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Abstract
An improved understanding of the neural correlates of altered arousal states is fundamental

for precise brain state targeting in clinical settings. More specifically, electroencephalogram

recordings are now increasingly being used to relate drug-specific oscillatory dynamics to

clinically desired altered arousal states. Dexmedetomidine is an anesthetic adjunct typically

administered in operating rooms and intensive care units to produce and maintain a seda-

tive brain state. However, a high-density electroencephalogram characterization of the

neural correlates of the dexmedetomidine-induced altered arousal state has not been previ-

ously accomplished. Therefore, we administered dexmedetomidine (1mcg/kg bolus over

10 minutes, followed by 0.7mcg/kg/hr over 50 minutes) and recorded high-density electro-

encephalogram signals in healthy volunteers, 18–36 years old (n = 8). We analyzed the

data with multitaper spectral and global coherence methods. We found that dexmedetomi-

dine was associated with increased slow-delta oscillations across the entire scalp,

increased theta oscillations in occipital regions, increased spindle oscillations in frontal

regions, and decreased beta oscillations across the entire scalp. The theta and spindle

oscillations were globally coherent. During recovery from this state, these electroencepha-

logram signatures reverted towards baseline signatures. We report that dexmedetomidine-

induced electroencephalogram signatures more closely approximate the human sleep

onset process than previously appreciated. We suggest that these signatures may be tar-

geted by real time visualization of the electroencephalogram or spectrogram in clinical set-

tings. Additionally, these signatures may aid the development of control systems for

principled neurophysiological based brain-state targeting.
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Introduction

Electroencephalogram recordings are now increasingly being used to relate drug-specific oscil-
latory dynamics to clinically desired altered arousal states [1]. In this investigation, we per-
formed a systematic neural oscillation based characterization of dexmedetomidine, an
alpha2-adrenoceptor agonist typically used to induce a sedative brain state in operating rooms
and intensive care units (ICUs). Preclinical studies suggest that dexmedetomidine exerts its
effects by blocking the release of norepinephrine from the locus ceruleus (LC) in the pons,
resulting in loss of adrenergic inputs to the ventral lateral pre-optic (VLPO) nucleus of the
hypothalamus [2–7]. Downstream activation of the VLPO and its subsequent inhibition of
midbrain and pontine arousal centers are postulated to be one of the ways in which both non-
REM sleep and the dexmedetomidine-induced brain state are initiated [8]. Thus, in contrast to
other anesthetic agents, dexmedetomidine may very closely approximate and confer some ben-
efits of non-REM sleep.

Clinical studies have described spindle (12–16 Hz) oscillations in frontal electroencephalo-
gram electrode channels during dexmedetomidine-induced sedation. This suggests that the
dexmedetomidine-induced altered arousal state shares similarities with non-REM II sleep [9,
10]. However, spindle oscillations have also been described during surgical levels of uncon-
sciousness [11, 12] and during anesthesia-induced burst-suppression [13]. This arises likely
due to ambiguity in clearly defining spindle oscillations. Thus, it is unclear whether basic sci-
ence studies performed in laboratory animals that suggest dexmedetomidine activates the
VLPO—and may approximate or confer some benefits of sleep—is translatable to humans.
However, a systematic characterization of all dexmedetomidine-induced neural oscillations
may assist us in drawing parallels between sleep states and this drug-induced brain state. These
parallels are essential to ongoing efforts geared at refining sedation regimens—to reduce the
morbidity associated with sedatives—in critically ill patients such that physiological states (i.e.
non-REM sleep) may be approximated when appropriate.

Marzano et al. recently characterized the neural oscillations associated with human sleep
onset, which was defined as the first epoch of non REM II sleep and found increased slow-delta
(0.5–4 Hz) oscillations across the entire scalp, occipital theta (5–7 Hz) oscillations, spindle
(12–15 Hz) oscillations in centro-parietal regions, and decreased beta (18–25 Hz) oscillation
across the entire scalp [14]. Since basic science evidence suggests that dexmedetomidine
engages endogenous sleep mechanisms, we therefore hypothesized that the spatiotemporal
dynamics of neural oscillations induced by dexmedetomidine should parallel those described
for human sleep onset. To explore this hypothesis, we measured and analyzed dexmedetomi-
dine-induced electroencephalogram signals obtained from healthy volunteers (n = 8), 18 to 36
years of age.

