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Simple Summary: Middle-aged worker bees express higher innate immunity than young worker
bees in the whole body of worker bees reared in field hives, the whole body of worker bees reared
in a 34 ◦C incubator, and the abdomen without the digestive tract of worker bees reared in a 34 ◦C
incubator. Worker bees raised in an incubator avoid the infection of pathogens and parasites in field
hives. The abdomen without the digestive tract is a simplified sample, preventing RNA from the
head, thorax, and digestive tract. The abdomen without the digestive tract of worker bees reared in
an incubator can be used in studying the relationship between immunity, aging and longevity.

Abstract: Honey bees (Apis mellifera) can be reared in an incubator to study the mechanisms of aging
and longevity; however, whether breeding in an incubator and using the abdomen without the
digestive tract influences the expression of immune genes is unclear. In this study, we assayed the
immune genes including abaecin, hymenoptaecin, defensin-2, glucose dehydrogenase, phenoloxidase, and
lysozyme from the whole body of young and middle-aged worker bees reared in field hives, the whole
body of young and middle-aged worker bees reared in a 34 ◦C incubator, and the abdomen without
the digestive tract of young and middle-aged worker bees reared in a 34 ◦C incubator. The results
showed that three groups of middle-aged worker bees have higher immunity than young worker
bees. Furthermore, the similarity of immune genes expression in three groups indicated that the
abdomen without the digestive tract of honey bees reared in an incubator can be used to study the
relationship between immunity and aging and longevity to avoid the interference of pathogens and
parasites from field hives.

Keywords: immunity; age; abdomen; digestive tract; honey bee

1. Introduction

Honey bees (Apis mellifera) have been reared in an incubator to study aging and
longevity [1]. The aging and longevity of honey bees seem to be associated with immu-
nity [2,3]. In addition, the immunity of honey bees has been used to evaluate the impact
of pathogens and parasites infection [4–6] and to study the relationship of age [3,7]. The
innate immune system of honey bees includes humoral and cellular immunity [4].

Humoral immunity involves the synthesis of a battery of antimicrobial peptides in
response to infection by bacteria, fungi, or parasites [4]. Humoral immunity consists
of at least three antimicrobial peptides, including abaecin [8], hymenoptaecin [9], and
defensin [10]. Abaecin, hymenoptaecin, and defensin are produced by adipocytes of the fat
body and hemocytes of hemolymph and secreted into the hemolymph [11]. Abaecin was
identified from the hemolymph of honey bees after bacterial infection, and it acted against
Gram-positive and Gram-negative bacteria [8], and was used to evaluate the antibacterial
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immune competence of honey bees in different life stages and environmental risks [5].
Hymenoptaecin is a small positively-charged peptide targeting the negatively charged
membranes to kill Gram-positive and Gram-negative bacteria [9]. Hymenoptaecin was
used to study the immunity of feral and managed honey bee colonies [12] and the evolution
of honey bees [13]. Defensins are small antimicrobial peptides that act mainly against
Gram-negative bacteria [14]. Defensin-1 is synthesized in salivary glands, and defensin-2 is
synthesized in the fat body and lymph [11]. Defensins were used to assess the impact of
Metarhizium anisopliae infection, lipopolysaccharide, and peptidoglycan on the immunity of
honey bees [15,16]. The genes and proteins of abaecin, defensin-2, and hymenoptaecin are
used to evaluate the humoral immunity of honey bees [3–5].

Cellular immunity involves phagocytosis, nodulation, encapsulation, and melaniza-
tion [4,17]. Glucose dehydrogenase catalyzes the encapsulation reaction and the killing
response to fungal invaders [18]. It was used to study the influence of ectoparasites, such
as varroa mites (Varroa destructor) on the health of honey bees [19]. Phenoloxidase is a
hemolymph protein that mediates nodulation, encapsulation, and melanization [20]. It
was used to evaluate the immunity of worker bees, queen bees, and drones with aging [7].
Lysozyme hydrolyzes β-(1,4)-glycosidic bonds of peptidoglycan to eliminate Gram-positive
and Gram-negative bacteria [19,21,22] and promotes the expression of other antimicrobial
peptides [23]. Lysozyme was used to investigate the impact of microsporidia, such as
Nosema ceranae on the health of honey bees [4]. The genes of glucose dehydrogenase, phe-
noloxidase, and lysozyme are used to evaluate the cellular immunity of honey bees [4,18].

