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Abstract

Background: Hundreds of thousands of cancer patients have had targeted (panel) tumor sequencing to identify
clinically meaningful mutations. In addition to improving patient outcomes, this activity has led to significant
discoveries in basic and translational domains. However, the targeted nature of clinical tumor sequencing has a
limited scope, especially for germline genetics. In this work, we assess the utility of discarded, off-target reads from
tumor-only panel sequencing for the recovery of genome-wide germline genotypes through imputation.

Methods: We developed a framework for inference of germline variants from tumor panel sequencing, including
imputation, quality control, inference of genetic ancestry, germline polygenic risk scores, and HLA alleles. We
benchmarked our framework on 833 individuals with tumor sequencing and matched germline SNP array data. We
then applied our approach to a prospectively collected panel sequencing cohort of 25,889 tumors.

Results: We demonstrate high to moderate accuracy of each inferred feature relative to direct germline SNP array
genotyping: individual common variants were imputed with a mean accuracy (correlation) of 0.86, genetic ancestry
was inferred with a correlation of > 0.98, polygenic risk scores were inferred with a correlation of > 0.90, and
individual HLA alleles were inferred with a correlation of > 0.80. We demonstrate a minimal influence on the
accuracy of somatic copy number alterations and other tumor features. We showcase the feasibility and utility of
our framework by analyzing 25,889 tumors and identifying the relationships between genetic ancestry, polygenic
risk, and tumor characteristics that could not be studied with conventional on-target tumor data.

Conclusions: We conclude that targeted tumor sequencing can be leveraged to build rich germline research
cohorts from existing data and make our analysis pipeline publicly available to facilitate this effort.

Background
Large-scale tumor sequencing is ubiquitous in the clin-
ical setting, and hundreds of thousands of cancer pa-
tients have had tumors sequenced on targeted panels in
order to identify clinically actionable mutations [1–5].
Data from these cohorts provide an unprecedented

opportunity for basic research and translational discov-
ery, improving our understanding of cancer biology and
supporting clinical decision-making. Recent FDA ap-
proval of such technologies across many cancer types
will likely lead to even broader adoption in the coming
years [6].
Studies of somatic alterations from targeted tumor se-

quencing have characterized drivers of tumor evolution
that can often influence treatment response and out-
comes [2, 7–10]. However, the majority of clinical se-
quencing platforms do not collect germline data and
focus only on exons within a small number of known
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cancer genes [1, 2], thereby excluding potentially mean-
ingful germline variation and the 98% of the genome
that is non-coding. For example, the American Associ-
ation for Cancer Research Project GENIE (Genomics
Evidence Neoplasia Information Exchange) has aggre-
gated sequence data on > 100,000 tumors from 19 inter-
national cancer centers with the aim of incorporating
clinical outcomes [11]. However, 17/19 participating in-
stitutions use tumor-only sequencing with no matched
normal specimen, and the average sequencing panel in
the study covers fewer than 250 genes. Commercial gen-
omic platforms have similarly sequenced hundreds of
thousands of patients on targeted, tumor-only panels of
limited scope [12]. In contrast to targeted sequencing,
tumor/normal matched whole-genome sequencing
(WGS) provides a comprehensive cancer genomics assay
[13–16], but sequencing costs have greatly limited the
sample size and power of these studies. The ability to le-
verage genome-wide germline information from the
wealth of the existing and ongoing targeted tumor data
would broaden the scope of feasible research and offer
opportunities to incorporate germline genetics into
existing clinical workflows.
Recent work has shown that low-coverage sequencing

can be used to accurately impute common germline
polymorphisms by leveraging linkage disequilibrium
(LD) information within the low-coverage data [17–23].
However, such approaches have largely been applied to
sequencing of blood/normal tissue and have not been
benchmarked for tumor data, nor for data with the se-
vere coverage variation of targeted panels, which can
often yield > 100× on-target and < 0.1× off-target cover-
age. Here, we demonstrate that similar techniques can
be used to infer common germline variation from tar-
geted sequencing of tumors. We first use extensive
benchmarking with real tumor/germline data to show
that off-target tumor sequencing can be used to accur-
ately estimate common germline genotypes. We then ag-
gregate these genotypes to infer genetic ancestry,
polygenic risk scores (PRS), and HLA alleles and demon-
strate high to moderate imputation accuracy of each. Fi-
nally, we showcase the research utility of this data by
identifying associations with germline risk and genetic
ancestry in a “real world” cohort of > 25,000 tumors.

Methods
Overview of data
We collected 25,889 tumors spanning > 20 cancer types
as part of the Dana-Farber PROFILE cohort, which were
prospectively sequenced on the OncoPanel platform as
part of routine cancer care (Additional file 1: Fig. S1). A
benchmarking study of somatic variation using 3700
cases from this cohort was previously carried out [24]
though no germline analyses have been published prior

to the current work. The OncoPanel platform targeted
the exons of 275–447 cancer genes on one of three
panel versions, as well as a fourth panel “subversion” (re-
ferred to as panel “3.1”) that modified the sequencing
chemistry but not the targeted exons [1, 24]. Genome-
wide, the mean sequencing coverage was 0.036× (ran-
ging from 0.022 to 0.043× across the panel versions),
compared to a mean on-target coverage of 152× (Add-
itional file 1: Fig. S2). A subset of 833 individuals had
DNA available from the whole blood and was genotyped
on the Illumina Multi-Ethnic Genotyping Array (MEGA)
and used for benchmarking. Written informed consent
was obtained from participants prior to inclusion in this
study.