Materials and Methods

Patient Selection and Data Collection

As described in detail previously [10, 15], we measured 64-channel electroencephalogram dur-
ing baseline, dexmedetomidine-induced altered arousal and recovery in 8 healthy volunteers (5
males), with an average age of 26.6 (SD: 3.8), and an average weight of 65.3 (8.6) kg. We
defined baseline as an awake, eyes closed period prior to the administration of dexmedetomi-
dine. During this period response to the auditory stimuli was used to confirm that study sub-
jects were awake. The Human Research Committee at the Massachusetts General Hospital
approved this study. All subjects provided written informed consent and were American Soci-
ety of Anesthesiology Physical Status I with Mallampati Class I airway anatomy. In addition to
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standard pre-anesthesia assessments, a urine toxicology screen was performed to ensure that
subjects had not taken drugs that might confound the electroencephalogram or behavioral
results. We administered a urine pregnancy test for each female subject to confirm that they
were not pregnant. Before the start of the study, we required subjects to take nothing by mouth
for at least 8 hours. Dexmedetomidine was administered as a 1mcg/kg loading bolus over 10
minutes, followed by a 0.7mcg/kg/hr infusion for 50 minutes. We monitored each subject’s
heart rate with 5 lead electrocardiogram, oxygen saturation through pulse oximetry, respiration
and expired carbon dioxide with capnography, and blood pressure with a standard non-inva-
sive cuff. We recorded the electroencephalogram using a 64-channel BrainVision MRI Plus
system (Brain Products, Gilching, Germany) with a sampling rate of 1,000 Hz, resolution 0.5 V
least significant bit, bandwidth 0.001–250 Hz. Volunteers were instructed to close their eyes
throughout the study to avoid eye-blink artifacts in the electroencephalogram. Volunteers were
presented with auditory stimuli during the study and asked to respond by button presses to
assess the level of conscious behavior. The stimuli consisted of the volunteer’s name presented
every two minutes. A period of two minutes was chosen to ensure that repeated auditory tasks
were not sufficiently arousing. A limited analysis of two frontal electrodes (per subject) from
this dataset has previously been published [10].

Electroencephalogram Preprocessing and Epoch Selection

We applied an anti-aliasing filter and down-sampled the electroencephalogram data to 250
Hz before analysis. Electroencephalogram signals were re-montaged to a nearest-neighbor
Laplacian reference, using distances along the scalp surface to weigh neighboring electrode
contributions [16]. First, 2-minute electroencephalogram segments were selected from all
subjects during the awake, eyes closed baseline. Eye closure facilitates distinguishing between
normal awake, eyes-closed occipital alpha oscillations and the frontal alpha oscillations asso-
ciated with anesthesia induced altered arousal [16]. Electroencephalogram data segments
during the dexmedetomidine induced brain state were selected based on the behavioral
response. For the dexmedetomidine-induced brain state, the first artifact free electroenceph-
alogram epoch after a series of at least three successive failures (6-minutes) to respond to the
auditory task was chosen. The chosen epochs occurred after the bolus dose of dexmedetomi-
dine. For the recovery brain state, the first artifact free electroencephalogram epoch after a
series of at least three successive responses (6-minutes) was chosen. The chosen EEG epochs
were obtained after the induction bolus of dexmedetomidine, during a stable maintenance
infusion of dexmedetomidine.

Spectral Analysis

Spectral analysis was performed using multitaper spectral estimation methods [17]. We com-
puted spectra and spectrograms with window lengths of T = 2 seconds with 1.9 second overlap,
time-bandwidth product TW = 2, number of tapers K = 3 and spectral resolution of 2 Hz in the
Chronux toolbox (http://chronux.org). The spectrum of frequencies over time (i.e., spectro-
grams) within the 0.001 to 30Hz range was plotted for individual electrodes in each subject.
Group-level spectrograms were computed by taking the median across subjects. For spatial dis-
tribution of spectral power over the scalp, we placed group-median spectrograms at each
recording electrode location (44 electrodes).

Topographic Analysis

Scalp power distributions of specific frequency bands were computed using interpolation of
the electrode montage with the topoplot function in EEGLab [18]. We computed group-
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averaged spectra by taking the mean of group-level spectrograms across the entire epochs (2
minutes) and then averaged them over each frequency band of interest for each electrode.

