for the endometrium, have a high organoid
forming capacity [60].

EC patient-derived spheroids have been recently used to perform a pharmacological screening
with 79 different targeted therapies by Kiyohara and colleagues, which showed that non-endometrioid
carcinomas seem to be highly sensitive to survivin inhibition, while endometrioid cancers could be
resistant [61]. Girda et al. established 15 patient-derived organoid cultures on which they screened
multiple drugs. They observed that STAT3 inhibition does impede organoid formation in almost all
cultures, confirming the key role of cancer stem cells in tumor growth and organoids establishment.
Surprisingly, none of the cultures was affected by cisplatin or by different progestins. On the other
hand, strong growth inhibition was observed in paclitaxel-treated organoid cultures, while moderate
inhibition was described for tyrosine kinase inhibitors and fulvestrant treatment [62]. Because they
are relatively fast to establish and easy to maintain in culture, organoids have also be used to provide
proof of concept for drug repurposing in EC, as reported by Dasari et al. who found that Verteporfin,
a photosensitizer normally used for photodynamic therapy in conditions such as macular degeneration,
could potentially be effective in EC [63].

3.2. Organs-on-Chip Models

The so-called organs-on-chip (OOC) models are microfluidics systems where engineered
biomimetic chambers containing cells or tissues are connected and continuously perfused by circulating
medium, so as to simulate the physiological dynamics and functionality of tissues within one organ or
the crosstalk between different organs [64].

Applied to the investigation of cancer tissues, such microfluidics technologies have high potential
to become the future gold standard for drug testing in translational research. The approach to growing
patient-derived tumor cells or tissues on chips proved to be feasible for lung and breast cancers and was
shown to be capable of mimicking tumor growth, dormancy, invasion, and response to therapy [65,66].
In this view, the recent development of a multi-organ microfluidic system, called EVATAR, which simulates
the human female reproductive tract and recapitulates its hormonally-controlled dynamics, paves the
way for future applications related to gynecological pathologies, spanning from endometriosis to ovarian,
cervical, and endometrial cancers [67].

4. In Vivo Models

Mouse and rat models are appreciated as standard animal models in translational cancer research,
mainly because they are easily available and allow drug testing on a population scale, due to the
short time needed to generate results, with the advantage of having tumor cells growing as 3D masses
and in strict connection with the stromal compartment. However, they are also subject to caveats,
when it comes to comparing the biology of murine and human tumors. A first point to consider
is that humans live around 30–50 times longer compared to mice and rats, are ~3000 times larger,
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and therefore undergo much more cell divisions. This implies that tumors might develop and evolve
differently. It was indeed shown that rodent cells require at least two genetic alterations before gaining
tumorigenic potential, while human cells are more difficult to transform [68]. Interestingly, the lifetime
risk for developing cancer is comparable in rodents and humans. More specifically, 30% of laboratory
rodents develop cancer by the end of their lifetime and 30% of humans develop cancer by 70–80 years
of age [69]. However, it is known that at least some of the antineoplastic mechanisms that have been
described (e.g., limited replicative potential and growth signaling self-insufficiency) are human-specific,
implying possible differences in response to carcinogenesis and cancer chemopreventive agents [69,70].
Several excellent reviews are available on this subject [69–71].

4.1. Spontaneous EC Rodent Models

It is known that, just like humans, rodents can also spontaneously develop tumors if kept alive
until their natural life end. However, what was surprising for researchers is that some specific rat
strains have an abnormally high incidence rate of EC. In 1981, Deerberg and colleagues already noticed
a 39% incidence rate of uterine tumors in female Han:Wistar rats [72,73].

Later, different spontaneous EC rat models were also described. Nagaoka et al. showed that in
Donryu rats the incidence rate of endometrial adenocarcinoma was as high as 35.1% and that around
60% of all rats would develop proliferative lesions in the endometrium [74]. Tanoguchi et al. showed
that KRAS mutation frequencies in tumors originating in Donryu rats are similar to those observed in
human EC, suggesting potential relevance for the findings coming from this model [75].