Patient consent, accrual, and tumor sequencing
PROFILE samples were selected and sequenced from pa-
tients who were consented under institutional review
board (IRB)-approved protocol 11-104 and 17-000 from
the Dana-Farber/Partners Cancer Care Office for the
Protection of Research Subjects. Written informed con-
sent was obtained from participants prior to inclusion in
this study. Secondary analyses of previously collected
data were performed with approval from the Dana-
Farber IRB: DFCI IRB protocol 19-033 and 19-025; wai-
ver of Health Insurance Portability and Accountability
Act (HIPAA) authorization approved for both protocols.
Patients were recruited based on available material and

consent and were not otherwise ascertained for age, sex,
stage, or tumor site. Eighty-nine percent of samples were
formalin-fixed paraffin-embedded (FFPE), which is the
standard clinical workflow (both in our cohort and
across many institutions [2, 11]), with the remainder be-
ing an incidental combination of samples from blood,
fresh frozen tissue, or bone marrow. Quantification of
somatic calling from FFPE versus non-FFPE has been
carried out previously [1]. Each sample was sequenced
on one of three panel versions targeting the exons of
275, 300, and 447 genes, respectively [1, 24]. Sequencing
was performed using an Illumina HiSeq 2500 with 2 ×
100 paired-end reads. Samples met a minimum of 30×
coverage for 80% of targets for analysis. “On-target”
coverage was defined by counting reads overlapping all
1000 Genomes polymorphisms in the targeted regions
with > 50× reads; “off-target” coverage was defined using
reads overlapping all 1000 Genomes polymorphisms in
the rest of the genome.

Germline genotyping
A subset of 833 patients with tumor sequencing was also
germline genotyped as part of the Mass General Brig-
ham Biobank. DNA samples were processed from the
whole blood and genotyped on either the Illumina
Multi-Ethnic Genotyping Array (MEGA), the Expanded
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Multi-Ethnic Genotyping Array (MEGA Ex) array, or
the Multi-Ethnic Global (MEG) BeadChip [25]. All
germline samples were imputed to the Haplotype Refer-
ence Consortium (HRC) reference panel [26] and then
restricted to ~ 1.1 million HapMap3 variants that typic-
ally exhibit high imputation accuracy across genotyping
platforms and uniformly tag common SNP variation
[27]. Small indels were not available in the HRC refer-
ence panel due to sequencing ambiguity, and we add-
itionally imputed small indels into the germline
genotyped data using the 1000 Genomes Phase 3 refer-
ence panel [28] and restricted to high-quality indels with
INFO score (imputation confidence score) > 0.9.

Germline imputation from tumors
We assessed three imputation algorithms intended for
low-coverage data: STITCH v1.5.3 [21], GLIMPSE v1.0.0
[29], and QUILT v0.1.9 [30]. For all analyses, OncoPanel
data was aligned to hg19 using bwa and processed with
the GATK IndelRealigner. The 1000 Genomes Phase 3
release was used as a haplotype reference, targeting vari-
ants with > 1% frequency in the European population.
Tumor imputation was performed using the 1000 Ge-
nomes reference (rather than the HRC reference) be-
cause the HRC panel is not publicly available and the
HRC imputation server does not support raw sequen-
cing data. We thus sought to use the best reference
panels that were accessible for the two data types. We
note that HRC largely improves imputation accuracy for
low-frequency variants [26], which were not the target of
our analysis.
Imputation with STITCH was carried out on all sam-

ples using aligned reads in 5-MB batches (see the “Avail-
ability of data and materials” section for the detailed
parameters and code). The potential influence of target
cohort size was evaluated by randomly downsampling to
a lower number of sequenced tumors. Imputation with
QUILT was carried out using the same input and batch-
ing procedure, with default parameters. Imputation with
GLIMPSE was carried out on all samples with default
parameters as recommended in the documentation: call-
ing genotype likelihoods from each raw BAM file, split-
ting the genome into chunks, performing imputation
and phasing, and ligating the chunks. An alternative,
reference-only version of GLIMPSE was kindly provided
to us by the authors but could not be compiled in our
computing environment. Lastly, we considered two other
imputation approaches: GeneImp [31] and BEAGLE
[32], but found that their computational requirements
were infeasible for sample sizes in the thousands. Identi-
cal reference panel data was used for all methods except
small indels, structural variants, and multi-allelic poly-
morphisms were excluded from the STITCH and
GLIMPSE analysis (which only allows biallelic single

nucleotides). After imputation, variants were considered
“filtered” if they had a minor allele frequency > 1% and
an INFO score (imputation confidence score) > 0.4
(similar to parameters used previously [20]). Additional
filtering thresholds were investigated in Additional file 1:
Fig. S3.