Global Coherence Analysis

Global coherence quantifies predominance of the largest eigenvalue in the eigenvalue decom-
position of the cross spectral matrix. The parameters for the global coherence analysis are
TW = 3, K = 5, T = 4 seconds and a non-overlapping window, yielding a spectral resolution of
1.5 Hz. For each non-overlapping window, we computed the cross-spectral matrix using multi-
taper methods for each subject, and took the median over whole windows of the real and imag-
inary parts of the cross-spectral matrix for each subject. We applied then the eigenvalue
decomposition to the cross-spectral matrix at each frequency. The cross-spectral matrix at
each frequency S(f) can be factorized as

SðfÞ ¼ UðfÞLðfÞUðfÞH

where UH is the complex conjugate transpose of U and a unitary matrix whose ith column is
the eigenvector ui, and is the diagonal matrix whose diagonal elements are the corresponding
eigenvalues, ii = i. The global coherence is the ratio of the largest eigenvalue to the sum of eigen-
values [19]:

CglobalðfÞ ¼ ðlmaxðfÞÞ=ð
P

liðfÞÞ:

When the largest eigenvalue is large compared with the remaining ones, the principal mode
is dominant where the eigenvector umax corresponding to the largest eigenvalue max at a given
frequency is defined as the principal mode of oscillation for that frequency. The group-level
global coherence was calculated by taking a median across subjects. The absolute value of prin-
cipal mode describes a coherent spatial distribution over all electrode sites. Group-level scalp
coherence distributions were computed by taking the median across subjects and the topo-
graphical distribution were computed using the topoplot function in EEGLab.

Statistical Analysis

To assess statistical significance for the difference in spectra at each frequency, we derived fron-
tal and occipital electrodes to better reflect signals unique to frontal and occipital scalp loca-
tions. To derive these electrodes, we averaged 5 frontal electrode (FPZ, FP1, FP2,AF3, AF4)
and 5 occipital electrodes (Oz, O1, O2, PO3, PO4) and computed the 95% confidence interval
by using a median bootstrap algorithm. We randomly selected spectra with replacement from
spectrograms over all time windows at each frequency to regenerate the spectrogram. We took
the median from the regenerated spectrogram over time for each subject. We calculated differ-
ences between two median spectra across different states or regions for each subject, and took a
median difference across subjects. We repeated this procedure 2000 times and calculated the
95% confidence interval of the median difference at each frequency.

Results

Scalp Spatiotemporal Representation of Dexmedetomidine-Induced
Oscillations

Group-median spectrograms were computed for 44 scalp electrode locations (Fig 1A, 1B and
1C). During the dexmedetomidine-induced brain state, we found increased slow-delta (0.1–4
Hz) oscillations in all electrodes, increased theta (4–8 Hz) oscillations in occipital electrodes,
spindle oscillations (12–16 Hz) in frontal electrodes, and decreased beta (16–25 Hz)
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oscillations in all electrodes. To more clearly illustrate these findings, we computed topo-
graphic plots of power for slow-delta, theta, alpha, spindle, and beta frequency bands (Fig 2A,
2B, 2C, 2D and 2E). Group level median spectra at each electrode position with 95% confidence
interval are presented in S1 Fig. As expected, we found the well-described occipital alpha oscil-
lation during the baseline state because study volunteers were lying awake with their eyes
closed. During the dexmedetomidine-induced brain state, instead of occipital alpha oscilla-
tions, we noticed occipital theta oscillations. Also, increased slow-delta oscillations appeared
most predominant in frontal and occipital electrodes, increased spindle oscillations in frontal
electrodes and decreased beta oscillations in all electrodes.

We evaluated the frontal versus occipital dominance of the neural oscillations by assessing
power spectra differences between frontal and occipital electrodes. During the baseline period,
we found that slow-delta (0.5–2.9 Hz) and beta (23.4–30 Hz) oscillations were larger in the
frontal region, while theta, alpha, and low beta (6.4–17.6 Hz) oscillations were larger in the
occipital region (S2 Fig). Upon the administration of dexmedetomidine, when volunteers did
not respond to the auditory task, we found that slow-delta and theta (2.9–8.8 Hz) frequency
oscillations were larger in the occipital region. We also found that alpha, spindle, and beta
oscillations were larger in the frontal region (Fig 3A, 3B, 3C and 3D; 10.3–12.7 Hz, 16.1–30
Hz). Thus, the dexmedetomidine-induced brain state was associated with a shift to occipital
dominance of slow-delta oscillations, occipital theta oscillations, and frontal dominance of
alpha/spindle oscillations. During the recovery period, we found larger slow-delta, theta, alpha
(2.4–17.6 Hz) oscillations in the occipital region. We also found increased beta (20.5–30 Hz)
power in the frontal region (S3 Fig). Thus, the recovery brain state was associated with occipital
slow-delta oscillations, occipital theta oscillations, occipital alpha oscillations, and increased
beta oscillations in the frontal region.