Donryu rats have been historically used for the investigation of EC etiology and they helped to
elucidate that hormonal imbalance, more specifically an increased estrogen:progesterone (E:P) ratio,
can be linked to EC development [76,77]. Yoshida et al. and Kojima et al. showed that compounds
decreasing the E:P ratio, such as bromocriptine and indole-3-carbinole, have a protective effect against
EC [77,78], while compounds increasing the E:P ratio have the opposite effect. These observations
explain why neonatal exposure to a high dose of the estrogenic compound p-t-octylphenol increases
the likelihood of EC development [79]. Also, isoflavone aglycones, chemical compounds found in
soy products that exhibit estrogen-like properties, have been shown to facilitate EC development in
Donryu rats [80]. The notion that high-fat diets increase the E:P ratio, thus leading to an increased
risk of EC incidence, came from studies in spontaneous rat models [81]. In addition, Nagaoka and
colleagues showed that multiparity is linked with hormonal changes and leads to the suppression of
EC incidence rate if compared to nulliparity in vivo [82].

Besides Donryu rats, other spontaneous EC rat models are available, such as DA/Han rats,
BDII/Han rats, and the low spontaneous EC incidence rat strain F344. DA/Han rats are an inbred
rat strain that exhibits high spontaneous tumor development (>60% if kept until the natural life end,
24–27 months) and has a high metastatic phenotype [73]. However, only limited information is present
in the literature and these rats have not been widely used in EC research.

BDII/Han rats, on the other hand, are probably the better characterized spontaneous EC model,
both at genomic and molecular levels. If kept to their natural life end (around 26–27 months), over 90%
of the female rats die due to endometrial carcinoma [73,83]. Using gene sequencing and real-time PCR,
Samuelson et al. showed that tumors in BDII/Han rats are molecularly similar to type I endometrial
tumors. Amongst other alterations, they found allelic imbalance and altered expression of PTEN,
and only limited aberrations in TP53 [84]. Of note, tumors in BDII/Han rats are hormone-sensitive,
like type I human EC, since it has been shown that in rats ovariectomized prior to estrous cyclicity
the tumor incidence rate decreased to 0% [73]. Another piece of evidence is that melengestrol acetate
administration suppresses tumor growth [85]. Tumors from BDII/Han rats have been extensively
genomically characterized, and the results suggest that the upregulation of CDK6 and/or Met could
play a role in the development of cancerous lesions [86–94].

Recently, hormone receptor expression was evaluated in the Fischer 344 (F344) rat strain [95].
F344 is not a high-incidence EC rat strain; however, it is one of the most commonly used for
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carcinogenicity testing. Tumors originating in F344 display high inter- and intra-tumor heterogeneity
in terms of estrogen receptor (ER) and progesterone receptor (PR) expression, as observed in women,
with the majority being ER+PR+. Of note, ER+ tumors in F344 tend to be well differentiated, as reported
in humans. Although in women EC tumors are mostly PR+, F344 rats also develop PR− tumors [95].

In conclusion, spontaneous EC rat models are excellent tools recapitulating some of the molecular
and genomic features observed in human tumors. However, their value is generally underappreciated
and they only have minimal use for drug testing in the preclinical setting. One of the drawbacks is
that the timing of tumor development is difficult to predict since it is not possible to know if and when
the lesions will develop and a long period of time may pass before they start to grow [69].

4.2. Chemically Induced EC Rodent Models

Although different spontaneous rat models for EC are available, tumors are still often induced
by treatment with chemical compounds, such as artificial estrogens, in rat and/or mice models.
Traditionally, researchers mainly use two related compounds to induce EC tumors in vivo, i.e.,
N-methyl-N-nitrosourea (MNU) [96,97] or N-ethyl-N-nitro-N-nitrosoguanidine (ENNG) [98,99].
These are alkylating agents which cause mutagenic and carcinogenic effects by alkylating DNA, RNA,
and proteins [100], often in combination with estrogens [99,101,102]. Takahashi et al. showed that ENNG
combined with estradiol, estrone, estriol, 16β-hydroxyestrone, 16α-hydroxyestrone, and 17-epiestriol
significantly induces endometrial adenocarcinoma tumor formation and progression in ICR (Institute of
Cancer Research) outbred mice [99]. All of these metabolites belong to the 16α-hydroxylation pathway
or the upstream 16β-hydroxylation pathway of estrogen metabolism, while metabolites belonging to the
downstream 16β-hydroxylation pathway and the 2-, 4-hydroxylation pathway, such as 2-hydroxyestriol,
2-methoxyestradiol, 2-methoxyestriol, and 16-epiestriol, have only limited to no effect on the growth of
endometrial carcinomas [99].