Quantifying imputation accuracy
All analyses imputed the allele “dosage” for each individ-
ual and site, defined as the expected number of non-
reference alleles carried by the individual, and accuracy
was estimated using two metrics: Pearson correlation
and allelic error. First, Pearson correlation was com-
puted for each imputed polymorphism across all individ-
uals between the tumor imputed and germline variant
dosages. Pearson correlation (or squared correlation) has
been commonly used to evaluate variant imputation in
prior work [26, 29, 30] and can be interpreted as the ef-
fective reduction in sample size for an association statis-
tic (i.e., a variant with an imputation correlation of 0.85
is expected to have the statistical power of a directly ge-
notyped study with 0.852 = 0.72 times the size) [33]. We
confirmed, by random downsampling, that the mean
Pearson correlation was not biased by the number of
variants included and that the mean Pearson correlation
was 0 (as expected) when applied to random samples
(Additional file 1: Fig. S4). Second, allelic error was com-
puted as the difference between the imputed and the ge-
notyped allele (relative to the human reference allele)
and summarized as either mean allelic error (to quantify
any reference-specific bias) or average absolute error.

Quantifying somatic copy number alterations
Local copy number was called by the default analysis
pipeline used for clinical reporting to patients and physi-
cians. The RobustCNV (v2.0.1) algorithm was applied to
individual tumors along with a panel of normals to iden-
tify copy number segments based on coverage [34]. We
then identified the 5% of individual-segment pairs with
the highest and lowest estimated segment mean in the
population and computed imputation accuracy within
these individual-segment pairs or for all other (“neutral”)
regions.

Quantifying somatic copy-neutral loss of heterozygosity
(CN-LOH)
In addition to somatic copy number alterations that are
observable through decreased/increased coverage, we
sought to identify regions of somatic CN-LOH. Robust
detection of CN-LOH from tumor-only panel sequen-
cing remains a challenge and CN-LOH is not called by
our in-house somatic pipeline. Rather than attempt to
unambiguously call all CN-LOH regions in all samples,
we instead focused on the most extreme/likely CN-LOH
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regions (akin to our previous analyses of the 5% deepest
amplifications/deletions). We reasoned that CN-LOH
would be detectable at germline heterozygous variants
with high coverage but extreme allelic imbalance in the
tumor, indicative of loss/gain of a single allele [35]. For
each sample, we identified high-coverage, on-target vari-
ants in the tumor that overlapped germline heterozygous
variants in the corresponding SNP array, to be used as
indicators of somatic allelic imbalance. For each such
heterozygote, we quantified the number of somatic reads
mapping to the two alleles in the tumor, restricted to
high-coverage variants with > 50 reads and > 5 reads for
each allele (to avoid false positives from homozygous
sites that were genotyped as heterozygous in error), and
quantified the distribution of allelic fractions. We then
identified the top 5% of sites with the most substantial
allelic imbalance deviation from 50:50 (corresponding to
an allele fraction of either 0.0–0.23 or 0.77–1.0) as puta-
tive CN-LOH (Additional file 1: Fig. S5a). These sites
had slightly lower mean coverage relative to other sites,
consistent with our goal of copy-neutrality (Additional
file 1: Fig. S5b). Finally, we expanded each site by 100 kb
to define CN-LOH “regions.”

Quantifying somatic SNVs in whole-genome data
We used data from 25 cancers from the PCAWG con-
sortium [16] to quantify the expected number of somatic
single nucleotide variants (SNVs) overlapping a popula-
tion SNP in the reference panel. Release v28 somatic
SNV positions were downloaded from the PCAWG/
ICGC data portal for each cancer type. The somatic
SNVs in each tumor were then overlapped with the
7,568,773 common SNPs that were targeted for germline
imputation and quantified.

Germline HLA allele inference
HLA alleles were inferred from the imputed germline
genotypes using the SNP2HLA pipeline [36] and the
NIDDK HLA reference panel with default parameters
[37]. The NIDDK reference panel contained 5225 sam-
ples with serotyped HLA alleles spanning HLA A, B, C,
DPA1, DPB1, DQA1, DQB1, and DRB1. Restricting to
alleles with at least 1% carriers, the panel contained 83
2-digit alleles and 112 4-digit alleles. We did not find
that additional SNP exclusion or quality control prior to
HLA inference produced any measurable improvement
in accuracy and thus used all imputed variants retained
after the first post-imputation filtering step. After HLA
imputation, we defined a set of “filtered” HLA variants
with an INFO score (imputation confidence score) > 0.4
and at least one call with probability > 0.5.
HLA imputation yielded an estimate of carrier and

non-carrier status for each allele, which does not map
directly to homozygosity due to the presence of multiple

alleles per locus. HLA homozygosity (h) was computed
for each individual and locus (A, B, C, and D*) as
follows:

hA ¼
X

alleles a in locus A
pa
Y

alleles b≠a in locus A
qb

where pa is the probability of being a homozygous car-
rier for allele a, and qb is the probability of being a non-
carrier of allele b. The probability of being homozygous
for at least one locus was then computed across loci as
follows:

h1þ ¼ 1−
Y

loci A
1−hAð Þ:

with separate computations of h1+ for the MHC class I
and class II alleles.