Frontal and Occipital Electrode Power Spectral Comparisons across
Brain States

We evaluated power spectra differences between frontal versus frontal and occipital versus
occipital electrodes across brain states. We found that the dexmedetomidine-induced brain
state exhibited larger frontal power in slow-delta, theta, alpha and spindle (1.5–14.2 Hz)

Fig 1. Spatial distribution of spectral power.Group-median spectrograms at each recording electrode location across the scalp in study volunteers
(n = 8). (A) Baseline. (B) Dexmedetomidine-induced altered arousal. (C) Recovery.

doi:10.1371/journal.pone.0163431.g001
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Fig 2. Topographic electroencephalogrammaps of spectral power for distinct frequency bands. Topographic electroencephalogrammaps
detailing group-averaged power for each brain state we studied in frequency bands. (A) Slow-delta (0.1–4 Hz). (B) Theta (4–8 Hz). (C) Alpha (8–12 Hz).
(D) Spindle (12–16 Hz). (E) Beta (16 – 25Hz). Dexmedetomidine is associated with increased slow-delta power with frontal/occipital dominance,
increased occipital theta power, decreased occipital alpha power, increased fronto-central spindle power, and decreased beta power.

doi:10.1371/journal.pone.0163431.g002
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frequency bands, and decreased power in the beta (15.6–30 Hz) frequency band when com-
pared to baseline (Fig 4). This finding was similar when we compared the dexmedetomidine
state to recovery (S4 Fig; dexmedetomidine> recovery, 0.5–15.1 Hz; dexmedetomidine<
recovery 17–30 Hz). We found that the dexmedetomidine-induced brain state exhibited larger
occipital power in slow-delta, and theta (0.5–7.3 Hz) frequency bands, and decreased power in
the alpha and beta (8.– 12.7 Hz, 15.6–30 Hz) frequency bands when compared to baseline (Fig
5). This finding was similar when we compared the dexmedetomidine state to recovery, how-
ever power changes within the alpha band did not reach statistical significance (S5 Fig;
dexmedetomidine> recovery, 0.5–7.8 Hz; dexmedetomidine< recovery 15.1–30 Hz). Thus,
although the dexmedetomidine-induced brain state is associated with increased slow-delta

Fig 3. Spectral comparison of Frontal vs. Occipital electrodes during the dexmedetomidine-induced state. (A, B) Median frontal
and occipital spectrograms during the dexmedetomidine-induced state (n = 8). (C) Overlay of median occipital spectrum (red), and median
frontal spectrum (blue). Bootstrapped median spectra are presented and the shaded regions represent the 95% confidence interval for the
uncertainty around each median spectrum. (D) The upper (red) and lower (blue) represent the bootstrapped 95% confidence interval
bounds for the difference between spectra shown in panel C. We found that there were differences in power between frontal and occipital
electrodes during the dexmedetomidine-induced state (frontal > occipital, 10.3–12.7 Hz, 16.1–30 Hz; occipital > frontal, 2.9–8.8 Hz).

doi:10.1371/journal.pone.0163431.g003
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(frontal/occipital), theta (frontal/occipital), spindle (frontal), the increased occipital theta
power was most unique to altered arousal.