Chemically induced EC animal models have been used as translational models to investigate
the effects of chemopreventive agents. Niwa et al. used them to study the effect of danazol on
endometrial carcinogenesis [97], while others investigated the effect of tamoxifen [103] and dietary
indole-3-carbinole [98] on endometrial adenocarcinoma growth. A major drawback, however, is that
exposure to the chemical compounds could have detrimental effects on the metabolism of specific
tissues and organs. This strongly limits their use, since it implies that the metabolism of a novel drug
could be somehow altered in animals that were exposed to chemicals [71].

4.3. Transgenic Mouse Models

Transgenic mice are mostly used for investigating biological mechanisms related to cancer
development [71]. For EC, approaches based on different transgenes successfully led to the
establishment of several models.

4.3.1. PTEN Knock-Out Mouse Models

Since PTEN is the most altered gene in EC, its knock-down has successfully led to the development
of transgenic EC models [18]. Knock-out of one of two alleles (PTEN+/−) is sufficient to generate
hyperplasia, which develop to carcinoma in 20% of all cases, by the age of 10 months [104], while PTEN−/−

homozygosity is embryonically lethal [73]. However, to study homozygous PTEN deletions in adult mice,
different conditional systems have been recently developed, such as a tamoxifen-inducible transgenic
system [105], an adenovirus-mediated Cre-lox system [106], or the isolation of PTENloxP/loxP cells from
the uterus of adult mice, followed by gene inactivation and re-implantation [107]. It has been shown that
PTEN inactivation per se is sufficient to rapidly induce endometrial carcinoma [105]. Since microsatellite
instability is a highly frequent event in endometrioid EC, Wang et al. established a transgenic mouse
system that harbors a homozygote MLH−/− deletion next to the heterozygous PTEN loss (PTEN+/−)
and showed an accelerated onset of endometrial carcinoma [18,108], confirming the role of microsatellite
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instability in EC. The importance of alterations in the PI3K/Akt pathway and microsatellite instability
was also confirmed in vivo using transgenic mice [18].

Transgenic mice have also been used to study additional genes possibly related to EC development
and their cooperation with each other or with PTEN. Contreras et al. showed that the inactivation of
Serine/threonine kinase 11 (LKB1)—a master regulator of the Adenosine monophosphate-activated
protein kinase (AMPK)-mTOR signaling—is sufficient to drive endometrial cancer development [109].
Cheng and colleagues also developed a model with a combined loss of PTEN and LKB1, with which
they showed that loss of both genes leads to EEC and short survival, with a high dependency on the
hyper-activated Akt pathway [106].

Another interesting approach is based on the establishment of primary cultures from the tumors
developed in transgenic mice, as shown for the PTEN knock-out models [110,111].

4.3.2. TP53 Knock-Out Models

TP53 mutations are found in advanced type I EC and TP53 is the most commonly altered gene in
type II EC. Daikoku and colleagues showed that conditional TP53 deletion alone does not lead to EC
development, while a combined conditional PTEN−/−TP53−/− deletion led to shorter survival and
exacerbated disease state compared to PTEN−/− mice only, thereby confirming the importance of TP53
alterations in advanced type I EC [104]. Although type I EC is the most investigated subtype of EC
because of its high incidence rate, type II EC is more aggressive and has a higher relative death rate [112].
Akbay et al. showed that the deletion of protection of telomeres protein 1A (POT1A)—a component of
the shelterin complex stabilizing telomeres—combined with TP53 loss led to the development of type
II-like EC in a mouse model by 9 months of age. In addition, it led to the insurgence of metastasis in
100% of the mice at 15 months. These results point to the importance of telomere instability and TP53
mutations in type II EC [112].