Polygenic risk score inference
Publicly available GWAS data from studies of cancer
and related traits was used to compute polygenic risk
scores (PRS). Studies used included breast cancer [38],
glioma [39], non-small cell lung cancer [40], ovarian
cancer [41], prostate cancer [42], and melanoma [43]
from case-control GWAS data, as well as smoking, skin
pigmentation, and tanning ability from the UK Biobank
cohort analysis [44]. GWAS SNPs were restricted to
HapMap3 SNPs, which are typically well imputed and
thoroughly capture common SNP variation.
For evaluating tumor versus germline PRS inference

accuracy, all available SNPs were included and no add-
itional LD pruning/clumping or p-value thresholding
was applied, to minimize any parameter tuning. For each
trait and individual, a PRS was constructed as the sum
of allele dosages weighted by the GWAS association
statistic using either (a) off-target imputed SNPs or (b)
genotype array SNPs as the gold standard. Accuracy was
quantified using the slope and correlation from a linear
regression of the off-target score on the gold-standard
score.
For evaluating the association with the target cancer

type, LD pruning was applied to genome-wide significant
(p < 5 × 10−8) HapMap3 SNPs from each GWAS study,
and the PRS was computed as the weighted sum de-
scribed above. Association was estimated in a logistic re-
gression with the quantitative score as the independent
variable and the dependent variable defined as having a
tumor from the target cancer versus any other cancer,
with sex, age, and panel version included as a covariate.
For computing odds ratios (ORs) for individuals with
high PRS, the quantitative score was replaced with an in-
dicator for the top decile of the PRS in the same logistic
regression.
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Genetic ancestry inference
Samples were projected into genetic ancestry principal
components using the weights previously derived by the
SNPWEIGHTS software [45] for the continental popula-
tions. Weights were constructed from the 1000 Ge-
nomes reference groups with ancestry from Northern/
Western Europe (CEU), Western Africa (YRI), and
China (CHB+CHD). In our data, each component was
projected independently as a linear combination of the
weights and individual sample dosages (using the plink2
“--score” command). Components were then linearly
recalibrated by fitting to self-reported race as an out-
come (note this linear recalibration is for interpretation
purposes only and does not influence the significance of
any downstream associations). To estimate ancestry frac-
tions, we uniformly rescaled the African and Asian com-
ponents to be between 0 and 1 and additionally
uniformly scaled the ancestry of each individual to be
between 0 and 1.

Analysis of EGFR mutation carriers in non-small cell lung
cancer (NSCLC)
We restricted to 2900 NSCLC samples from the full co-
hort and quantified carrier status for somatic SNVs in
the EGFR gene. All samples targeted EGFR for sequen-
cing. Somatic variants were called using the default ana-
lysis pipeline used for clinical reporting: the MuTect
algorithm [46] with a panel of normals followed by filter-
ing of any common variants in the Gnomad reference
panel [47]. Only non-synonymous variants in EGFR
exons were retained and being a carrier was defined as
having > 0 mutations. Carrier status was associated with
genetic ancestry using logistic regression with covariates
for sex, age, tumor purity, and panel versions.

Results
Accurate inference of common germline genotypes from
tumor-only sequencing
Common germline genotypes were imputed directly
from off-target tumor sequencing reads using the 1000
Genomes reference panel and evaluated against the gold
standard germline SNP genotyping (Fig. 1, Additional
file 1: Fig. S6; see the “Methods” section). We evaluated
multiple imputation approaches [29, 30] (see the
“Methods” section) and found that the STITCH algo-
rithm, developed for reference-free imputation, yielded
the highest overall accuracy (mean Pearson correlation =
0.79 s.e. 0.001) while scaling to tens of thousands of
samples (Additional file 1: Fig. S6). All methods exhib-
ited increased imputation accuracy for higher confidence
variants (e.g., higher INFO score, which quantifies the
confidence of the imputation at each variant) as well as
at high coverage sites (Additional file 1: Fig. S7), suggest-
ing that their broad modeling assumptions were met.
We additionally benchmarked STITCH across randomly
subsampled target individuals, finding that imputation
accuracy increased with more target data but achieved
diminishing returns at 5000 target individuals (Add-
itional file 1: Fig. S6). We note that none of the evalu-
ated imputation algorithms was intended for tumor
panel sequencing, and their performance differences
should not be interpreted as an indicator of their per-
formance on more conventional, uniform low-coverage
sequencing of normal tissues.
Tumor imputed variants from STITCH exhibited a

high to moderate correlation with the true germline
variant across the entire genome, particularly after basic
filtering on imputation confidence (Fig. 2). Mean Pear-
son correlation was 0.79 (s.d. 0.17) across all 1.1 million
SNPs and increased to 0.86 (s.d. 0.087) when restricting

Fig. 1 Schematic of germline imputation from low-coverage sequencing. a The unobserved germline variants to be imputed, with 0/1/2
reflecting the number of ALT (non-reference) alleles. b The sequenced input data with targeted regions (dark blue), on-target reads aligning to
these regions (light blue), and off-target reads typically discarded (orange). c The haplotype reference panel as a matrix of 0/1 alleles
(corresponding to reference or ALT). Alleles that match sequenced reads are shown in light orange, alleles that form a haplotype match shown in
dark orange, and alleles that reside along the haplotype but did not carry reads in the target sample shown in gray. d The imputed germline
variant dosages/probabilities, quantifying the expected number of non-reference alleles. In sum, the matched haplotype is used to refine the dark
orange alleles and impute the light gray alleles in the target individual
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to 927,436 “filtered” variants that had an INFO score
(imputation confidence) > 0.4 and minor allele frequency
> 1% (Fig. 2a). We saw little difference in the mean cor-
relation when restricting to directly genotyped germline
SNPs (mean of 0.77 before filtering). A total of 37% of
INFO > 0.4 SNPs had a correlation > 0.9 and < 0.5% ex-
hibited a correlation of < 0.6 (compared to 13% of all
SNPs exhibiting a correlation of < 0.6) (Fig. 2b; Add-
itional file 1: Fig. S8). INFO score filtering, which did
not rely on knowledge of the germline genotypes, thus
removed primarily low accuracy SNPs, and we restricted
to filtered variants for the remainder of our analyses. Fil-
tering on other parameters did not substantially impact
accuracy (Additional file 1: Fig. S3). We note that our
analyses excluded small indels, as indel calling from low-
coverage sequencing can be unreliable and STITCH
does not implement indel imputation. Our attempts to
impute indels with other methods or as pseudo-markers
did not yield accurate results (Additional file 1: Fig. S9,
Additional file 1: Fig. S10), and we believe the problem
of high-quality indel imputation (on par with SNPs) re-
mains open.
We investigated the influence of various technical fac-