Global Coherence Analysis

Global coherence characterizes coordinated activity across multiple channels of the electroen-
cephalogram as a function of frequency. It is the fraction of variance at a given frequency across

Fig 4. Spectral comparison of Baseline vs. Dexmedetomidine frontal electrodes. (A, B) Median frontal spectrograms (n = 8). (C)
Overlay of median dexmedetomidine frontal spectrum (red), and median baseline frontal spectrum (blue). Bootstrapped median spectra
are presented and the shaded regions represent the 95% confidence interval for the uncertainty around each median spectrum. (D) The
upper (red) and lower (blue) represent the bootstrapped 95% confidence interval bounds for the difference between spectra shown in
panel C. We found that there were differences in power between baseline and dexmedetomidine frontal electrodes (dexmedetomidine
> baseline, 1.5–14.2 Hz; baseline > dexmedetomidine, 15.6–30 Hz).

doi:10.1371/journal.pone.0163431.g004
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all electroencephalogram channels explained by the first eigenvector of the cross-spectral
matrix. The minimum value is attained when the readings from all electrode sites are random,
whereas the maximum is attained when they are completely coherent. Thus, a large value of
the global coherence suggests coordinated activity. We examined the group global coherence
during the three states across time and found that the baseline and recovery states were associ-
ated with highly coordinated activity at approximately 10 Hz, whereas the dexmedetomidine
induced brain state was associated with highly coordinated activity at approximately 5.7Hz and
14 Hz (Fig 6A, 6B, 6C, 6D, 6E and 6F). We performed modal projections (Fig 7) of the

Fig 5. Spectral comparison of Baseline vs. Dexmedetomidine occipital electrodes. (A, B) Median occipital spectrograms (n = 8). (C)
Overlay of median baseline occipital spectrum (red), and median dexmedetomidine occipital spectrum (blue). Bootstrapped median
spectra are presented and the shaded regions represent the 95% confidence interval for the uncertainty around each median spectrum.
(D) The upper (red) and lower (blue) represent the bootstrapped 95% confidence interval bounds for the difference between spectra
shown in panel C. We found that there were differences in power between baseline and dexmedetomidine occipital electrodes
(dexmedetomidine > baseline, 0.5–7.3 Hz; baseline > dexmedetomidine, 8.3–12.7 Hz, 15.6–30 Hz).

doi:10.1371/journal.pone.0163431.g005
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Fig 6. Global coherence analysis of baseline, dexmedetomidine-induced, and recovery brain states. (A,B) Globally coherent alpha oscillations
centered at ~10 Hz can be observed during the baseline state. Also a globally coherence band at ~1 Hz is present. (C,D) Globally coherent spindle
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eigenvectors corresponding the largest eigenvalues for each state. During the dexmedetomidine
state, we found coordinated theta activity in the occipital region (Fig 7A). The modal projec-
tions of the baseline state showed that the highly coordinated alpha oscillations are local to the
occipital region (Fig 7B). The modal projection of the dexmedetomidine-induced brain state
showed that the highly coordinated spindle oscillations are local to fronto-central regions (Fig
7C). Although theta oscillation power was decreased in the occipital region during the recovery
period, the theta oscillations remained coherent (Fig 7A).

Discussion

In this investigation we performed a systematic characterization of the spatiotemporal electro-
encephalogram dynamics associated with dexmedetomidine. We briefly summarize our find-
ings as follows: 1) increased slow-delta oscillations across the entire scalp; 2) increased occipital

oscillations centered at ~14 Hz can be observed during the baseline state. The globally coherent dynamic at 1 Hz from A, B above is less coherent. Instead,
there is increased global coherence in the theta frequency band. (E,F) Globally coherent alpha oscillations centered at ~8 Hz can be observed during the
recovery state along with increased global coherence at ~ 1 Hz.

doi:10.1371/journal.pone.0163431.g006

Fig 7. Topographic electroencephalogrammaps detailing group-averaged global coherence for each electroencephalogram frequency of
interest. (A) Dexmedetomidine is associated with increased occipital theta global coherence. (B) Dexmedetomidine is associated with a shift in the globally
coherent occipital awake alpha to frontal regions. (C) Dexmedetomidine is associated with globally coherent fronto-central spindle oscillations.

doi:10.1371/journal.pone.0163431.g007
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theta oscillations; 3) increased fronto-central spindle oscillations; 4) decreased beta oscillations
across the entire scalp, and; 5) globally coherent theta and spindle oscillations. These findings
closely approximate the electroencephalogram dynamics described for human sleep onset
(non-REM II) [14].