The immune genes from the whole body [4] and abdomens [3,24] are used to evaluate
worker bees’ immunity. In addition, honey bees can be reared in an incubator for aging or
longevity studies [1]. Whether breeding in an incubator and using the abdomen without
the digestive tract influences the expression of immune genes, the immune genes from the
whole body of young and middle-aged worker bees reared in field hives, the whole body of
young and middle-aged worker bees reared in a 34 ◦C incubator, and the abdomen without
the digestive tract of young and middle-aged worker bees reared in a 34 ◦C incubator were
assayed to demonstrate that the abdomen without the digestive tract of honey bees reared
in an incubator can be used to study the relationship between immunity and aging and
longevity.

2. Materials and Methods
2.1. Honey Bees (Apis mellifera)

The brood combs containing pupae and a few newly emerged worker bees from
different colonies were transferred to an incubator (34 ◦C, 75% relative humidity) [25]. The
newly emerged worker bees from brood combs were randomly collected, labeled with
white paint, and put into field hives [26]. In addition, the newly emerged worker bees from
brood combs were collected in different cages (15 cm × 10 cm × 12 cm), put into a 34 ◦C
incubator (NK system, Yaizu, Shizuoka, Japan), and daily fed with honey and fresh pollen
grains mixed with honey (3:1) [1]. The labeled and caged worker bees were collected on
the 5th days and 25th days from field hives and cages, respectively. Fifth day-collected
worker bees were used as young worker bees, and 25th day-collected worker bees were
used as middle-aged worker bees. Young and middle-aged worker bees were collected for
the same experiments.

2.2. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis

5-day-old or 25-day-old worker bees were collected and anesthetized on ice. Total RNA
was extracted from the whole body of individual 5-day-old or individual 25-day-old worker
bees reared in field hives, the whole body of individual 5-day-old or individual 25-day-old
worker bees reared in a 34 ◦C incubator, and the abdomen without the digestive tract of
individual 5-day-old or individual 25-day-old worker bees reared in a 34 ◦C incubator
using Trizol® Reagent (15596018; Invitrogen, Carlsbad, CA, USA) [25]. To prepare the
abdomen without the digestive tract, the digestive tract was pulled out from the anus
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of the abdomen by tweezers. The abdomen without the digestive tract contains the cells
of the fat body and hemolymph under the diaphragm [27]. RNA concentration and
quality were determined using a SynergyTM HT multi-mode microplate reader (7091000;
BioTek, Winooski, VT, USA). The complementary DNA (cDNA) synthesis was performed
using an iScript™ cDNA synthesis kit (170-8891; Bio-Rad Laboratories, Irvine, CA, USA).
Amplification was performed in a TProfessional Thermocycler (070-851; Biometra, Jena,
Germany). Each reaction contained 1 µg of total RNA in a 20 µL reaction volume. The qPCR
was performed using a CFX connect RT-PCR detection system (Bio-Rad Laboratories), and
each reaction contained 0.5 µL of 10 µM of each primer, 12.5 µL of SYBR Green (170-8882;
Bio-Rad Laboratories), 1 µL of diluted cDNA, and 10.5 µL of ddH2O in a final volume of
25 µL. The β-actin gene was used as a reference gene when measuring gene expression in
honey bees [16,25,28–30]. The primers were designed according to GenBank’s nucleotide
sequences, and primer sequences are shown in Table 1. The PCR program was 95 ◦C for
3 min, followed by 39 cycles of denaturation at 95 ◦C for 10 s and annealing at 60 ◦C for
30 s [25]. All samples were run in quadruplicate [25]. The relative expression levels of
genes were calculated using the 2−∆∆Ct method [31]. This experiment was performed with
ten biological replicates using a total of ten young and ten middle-aged worker bees.

Table 1. Primer list for qPCR.