tors on overall correlation and individual-level imput-
ation accuracy (see the “Methods” section). Imputation

correlation (post-filtering) was uniform across the gen-
ome on all four panel versions (Additional file 1: Fig.
S11), ranging from 0.79 to 0.88 with similar trends using
individual-level allelic error (Additional file 1: Fig. S12).
Surprisingly, imputation error did not track monotonic-
ally with the number of genes on each panel, suggesting
that coverage and sequencing dynamics play a more im-
portant role than the number of targeted exons. At the
individual level, imputation error tracked monotonically
with coverage across all four panel versions (Additional
file 1: Fig. S13). In total, panel version and coverage ex-
plained > 80% of the variance in per-individual imput-
ation accuracy (Additional file 1: Fig. S14, Additional file
1: Table S1). Beyond these factors, tumor purity was
nominally associated with accuracy (p = 1.2 × 10−3) but
explained negligible variance; neither tumor mutational
burden (TMB), primary/metastatic status, nor tissue ori-
gin (FFPE versus non-FFPE, see the “Methods” section)
were significantly associated with accuracy (Additional
file 1: Table S1, Additional file 1: Fig. S15). We sought
to stratify tumor purity to evaluate the hypothetical per-
formance of this approach in panel sequencing from
normal/non-tumor samples, reasoning that very low
purity samples (< 20%) are comparable to normals. How-
ever, we observed no significant difference in the

Fig. 2 Germline imputation accuracy from tumor sequences. a Mean imputation accuracy (Pearson correlation; y-axis) across sliding windows of
200 SNPs shown for all variants (gray/black) and filtered variants (INFO > 0.4 and MAF > 1%) (blue/light blue) with alternating shading for
chromosomes. b Fraction of variants (y-axis) as a function of minimum imputation accuracy (Pearson correlation; x-axis) for all variants (gray) and
filtered variants (blue). c Distribution of imputation accuracy (Pearson correlation) for 2-digit and 4-digit HLA alleles that passed (dark blue) or
failed (light blue, ~ 10% of variants) INFO-score filtering
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accuracy between very low purity samples and very high
purity samples (Additional file 1: Fig. S16), consistent
with the weak association of continuous purity and ac-
curacy seen above. We thus conclude that technical fac-
tors (coverage and sequencing chemistry), rather than
tumor-intrinsic confounders, are the primary global
drivers of differences in accuracy across individuals.

Minimal influence of somatic copy number alterations on
local imputation accuracy
Tumor genomes often harbor extensive somatic alter-
ations that have the potential to influence local imput-
ation accuracy. We investigated the relationship between
somatic copy number alterations (SCNAs) and imput-
ation accuracy by quantifying variant accuracy for the
5% most strongly deleted and the 5% most strongly
amplified segments in this cohort (see the “Methods”
section). As correlation can be highly uncertain (or in-
calculable) when computed over a small number of indi-
viduals, we focused on the allelic error metrics for this
analysis. Allelic error was always computed relative to
the major allele to capture any systematic directional
biases in the imputation. Surprisingly, for the 5% most
amplified regions, absolute error decreased relative to
the rest of the genome (more sites imputed with zero
error) with no visible artifacts (Fig. 3). This was consist-
ent with amplified regions having higher coverage and
thus more reads for the imputation scaffolding, without
degrading accuracy. For the most deleted regions, error
increased (fewer sites imputed with zero error) and im-
puted variants exhibited a small but statistically signifi-
cant bias toward the major allele (Fig. 3, Additional file
1: Fig. S17). This again was consistent with deleted re-
gions exhibiting lower coverage and fewer reads for im-
putation. In sum, extreme SCNAs had a small influence

on imputation error, with deletions leading to lower ac-
curacy and a slight bias toward the major allele.
We additionally investigated imputation accuracy at

regions with copy-neutral loss of heterozygosity (CN-
LOH) where one haplotype is deleted and the other is
amplified, thus producing no loss in coverage. We used
somatic allelic imbalance at high coverage heterozygous
variants to identify the 5% most imbalanced putative
CN-LOH regions (see the “Methods” section; Additional
file 1: Fig. S5) and quantified the allelic accuracy within
as we had done with deletions and amplifications (Fig. 3,
Additional file 1: Fig. S17). Interestingly, the mean im-
puted allele in CN-LOH regions was slightly but signifi-
cantly shifted toward the major allele (more strongly
than for deletions). On the other hand, the mean abso-
lute imputation error was slightly but significantly higher
than average (but less strongly than for deletions). In
sum, we found that the most extreme CN-LOH regions
operate akin to the most extreme deletions, but with a
stronger effect on the mean error and a weaker effect on
the absolute error.
Finally, we investigated the potential influence of som-

atic single nucleotide variants (SNVs) on imputation
quality. Out of 38,711 somatic variants with > 1 carrier
in our entire tumor cohort, only 30/38,711 (0.08%) were
in the imputation reference panel and had a population
frequency > 1% such that imputation was attempted. For
these 30 variants, the mean imputation INFO score was
0.83 (s.e. 0.02), compared to the mean INFO of 0.67 for
an average variant, indicating that they do not suffer
from increased imputation uncertainty in the population.
We additionally observed no significant differences in
mean accuracy between tumors with high/low TMB
(Additional file 1: Fig. S15). As SNVs in off-target re-
gions could also, in principle, bias the imputation, we