The Occipital Theta Oscillation of Sleep and Dexmedetomidine

To our knowledge, the occipital theta oscillations we describe in this manuscript have never
been attributed to any anesthetic-induced brain state, and remain pharmacologically unique to
dexmedetomidine. This is not surprising because dexmedetomidine is specific to the adrenergic
arousal circuit implicated in sleep onset, while other anesthetics affect brain circuits more glob-
ally. A synthesis of previous works suggests that occipital theta oscillations are only associated
with physiological states having a high sleep pressure such as sleep deprivation [20], recovery
sleep [21], and sleep onset [14, 22]. More specifically, intracortical recordings obtained in a
patient with epilepsy suggest that theta is the main oscillatory activity of the occipital cortex
during sleep onset [14]. Thus, the dexmedetomidine-induced brain state and the recovery
period (with residual drug effects) likely reflect a brain state with high sleep pressure. This par-
ticular finding suggests that dexmedetomidine shares closer similarities with sleep than the cur-
rent standard-of-care sedatives and anesthetic agents administered in clinical settings.

Hippocampal theta oscillations have been described during REM sleep in rodent models
[8], and evidence suggests that these theta oscillations are associated with encoding of informa-
tion and the modification of synaptic weights [23, 24]. However, the human equivalent oscilla-
tions as slower, occupying the delta frequency range [25]. Thus, the occipital theta oscillations
we describe are likely distinct from hippocampal theta oscillations. At present, we cannot spec-
ulate on the functional relevance of sleep and dexmedetomidine-induced theta oscillations.
However, this globally coherent oscillatory dynamic may be further studied to gain insights
into both sleep and dexmedetomidine neural circuit dynamics.

Benefits of Maintaining a Dexmedetomidine-Induced Altered Arousal
State in Critically Ill Patients

Recently, two ICU polysomnography studies demonstrated that a continuous infusion of dex-
medetomidine maintains patients in a brain state that was clinically scored as a non-REM II
sleep state [26, 27]. Notably, sleep state switching into non-REM III or REM sleep was not
observed [26, 27]. This is consistent with the putative mechanism of drug action, suggesting
that an infusion of dexmedetomidine engages and sustains the mechanisms necessary for non-
REM II sleep. Although associated with increased incidence of bradycardia and hypotension,
results from clinical trials suggest that dexmedetomidine is associated with decreased time on
mechanical ventilation [28–30], decreased ICU length of stay [28, 31], and lower rates of delir-
ium [29, 30, 32]. We suggest that some of the benefits attributable to dexmedetomidine may
result from its close approximation to a sleep state.

Although, the exact mechanisms of the dexmedetomidine-induced decreases in delirium
are unknown, they may result from decreased levels of inflammatory mediators [33]. Condi-
tions associated with delirium are characterized by activation of the inflammatory cascade with
acute release of inflammatory mediators into the bloodstream [34–48]. Studies on healthy
human volunteers exposed to bacterial endotoxin or lipopolysaccharide confirm that the
inflammatory cascade is associated with deficits in cognitive function [49, 50]. A putative
mechanism is the high interleukin-6 levels associated with delirium in laboratory animals [51–
53] and humans [47, 54, 55]. Neuro-inflammation is exacerbated by sleep disturbances [56,
57], and pharmacologically maintained sleep states might be a modifiable risk factor for the
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development of delirium. Thus the close approximation of the dexmedetomidine-induced
brain state to a physiological brain state may be associated with molecular and biochemical
changes that confer some of the anti-inflammatory benefits of natural sleep.

Although the brain state induced by dexmedetomidine closely approximates a physiological
brain state, maintaining patients for a prolonged period in the dexmedetomidine-induced
brain state may not confer all the benefits of natural sleep. This is because maintaining a patient
in a non-REM II state may not confer benefits that are specific to non-REM III and REM sleep
stages. A recent laboratory investigation has confirmed previous observations in humans that
dexmedetomidine eliminated REM sleep in rats, and that it may not fully compensate for sleep
need [58]. We suggest a principled approach where the administration of dexmedetomidine in
critically ill patients may involve different daytime and nighttime sedation drug regimens, and
drug delivery systems with electroencephalogram feedback control to more precisely target
brain-state goals of care. Such a drug delivery system may incorporate medications with REM
enhancing properties such as rivastigmine and donepezil to achieve non-REM-REM cycling.