Genes Primer Sequence (5′ → 3′) Accession Number

Abaecin Forward CAGCATTCGCATACGTACCA AF442147.1
Reverse GACCAGGAAACGTTGGAAAC

Hymenoptaecin Forward CTCTTCTGTGCCGTTGCATA NM_001011615
Reverse GCGTCTCCTGTCATTCCATT

Defensin-2 Forward GCAACTACCGCCTTTACGTC NM_001011638.1
Reverse GGGTAACGTGCGACGTTTTA

GD Forward CTGCACAACCACGTCTCGTT XM_006567632.1
Reverse ACCGCCGAAGAAGATTTGG

Phenoloxidase Forward AATCCATTACCTGAAATTGATGCTTAT NM_001011627
Reverse TAATCTTCCAACTAATTCATACGCTCTT

Lysozyme Forward ACACGGTTGGTCACTGGTCC XM_001120136.3
Reverse GTCCCACGCTTTGAATCCCT

β-actin Forward ATGCCAACACTGTCCTTTCTGG AB023025.1
Reverse GACCCACCAATCCATACGGA

GD: Glucose dehydrogenase.

2.3. Statistical Analysis

Differences in the mean values between the two age groups of bees were examined
using two-sample t-tests. A p-value of less than 0.05 was considered significant.

3. Results
3.1. Immune Genes Expression in the Whole Body of Worker Bees Reared in Field Hives

The mRNA expression levels of immune genes including abaecin, hymenoptaecin,
defensin-2, glucose dehydrogenase, phenoloxidase, and lysozyme were assayed to deter-
mine genes expression in the whole body of worker bees reared in field hives. In humoral
immunity, the fold change in the mean abaecin mRNA expression level of middle-aged
worker bees was 9.35± 1.47 compared with young worker bees (n = 10, p < 0.001; Figure 1A).
The fold change in the mean defensin-2 mRNA expression level of middle-aged worker
bees was 3.50 ± 0.38 compared with young worker bees (n = 10, p < 0.001; Figure 1B). The
fold change in the mean hymenoptaecin mRNA expression level of middle-aged worker
bees was 4.15 ± 0.93 compared with young worker bees (n = 10, p < 0.01; Figure 1C). In
cellular immunity, the fold change in the mean glucose dehydrogenase mRNA expression
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level of middle-aged worker bees was 3.03 ± 0.35 compared with young worker bees
(n = 10, p < 0.001; Figure 1D). The fold change in the mean phenoloxidase mRNA expres-
sion level of middle-aged worker bees was 0.55 ± 0.07 compared with young worker bees
(n = 10, p < 0.01; Figure 1E). The fold change in the mean lysozyme mRNA expression level
of middle-aged worker bees was 0.67 ± 0.09 compared with young worker bees (n = 10,
p < 0.01; Figure 1F). These results indicated that middle-aged worker bees expressed higher
levels of abaecin, defensin-2, hymenoptaecin, and glucose dehydrogenase genes, as well as
lower levels of phenoloxidase and lysozyme genes than young worker bees.
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Figure 1. The genes expression of abaecin, defensin-2, hymenoptaecin, glucose dehydrogenase,
phenoloxidase, and lysozyme from the whole body of young and middle-aged worker bees reared in
field hives. The mRNA expression levels of abaecin (A), defensin-2 (B), hymenoptaecin (C), glucose
dehydrogenase (D), phenoloxidase (E), and lysozyme (F) genes were normalized to young worker
bees and shown as fold changes, representing the mean± standard error of the means (SEMs) (n = 10).
The asterisks indicate significant differences (** p < 0.01, *** p < 0.001; two-sample t-test).
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3.2. Immune Genes Expression in the Whole Body of Worker Bees Reared in a 34 ◦C Incubator

The mRNA expression levels of immune genes including abaecin, hymenoptaecin,
defensin-2, glucose dehydrogenase, phenoloxidase, and lysozyme were assayed to de-
termine immune genes expression in the whole body of worker bees reared in a 34 ◦C
incubator. In humoral immunity, the fold change in the mean abaecin mRNA expres-
sion level of middle-aged worker bees was 1.95 ± 0.18 compared with young worker bees
(n = 10, p < 0.01; Figure 2A). The fold change in the mean defensin-2 mRNA expression level
of middle-aged worker bees was 2.15 ± 0.29 compared with young worker bees (n = 10,
p < 0.01; Figure 2B). The fold change in the mean hymenoptaecin mRNA expression level
of middle-aged worker bees was 3.17 ± 0.69 compared with young worker bees (n = 10,
p < 0.05; Figure 2C). In cellular immunity, the fold change in the mean glucose dehydroge-
nase mRNA expression level of middle-aged worker bees was 2.07 ± 0.40 compared with
young worker bees (n = 10, p < 0.05; Figure 2D). The fold change in the mean phenoloxidase
mRNA expression level of middle-aged worker bees was 0.64 ± 0.10 compared with young
worker bees (n = 10, p < 0.05; Figure 2E). The fold change in the mean lysozyme mRNA
expression level of middle-aged worker bees was 0.31 ± 0.05 compared with young worker
bees (n = 10, p < 0.01; Figure 2F). These results indicated that middle-aged worker bees
expressed higher levels of abaecin, defensin-2, hymenoptaecin, and glucose dehydrogenase
genes as well as lower levels of phenoloxidase and lysozyme genes than young worker bees.