Fig. 3 Imputation accuracy for somatically deleted or amplified regions. a Table of the mean error and mean absolute error for each region type:
5% most somatically deleted regions; 5% of regions with the greatest copy neutral loss of heterozygosity (CN-LOH), neutral regions (not identified
in any other group); and 5% most somatically amplified regions. For each entry, the standard error is reported in parentheses. b Histogram of the
allelic imputation error between the array ground truth and the imputed dosage; − 1 reflects bias toward the major allele, and + 1 reflects bias
toward the minor allele
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used tumor whole-genome sequencing from the
PCAWG consortium [16] to quantify the expected over-
lap with variants in our reference panel across diverse
tumors (see the “Methods” section). We found that an
average sample contained 0.16 genome-wide SNVs that
overlapped with the reference panel (i.e., much less than
a single mutation), with the maximum across cancers
being 1.51 SNVs (Additional file 1: Table S2). As vari-
ants that are not in the imputation reference panel are
effectively ignored for the purpose of imputation, we
thus conclude that somatic SNVs are not sufficiently
common to influence imputation accuracy even in high
TMB individuals.

Imputation of germline HLA alleles
Genetic variation at the HLA locus has been associated
with multiple cancer-related phenotypes [15, 48–50],
and we investigated the ability of tumor imputed vari-
ants to recover HLA alleles. Importantly, HLA genes
were not targeted directly by any of the panels so all in-
ference was based on off-target polymorphisms. A con-
ventional HLA imputation algorithm was used to infer
the germline HLA alleles from a reference panel of eight
common class I and class II genes [36] using the tumor
imputed variants as input (see the “Methods” section).
As before, we benchmarked against an independent im-
putation performed from the germline SNP array data.
The mean imputation correlation was 0.80 (two digits)
and 0.77 (four digits) across all variants. Filtering based
on the INFO score removed ~ 10% of generally low ac-
curacy variants and further increased the imputation
correlation to 0.83 (two digits) and 0.80 (four-digit) (Fig.
2c). Lastly, we used the tumor-imputed alleles to esti-
mate whether an individual is homozygous for at least
one HLA allele (h1+; see the “Methods” section). The
AUC for h1+ was 0.98 for MHC class I alleles and 0.81
for MHC class II alleles (Additional file 1: Fig. S18).
Germline/host HLA homozygosity has been posited as a
biomarker of response to immunotherapy that is inde-
pendent of somatic HLA alterations [48, 51], underscor-
ing the importance of accurate germline imputation (our
focus here). Overall, tumor imputed variants can thus be
directly used for downstream imputation of HLA alleles
at a similar level of accuracy.

Inference of germline polygenic risk scores
Common germline variants are increasingly being used
to predict disease risk by aggregating individual effect
sizes into polygenic risk scores (PRSs) [52, 53] and we
investigated the accuracy of PRSs computed from the
tumor-imputed variants. We selected the PRS from a re-
cent large-scale breast cancer GWAS [38] as representa-
tive (findings were similar for other PRSs from polygenic
traits: Additional file 1: Fig. S19). For each individual, a

risk score was computed using the tumor imputed vari-
ants and compared to that computed using the germline
genotypes. Pearson correlation across individuals for the
two scores was 0.92 with no observable outliers, and a
slight linear deflation of the score as would be expected
from noise due to imputation (Fig. 4a). We confirmed that
PRS imputation error (computed as the difference be-
tween the imputed and true PRS) was approximately nor-
mally distributed (Additional file 1: Fig. S20) and
consistent across the true PRS deciles (Fig. 4b). Lastly, we
found no statistically significant difference in the mean
error across cancer types (in a multivariate linear regres-
sion; Fig. 4c), nor was any cancer type individually associ-
ated with mean error or mean absolute error. Likewise, no
significant biases in the mean PRS error were observed
across the sequencing panel versions (Additional file 1:
Fig. S21), although the variance in error differed, as ex-
pected from differing levels of imputation noise across
panels (see above). Other common PRS phenotypes
yielded similar performance (Additional file 1: Fig. S19).
Having established the high accuracy of the tumor im-

puted PRS, we applied it to the full cohort of tumors to
investigate the differences between cancers. We con-
structed PRSs for common cancers (breast, glioma, lung,
and melanoma) as well as risk PRSs for exposures typic-
ally associated with these cancers (smoking and tanning),
using genome-wide significant variants from corre-
sponding GWAS (see the “Methods” section). We note
that a PRS for an exposure is a prediction of the genetic
predisposition for the corresponding behavior (e.g., pro-
pensity to smoke) and not a direct measurement of the
exposure. We then tested each score for association with
cancer type, with cases defined as patients having a focal
cancer and controls defined as patients with any other
cancer (note, no genuine healthy controls were available
in this cancer cohort). Each risk PRS was highly signifi-
cantly associated with tumors of the respective cancer
type (Fig. 5a), serving as a validation of both the scores
and the imputed variants. Additionally, the smoking PRS
was associated with lung tumors, and the pigment/sun-
burn PRS was associated with melanoma tumors as an-
ticipated. No significant associations were observed for
any mismatching PRS/cancer pairs, confirming empiric-
ally that our approach did not induce cancer-specific
biases. Testing individuals in the top risk score decile
yielded odds ratios of 2–3 (Fig. 5b), which has been pos-
ited as the range for potential clinical actionability [52].
In sum, this analysis demonstrates sufficient accuracy of
tumor-imputed PRSs to explore risk/exposure relation-
ships and identify individuals at the risk score extremes.