4.3.3. The Mitogen Inducible Gene 6 (MIG-6) Knock-Out Model

A different EC model has been established by knocking-out the Mitogen Inducible Gene 6
(MIG-6) [113], the expression of which is known to be regulated by mitogens and stress stimuli.
MIG-6 is an immediate early response gene and acts as a negative regulator of EGFR signaling.
It is a known progesterone receptor-regulated gene, and this can partially explain why a low E:P
ratio is linked to low EC incidence. Using uterus-specific MIG-6 null transgenic mouse models,
it was shown that MIG-6 has an estrogen-dependent tumor suppressive function [113]. Furthermore,
it was shown that MIG-6 expression inversely correlated with the phosphorylation of ERK1/2 [114].
The estrogen-dependency of EC tumors was examined in PTEN deleted mice, leading to the conclusion
that EC tumorigenesis is independent of estrogen in PTEN+/− mice [115] and the depletion of estrogen
predominantly leads to neoplastic lesions, possibly explaining why endometrial carcinoma incidence
is higher in peri- and postmenopausal women [116].

4.3.4. Transgenic Models: Remarks

In many cases, transgenic mice are used to investigate response to therapeutic agents. Different
Akt and mTOR inhibitors have been tested in transgenic mice, showing good responses [106,109].
Recent preclinical studies using transgenic EC mice tested olaparib (PARP-inhibitor) [107], dienogest
(fourth-generation progestin) [117], and palbociclib (CDK4,6 inhibitor) [118]. Such models have
also been used to evaluate the effect of diet on EC tumorigenesis, showing that the elevation of
ω-3-polyunsaturated fatty acids attenuates PTEN deficiency-induced EC development [119].

However, important caveats must be considered when these previously established transgenic
mice are used in preclinical studies. First, the genetic insertion copy number and insertion site in the
genome are mostly unknown, but they can have a major influence on treatment response. Temporal
aspects of transgene activation should also not be neglected [71]. Finally, transgenic tumors lack
naturally occurring heterogeneity and in this sense are not fully representative of human tumors.



Int. J. Mol. Sci. 2018, 19, 2348 10 of 18

4.4. Patient-Derived Xenografts (PDXs) and Humanized Mice

Patient-derived xenograft models (PDXs) are established by implanting a piece of freshly isolated
tumor from a patient directly into immunocompromised mice [120]. Tumor pieces can be implanted
heterotopically or orthotopically [120]. The orthotopic implantation has several advantages because
the tumor develops within the same anatomic environment as the original one in the patient. However,
this kind of implantation is technically challenging and implies the need for imaging systems to
monitor tumor growth, which is why heterotopic implantations are often used to generate PDX models.
Subcutaneously accessible implantation sites include the flanks, the mammary fat pad, the interscapular
fat pad, and the renal capsule [121]. Different mouse strains can be used; athymic nude mice, non-obese
diabetic/severe combined immune deficiency (NOD/SCID) mice, and NOD/SCID/interleukin-2
receptor common γ-chain (IL2-Rγ)-deficient (NSG) mice can be chosen based on the desired degree
of immunosuppression [120,121]. The engraftment success rate ranges depending on the tumor type,
the used mouse strain, and the specific implantation method. However, in general, it has been observed
that engraftment is more likely to occur for metastatic tissue compared to primary tumor tissue,
and can reach up to 90% [121]. Multiple studies have shown that PDX models maintain the original
histological, molecular, and functional heterogeneity present in the patients’ tumors over different
cancer types [121–123]. What makes them an excellent model for translational cancer research is that
PDXs can capture the complexity of the original human tumor (with high molecular and histological
stability), they can predict the clinical response in patients [121,123–125], and they thus can be used as
preclinical models for the validation of novel drugs and targeted therapies. PDXs can potentially be
used for high-throughput drug screening [122,126]. In order to do so, Gao et al. showed the feasibility
of the “one animal per model per treatment” (1× 1× 1) approach for drug screening [126]. Bruna et al.
also showed that the use of PDX-derived short-term cell cultures (PDCs) are useful and are a better
clinical model compared to conventional cell lines [122,126]. Furthermore, PDX models and their
derived cells can be used for new biomarkers discovery and to investigate resistance mechanisms
to treatments. They can potentially be used in xenopatient trials, co-clinical trials, and eventually in
personalized medicine [123]. Recently, many efforts have been directed toward the development of
humanized mice, in which a human immune system is (partially) restored, in order to investigate
tumor interaction with the microenvironment and to investigate the role of the immune system in
tumor growth and treatment response [127]. Although such systems are not available for EC yet,
they might be interesting because immune blockade with immune checkpoint inhibitors are upcoming
treatments for advanced and recurrent EC [128].