3.3. Immune Genes Expression in the Abdomen without the Digestive Tract of Worker Bees Reared
in a 34 ◦C Incubator

The mRNA expression levels of immune genes including abaecin, hymenoptaecin,
defensin-2, glucose dehydrogenase, phenoloxidase, and lysozyme were assayed to deter-
mine immune gene expression in the abdomen without the digestive tract of worker bees
reared in a 34 ◦C incubator. In humoral immunity, the fold change in the mean abaecin
mRNA expression level of middle-aged worker bees was 2.78 ± 0.42 compared with young
worker bees (n = 10, p < 0.01; Figure 3A). The fold change in the mean defensin-2 mRNA
expression level of middle-aged worker bees was 4.14 ± 0.88 compared with young worker
bees (n = 10, p < 0.01; Figure 3B). The fold change in the mean hymenoptaecin mRNA
expression level of middle-aged worker bees was 2.61 ± 0.52 compared with young worker
bees (n = 10, p < 0.05; Figure 3C). In cellular immunity, the fold change in the mean glucose
dehydrogenase mRNA expression level of middle-aged worker bees was 1.51 ± 0.11 com-
pared with young worker bees (n = 10, p < 0.01; Figure 3D). The fold change in the mean
phenoloxidase mRNA expression level of middle-aged worker bees was 0.59 ± 0.10 com-
pared with young worker bees (n = 10, p < 0.01; Figure 3E). The fold change in the mean
lysozyme mRNA expression level of middle-aged worker bees was 0.58 ± 0.08 compared
with young worker bees (n = 10, p < 0.01; Figure 3F). These results indicated that middle-
aged worker bees expressed higher levels of abaecin, defensin-2, hymenoptaecin, and
glucose dehydrogenase genes, as well as lower levels of phenoloxidase and lysozyme genes
than young worker bees.
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Figure 2. The genes expression of abaecin, defensin-2, hymenoptaecin, glucose dehydrogenase,
phenoloxidase, and lysozyme from the whole body of young and middle-aged worker bees reared in
an incubator. The mRNA expression levels of abaecin (A), defensin-2 (B), hymenoptaecin (C), glucose
dehydrogenase (D), phenoloxidase (E), and lysozyme (F) genes were normalized to young worker
bees and shown as fold changes, representing the mean ± SEMs (n = 10). The asterisks indicate
significant differences (* p < 0.05, ** p < 0.01; two-sample t-test).
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Figure 3. The genes expression of abaecin, defensin-2, hymenoptaecin, glucose dehydrogenase,
phenoloxidase, and lysozyme from the abdomen without the digestive tract of young and middle-
aged worker bees reared in an incubator. The mRNA expression levels of abaecin (A), defensin-2
(B), and hymenoptaecin (C), glucose dehydrogenase (D), phenoloxidase (E), and lysozyme (F) genes
were normalized to young worker bees and shown as fold changes, representing the mean ± SEMs
(n = 10). The asterisks indicate significant differences (* p < 0.05, ** p < 0.01; two-sample t-test).

4. Discussion

Immune genes expression from the whole body of young and middle-aged worker
bees reared in field hives, the whole body of young and middle-aged worker bees reared
in a 34 ◦C incubator, and the abdomen without the digestive tract of young and middle-
aged worker bees reared in a 34 ◦C incubator were assayed. All three groups showed
that middle-aged worker bees exhibited higher innate immunity than young worker bees,
indicating that measuring immunity could use three groups. However, worker bees reared
in an incubator prevent the infection of pathogens and parasites in field hives. In addition,
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the abdomen without the digestive tract is a simplified sample that avoids RNA from
the head, thorax, and digestive tract. Therefore, the abdomen without the digestive tract
of worker bees reared in an incubator can be used in studying the relationship between
immunity and aging and longevity.