Inference of genetic ancestry
Germline variants can be used to discover and estimate
genetic ancestry components, which are often partially
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distinct from self-reported race and ethnicity [54, 55].
Previous work has shown that genetic data from an indi-
vidual of unknown ancestry can be “projected” onto
their ancestry component using weights from a reference
panel [45] (akin to an ancestry PRS). We investigated
this approach to ancestry inference by projecting tumor
imputed genotypes into the principal components of
three continental populations (European, African, and
Asian; inferred from the 1000 Genomes Project refer-
ence data). The inferred ancestry revealed clines

consistent with self-reported race (Fig. 6a). Using the
benchmarking samples, the correlation of ancestry esti-
mates from tumor imputed variants versus germline ge-
notyped variants was > 0.98 with no significant outliers
(Fig. 6b, c). Continental ancestry was thus inferred from
tumor imputed data with nearly perfect accuracy. We
note that prior work showed ancestry projections from
reference data are more accurate than in-sample princi-
pal component analysis [45], and thus, we did not inves-
tigate the latter in the tumor data.

Fig. 4 Polygenic risk score (PRS) accuracy. a Scatter plot of germline SNP (x-axis) and tumor imputed (y-axis) polygenic risk score across
individuals. Each dot is an individual; dashed line shows y = x diagonal; blue line shows the linear fit. b Violin plot of imputed score density (y-
axis) as a function of genotyped score decile (x-axis). c Violin plot of the density of imputed/genotyped score differences (x-axis) across cancer
types (y-axis)

Fig. 5 PRS associations with cancer types. a Each row corresponds to a different tested PRS, and each column shows a different tumor/cancer
type. Bars (x-axis) show the significance of the PRS-cancer type association on the -log10 p-value scale (higher = more significant). Bonferroni
significant associations are shown in darker shades. Note that the significance of the PRS depends on both prediction accuracy as well as target
sample size and should not be directly compared across cancer types. b Odds ratio (x-axis) of the top risk PRS decile associated with the
corresponding cancer type shown for each cancer type (y-axis). The shaded bar shows the standard error of the estimate from a
logistic regression
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Having established accurate inference of genetic ances-
try, we examined the variance in genetic ancestry across
our full cohort of ~ 25,000 samples. We first focused on
individuals self-reporting as Asian (n = 687) or Black (n
= 750) in the electronic health record (Fig. 6d,e). As ex-
pected, self-reported Asian and Black patients exhibited
predominantly East Asian and West African ancestry, re-
spectively. However, admixture from other populations
was also present in these samples: 50% of self-reported
Asian patients had > 10% ancestry from a non-Asian
population, and 72% of self-reported Black patients had
> 10% ancestry from a non-African population. Next, we
turned to self-reported White individuals with > 10%
non-European ancestry (n = 730 out of 21,451 total self-
reported Whites; Fig. 6f). In addition to observing n =
25 individuals with > 50% East Asian ancestry and n =
33 individuals with > 50% African ancestry (possibly

reflecting miscoded EHR data), we observed a cline of
individuals with ancestry from both populations, likely
encompassing Hispanic/Latino individuals who often ex-
hibit this pattern of admixture [56] and self-report as
White.
To demonstrate the relationship between genetic an-

cestry and somatic features, we focused on 2900 non-
small cell lung cancer (NSCLC) patients with somatic,
non-synonymous SNVs in the EGFR gene, which are
known to have higher frequencies in Asians [57, 58].
Restricting to individuals with Asian or European ances-
try, we confirmed a highly significant increase in EGFR
mutation rate in tumors from individuals with Asian an-
cestry (18% in samples of European ancestry; 57% in
samples of Asian ancestry; p = 3 × 10−22 by logistic re-
gression). Genetic ancestry was more significantly associ-
ated with EGFR status than self-reported race (p = 1.0 ×

Fig. 6 Genetic ancestry inferred from tumor sequencing. a Projected continental ancestry components for all individuals. Each dot is a projected
sample (color-coded by self-reported race); the x-axis is the Asian ancestry component, and the y-axis is the African ancestry component. b, c
Correlation of imputed/genotyped ancestry components 1 and 2, respectively. d–f Ancestry fractions for individuals self-reporting as Asian, Black,
and White (with > 10% inferred non-European ancestry)
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10−3 for ancestry and p = 0.33 for race, in a joint model;
Additional file 1: Table S3a), highlighting the utility of
the additional variation derived from inferred ancestry.
Indeed, individuals that were self-reported White but
had East Asian ancestry carried somatic EGFR SNVs at
nearly the same rate as self-reported Asian individuals
(47% and 58%, respectively; Additional file 1: Table S3b),
serving as independent support of the inferred ancestry
in these race/ancestry discordant samples.