Limitations

The electroencephalogram recordings analyzed in this paper were obtained from a high-den-
sity study. However, our analysis was limited to the sensor space. Therefore, we cannot make
inferences on brain regions (i.e. cortical and subcortical) that may be integral for the oscillatory
dynamics we describe. Also, spectral leakage is associated with spectral estimation methods.
Thus, our results are limited by our spectral resolution. Further, even though the neural oscil-
latory “syntax” of dexmedetomidine is similar to non-REM stage II sleep, the molecular and
biochemical characteristics of these brain states may differ. Future studies incorporating
electroencephalogram source localization, intracortical recordings, and microdialysis tech-
niques in human, non-human primates, and rodent models are necessary.

Conclusion

The electroencephalogram dynamics induced by dexmedetomidine more closely approximates
non-REM II sleep than previously appreciated. Therefore, incorporating dexmedetomidine
into ICU sedation regimens when appropriate may confer some benefits of natural sleep com-
pared to antipsychotic (i.e. haloperidol, seroquel) and sedative medications (i.e. midazolam,
propofol). Furthermore, this quantitative analysis of dexmedetomidine-induced oscillations
will inform mathematical modeling approaches that will further refine our mechanistic under-
standing of this brain state. This understanding may aid the development of next-generation
anesthetic medications that approximate normal human neurophysiology with more limited
side-effect profiles.

Supporting Information

S1 Fig. Group level median spectra at each electrode position with 95% confidence inter-
vals. (A) Overlay of baseline and dexmedetomidine. (B) Overlay of baseline and recovery.
(EPS)

S2 Fig. Spectral comparison of Frontal vs. Occipital electrodes during the baseline state. (A,
B) Median frontal and occipital spectrograms during the baseline state (n = 8; within subject
comparison). (C) Overlay of median occipital spectrum (red), and median frontal spectrum
(blue). Bootstrapped median spectra are presented and the shaded regions represent the 95%
confidence interval for the uncertainty around each median spectrum. (D) The upper (red)
and lower (blue) represent the bootstrapped 95% confidence interval bounds for the difference
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between spectra shown in panel C. We found that there were differences in power between
frontal and occipital electrodes during the baseline state (frontal> occipital, 0.4882–2.9297
Hz, 23.4375–30 Hz; occipital> frontal, 6.3477–17.5781 Hz).
(EPS)

S3 Fig. Spectral comparison of Frontal vs. Occipital electrodes during recovery. (A, B)
Median frontal and occipital spectrograms during the recovery state (n = 8; within subject
comparison). (C) Overlay of median occipital spectrum (red), and median frontal spectrum
(blue). Bootstrapped median spectra are presented and the shaded regions represent the 95%
confidence interval for the uncertainty around each median spectrum. (D) The upper (red)
and lower (blue) represent the bootstrapped 95% confidence interval bounds for the difference
between spectra shown in panel C. We found that there were differences in power between
frontal and occipital electrodes during the recovery state (frontal> occipital, 20.5–30 Hz;
occipital> frontal, 2.4–17.6 Hz).
(EPS)

S4 Fig. Spectral comparison of Dexmedetomidine vs. Recovery frontal electrodes. (A, B)
Median frontal spectrograms (n = 8). (C) Overlay of median recovery frontal spectrum (red),
and median dexmedetomidine frontal spectrum (blue). Bootstrapped median spectra are pre-
sented and the shaded regions represent the 95% confidence interval for the uncertainty
around each median spectrum. (D) The upper (red) and lower (blue) represent the boot-
strapped 95% confidence interval bounds for the difference between spectra shown in panel C.
We found that there were differences in power between dexmedetomidine and recovery frontal
electrodes (dexmedetomidine > recovery, 0.5–15.1 Hz; dexmedetomidine< recovery 17–30
Hz).
(EPS)

S5 Fig. Spectral comparison of Dexmedetomidine vs. Recovery occipital electrodes. (A, B)
Median frontal spectrograms (n = 8). (C) Overlay of median recovery occipital spectrum (red),
and median dexmedetomidine occipital spectrum (blue). Bootstrapped median spectra are pre-
sented and the shaded regions represent the 95% confidence interval for the uncertainty
around each median spectrum. (D) The upper (red) and lower (blue) represent the boot-
strapped 95% confidence interval bounds for the difference between spectra shown in panel C.
We found that there were differences in power between dexmedetomidine and recovery frontal
electrodes (dexmedetomidine > recovery, 0.5–7.8 Hz; dexmedetomidine< recovery 15.1–30
Hz).
(EPS)
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