4.1. Middle-Aged Worker Bees Have Higher Innate Immunity Than Young Worker Bees

The mRNA expression levels of abaecin, defensin-2, hymenoptaecin, and glucose
dehydrogenase genes in three groups were higher in middle-aged worker bees than in
young worker bees, suggesting that the innate immunity of middle-aged worker bees may
be higher than that of young worker bees. These results are consistent with a previous
study showing that older long-lived winter honey bees increase the gene expression levels
of apidaecin-1, defensin-1, and hymenoptaecin [3]. In addition, these findings are sup-
ported by previous studies showing that honey bees infected with Nosema apis increase
the gene expression levels of abaecin, hymenoptaecin, and defensin [4], as well as studies
showing that honey bees infected with E. coli increase the gene expression levels of abaecin,
hymenoptaecin, defensin, and glucose dehydrogenase [19]. Fruit flies also have a similar
phenomenon showing that the bacterial load of older fruit flies was significantly lower
than that of younger fruit flies, inferred that older flies had better immunity than younger
flies [32]. However, the mRNA expression levels of phenoloxidase and lysozyme genes
in three groups were lower in middle-aged worker bees than young worker bees. This
phenomenon indicated that the higher the immunity, the lower the gene expression levels
of phenoloxidase and lysozyme. This inference is supported by previous studies showing
that the phenoloxidase activity between nurses and foragers is not significantly different [7]
and that honey bees infected with E. coli reduce the gene expression levels of phenoloxidase
and lysozyme [19]. These results indicated that middle-aged worker bees have higher
innate immunity than young workers because there are no pathogens and parasites in an
incubator to induce immunity.

The immunity of middle-aged worker bees was higher than that of young worker
bees in three groups, but the mRNA expression levels of immune genes of worker bees in
field hives were slightly higher than that of those in an incubator. The most likely reason
is that worker bees reared in field hives are more susceptible to pathogens and parasites
than worker bees reared in an incubator, which leads to increased immunity. This inference
is supported by a previous study indicating that the increase in immune gene expression
leads to an increased immune response [19].

Previous studies showed that antimicrobial peptides increased with age in
Drosophila [33–37] and long-lived winter honey bees [3], which infer that older individuals
have higher infection rates [2]. In this study, worker bees were reared in an incubator, which
is cleaner than field hives, indicating that middle-aged worker bees have higher innate
immunity than young worker bees. The inference of high infection rates may be explained
by high innate immunity because the high immunity of older worker bees reared in field
hives is difficult to distinguish from innate immunity or immunity caused by infection.

A previous study indicated that young house bees were more susceptible to infection
than older forager bees, infected young house bees exhibited higher abaecin, hymenoptaecin,
and defensin-2 than infected older forager bees, and the immunocompetence of older forager
bees did not decline compared to young house bees [15]. These phenomena indicated that
older forager bees might have higher innate immunity than young house bees resulting in
lower induced immunity in older forager bees than in young house bees.

4.2. The Abdomen without the Digestive Tract of Worker Bees Reared in an Incubator Can Be Used
to Study the Immunity of Honey Bees

The whole body [4], or abdomens [3,24] were used to extract the mRNA of immune
genes for evaluating immunity. The immune gene expression in the whole body of young
and middle-aged worker bees reared in field hives, the whole body of young and middle-
aged worker bees reared in a 34 ◦C incubator, and the abdomen without the digestive
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tract of young and middle-aged worker bees reared in a 34 ◦C incubator is similar. This
phenomenon indicated that the whole body, abdomen, and abdomen with the digestive
tract could be used to evaluate immunity. However, worker bees that are reared in an
incubator, a cleaner environment can avoid the infection of pathogens and parasites found
in field hives. Additionally, the abdomen without the digestive tract avoids RNA from the
head, thorax, and digestive tract. Instead, it contains hemolymph and hemolymph cells,
such as fat body and hemocytes under the diaphragm [27], keeping immune genes and
proteins for assays. Therefore, the abdomen without the digestive tract of worker bees
reared in an incubator can be used to study the relationship between immunity and aging
and longevity.
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