A detailed overview of the available EC PDX models and humanized mice can be found in the
review article by Moiola et al. in this Special Issue [129].

5. Conclusions and Future Perspectives

During the last decades, our understanding of endometrial cancer biology increased mainly
thanks to the advance of molecular techniques applied to the different available preclinical models.

Both in vitro and in vivo models helped to elucidate different aspects of the disease and paved
the way for future preclinical and clinical investigations. Since a model is by definition imperfect in
mimicking a real situation, and it naturally has concrete advantages for one aspect but disadvantages
for another. Thus, the idea of employing integrative preclinical platforms with different models for one
cancer type is gaining the interest of the scientific community. The exploitation of effective precision
medicine platforms using different techniques and models, as has been shown for breast cancer and
melanoma [122,130], is where the future of translational cancer research should point to for EC as well.
In this view, initiatives like the recently established Models in Translational Oncology (MiTO) database
will help to gather information about available models and help researchers in choosing the correct
model to address a specific research question [131].
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Abbreviations

3D Three-dimensional
Akt Protein kinase B
AMPK Adenosine monophosphate-activated protein kinase
ARID1A AT-rich interaction domain 1A
BDII/Han Berlin-Druckrey II/Hannover
CCLE Cancer Cell Line Encyclopedia
CDK4,6 Cyclin-dependent kinase 4,6
Cdk6 Cyclin-dependent kinase 6
CMT1000 Center for Molecular Therapeutics 1000
Cre-lox Cyclization recombinase-locus of X-over P1
CTNNB1 Catenin beta 1
DA/Han Dark Agouti/Hannover
E:P Estrogen:progesterone
EC Endometrial cancer
EEC Endometrioid endometrial cancer
EGFR Epidermal growth factor receptor
ENNG N-ethyl-N-nitro-N-nitrosoguanidine
ER Estrogen receptor
ERBB2 Erb-b2 receptor tyrosine kinase 2
ERK1/2 Extracellular signal-regulated kinase 1/2
F344 Fischer 344
FBXW7 F-box and WD repeat domain containing protein 7
FGFR2 Fibroblast growth factor receptor 2
FIGO International Federation of Gynecology and Obstetrics
Han:Wistar Hannover Wistar
HOTAIR Homeobox transcript antisense RNA
ICR Institute of Cancer Research
JFCR-39 Japanese Foundation of Cancer Research 39
KRAS KRAS proto-oncogene, GTPase
LKB1 Serine/threonine kinase 11
loxP Locus of X-over P1
MDM4 Double minute 4 protein
MIG-6 Mitogen Inducible Gene 6
MLH MutL homolog 1
MNU N-methyl-N-nitrosourea
mTOR Mammalian target of rapamycin
NCI60 National Cancer Institute 60
OOC Organ-on-chip
PARP Poly (ADP-ribose) polymerase
PI3K Phosphoinositide 3-kinase
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PDX Patient-derived xenograft
PDC Patient-derived cell culture
PMS2 Mismatch repair endonuclease PMS2
POLE Polymerase ε
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POT1A Protection of telomeres protein 1A
PR Progesterone receptor
PTEN Phosphatase and tensin homolog
STAT3STR Signal transducer and activator of transcription 3Short tandem repeat
TP53 Tumor protein p53
Wnt Wingless/integration-1
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