Discussion
Traditionally, research cohorts for identifying germline
and somatic cancer factors have been examined with dif-
ferent technologies and analysis methods, each opti-
mized to specific goals. GWAS have identified over 1000
SNPs associated with susceptibility to over 30 cancer
types [59, 60], but current GWAS techniques do not
examine tumor sequences. Cancer-oriented cohorts like
TCGA [61] obtained multiple functional data types, but
sample sizes were too small for GWAS analyses, clinical
data were sparse [62], and the patient populations had
limited longitudinal follow-up. New multi-consortium
studies aim to increase the sample size, but the high cost
of whole-genome sequencing remains a limiting factor
[16]. Targeted panel sequencing of tumors thus offers a
reduced cost, and the rich clinical data collected across
hundreds of thousands of patients [11] provide an un-
precedented opportunity for basic research and transla-
tional discovery. However, the lack of genome-wide
germline data for these studies has limited the capacity
to integrate GWAS-like analyses with somatic outcomes.
To overcome this gap between germline and somatic

studies, we implemented and validated an imputation
framework to derive germline genotypes and down-
stream features directly from targeted tumor sequencing.
Our pipeline offers the opportunity to run germline
GWAS, estimate polygenic risk for complex phenotypes,
and assign genetic ancestry. We demonstrated feasibility
in real-world data from > 25,000 tumors, identifying
highly significant PRS associations and novel ancestry di-
versity. For individuals in the highest PRS decile of can-
cer risk, we observed corresponding odds ratios of > 2,
reaching the range of potential individual-level action-
ability. Ancestry scores, on the other hand, were im-
puted with near-perfect accuracy, providing a framework
to easily incorporate genetic ancestry into the study of
tumors from existing large-scale datasets and expand
our knowledge of population-specific mechanisms [63].
Multiple emerging studies have demonstrated the utility
of low-coverage sequencing of normal samples [18, 22,
23], and our work extends these findings to targeted,
tumor-only data.
Our approach has several important limitations. First,

while we show that ancestry and polygenic risk can be

imputed with high and moderate-to-high accuracy, re-
spectively, and negligible bias; individual variant calls
should always be evaluated in the context of their imput-
ation uncertainty. We observed a mean imputation cor-
relation of 0.86 which, under standard assumptions of
linearity, is expected to translate into an effective sample
size of 0.862 = 0.74× relative to direct germline genotyp-
ing [17]. This approach is therefore most applicable to
GWAS discovery, and individual imputed alleles must
be interpreted with care. Second, while most genotyping
errors will result in decreased sensitivity that may be ac-
ceptable in a discovery analysis, some forms of germline-
somatic analysis may produce false-positive associations.
For example, we found that deep somatic deletions in-
troduced noise and shifted the mean imputed variant to-
ward the reference/common allele. This allele frequency
shift may appear as a false-positive association between
the germline variant and a recurrent deletion (or other
SCNAs correlated with the deletion). When testing indi-
vidual variants in loss-prone regions, we therefore rec-
ommend either excluding individuals that carry a local
deletion, or meta-analyzing carriers and non-carriers.
Third, our study was limited to working with a single
tumor-only panel sequencing platform (OncoPanel)
which may not generalize to platforms used at other in-
stitutions. However, we evaluated four versions of this
panel (which differed in their gene targets, sequencing
chemistry, and years of use) and observed the mean im-
putation accuracy in the range of 0.79–0.88 across
panels and highly consistent across the genome. More-
over, > 80% of the variance in individual imputation ac-
curacy was explained by panel version and off-target
coverage, suggesting that the performance we observed
can be extrapolated to other panels, though broader
evaluation is needed. For studies that perform tumor/
normal matched sequencing, we expect that imputation
from the normal sample would only further increase the
accuracy due to the lack of confounding from somatic
alterations (consistent with our observation that tumor
purity slightly increased imputation error even in this
tumor-only cohort). However, the optimal combination
of tumor/normal data and sequencing platform for
germline imputation remains an open question.
The availability of germline genotypes in somatically

phenotyped, clinical cohorts offers multiple new research
opportunities. Studies of germline-somatic interactions
have been held back by the need to collect both modal-
ities in the same individuals, which has limited the scope
of such analyses to merely hundreds of patients per can-
cer [64]. The availability of germline variation in hun-
dreds of thousands of tumors can enable GWAS-scale
studies of somatic alterations and broaden our under-
standing of tumor evolution. Even merely using existing
tumor sequencing to increase the number of cases
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available for conventional GWAS would be meaningful;
for example, AACR Project Genie has sequenced ~
17,000 lung and ~ 6700 glioma tumors, which would
substantially expand the ~ 30,000 lung cases and ~
12,500 glioma cases in the largest corresponding GWAS
studies that exist to date [39, 40]. Lastly, and perhaps
most importantly, as tumor sequencing is part of routine
clinical care at many institutions, off-target imputation
could be directly incorporated into existing workflows
and greatly accelerate the translation of germline bio-
markers and PRSs to the clinic. To facilitate this re-
search, code for all analyses described here is available in
a repository and deployable pipeline (see the “Availabil-
ity of data and materials” section).

Conclusions
In conclusion, we show that common germline geno-
types and derivative features can be accurately imputed
from tumor-only panel sequencing. Our framework is
publicly available and lays the path for germline studies
from hundreds of thousands of tumors in existing
datasets.
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