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A B S T R A C T

Purpose: Computational modelling may improve the fundamental understanding of various mechanisms of dis-
eases more particularly related to clinical challenges. In this study the effect of remodeling infarct presence in the
left ventricle on the interventricular septal wall is studied using the finite element methods.
Methods: In this study, two rat heart (one model with healthy myocardium and one model with remodeling free
wall and healthy septal wall) with magnetic resonance imaging data was gathered to reconstruct three-
dimensional (3D) rat heart models. 3D data points from Segment® were imported into SolidEdge® for creation
of 3D rat heart models. Abaqus® was used for finite element modeling.
Results: The strain in the healthy interventricular septum of the infarcted left ventricle wall increased when
compared to the healthy interventricular septum in the healthy left ventricle. Similarly, the average stress in the
healthy left ventricle was observed to have increased on the healthy the interventricular septum where the free
wall is subjected to remodeling infarct. When comparing the infarcted models to the healthy model, it was found
that the average strain had greatly increased by up to 50.0 %.
Conclusions: The remodeling infarct in the left ventricle has an impact on the healthy interventricular septal wall.
Even though the interventricular septal wall was modelled as healthy, it was observed that it has undergone
considerable changes in stresses and strains in circumferential and longitudinal direction. The observed changes
in myocardial stresses and strains may result in poor global functioning of the heart.
1. Introduction

Myocardial infarction (MI) is caused by the blockage of the coronary
artery which may further cause the imbalance between oxygen supply and
myocardial demand [1]. Within few minutes after the blockage of the
coronary artery, the contraction function on the myocardium is immedi-
ately compromised and shortly within few hours the myocytes begin to die
[2]. After few weeks the myocytes die and gradually replaced by the
collagen scar tissue formed by fibroblasts. These changes have serious
implication as they begin to compromise the mechanical response of the
myocardium [3]. During the progression of healing infarct in the
myocardium, the depression of global function of the heart sets in. This
may lead to LV remodellingwhichmay ultimately lead to infarct rapture or
heart failure [4]. It has been proven that computational modelling may
improve the fundamental understanding of various mechanisms of dis-
eases more particularly related to clinical challenges [5]. Computational
modelling requires the accurate imaging data and accurate boundary
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conditions to simulate that real situation by utilising complex mathemat-
ical equations. Computational modelling in heart diseases plays an
important role the development of new devices to assist patients suffering
from various diseases [6]. In addition, patient-specific computational
simulation may lead to specific outcomes that may assist in the develop-
ment of therapeutic solutions [7]. Around half of Americans experience
myocardial infarction each year. Moreover, the clinical cardiology tends to
concentrate on the administration of healing or healed infarcts [8]. Hence,
much advance has been accomplished by pharmacological treatments to
counteract or restrict left ventricle remodelling which can prevent
advancement to fully dilated heart failure [9, 10]. While this has been
accomplished by for the most part ex-vivo experiments and MRI studies
[11, 12], there is a need to additionally create and develop the computa-
tional models [13, 14] which will additionally aid in the understanding
how infarcted tissue behaves under different conditions.

Cardiovascular biomechanics relies on upon different heart stages
and might be mutilated by an assortment of cardiovascular conditions.
ay 2019
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Even though the strain distribution can be measured experimentally and
clinically by MRI, computational models can be utilized to quantify the
local wall stresses and strains. In addition to accurate geometries,
constitutive laws that reflect the non-linear elastic behaviour and
boundary conditions that mimic the physiological accuracy become
important. Magnetic resonance imaging (MRI) information were utilized
to make the geometry of the bi-ventricular model of non-infarcted and
infarcted rat heart. The general-purpose software Abaqus® was used to
simulate models subjected to boundary conditions. Transversely
isotropic strain energy function (Fung model) was used to model the
diastolic filling.

In the rat heart, most studies have determined that the remodeling of
left ventricle occurs in the period between 14 and 28 days. In the process
of remodeling ventricle, the structure losses its integrity by decoupling
collagen content [9]. The increase in collagen content in the ventricular
wall may contribute to the increase of stiffness in the remodeling infarct.
During this stage the infarct ensures that the infarcted region loses its
structural integrity and then remodel. Initially, the may show signs of
shrinking first. The shrinkage is understood to also affect the global
functioning of the heart because of lessening of ventricular volume.

The fiber orientation in the infarct region is understood to be affected.
The effect and change of fiber orientation in the affected area is based on
change of collagen content. The change in collagen content and fiber
direction may also contribution to the mechanical strength and behavior
of the infarcted myocardium [15]. Because of changes in the structural
integrity of the myocardium, the cavity dilation occurs and the
compromise in global functioning of the heart also surfaced. To capture
the image of the rat heart, MRI has been used in clinical applications for
several decade [16].

It is reported that presence of fibrotic infarction in the left ventricle
(LV) has adverse effect on the septal wall hence poor functioning of the
heart [17]. This is a follow-up paper looking at the effect of remodelling
infarct on the septal wall in the presence of remodelling infarction. The
current study looks at the effect of remodelling infarct whereas the pre-
vious study observed on the effect of the fibrotic infarct on the healthy
septal. In this case, the septal wall is not exposed to infarct injury but only
the LV. The aim is to assess whether the presence of infarct on the free
wall has a significant effect on the septal wall during passive filling. This
has been achieved by looking at the 3D rat heart model of the healthy and
the infarcted heart model.

2. Materials and methods

In this study the first step was to obtained magnetic resonance im-
aging (MRI) scans. The scans obtained were obtained using a MAGNE-
TOM Allegra 3T MRI scanner (Siemens, Erlangen, Germany) at the
University of Cape Town, Cape Town, South Africa. Ethical clearance was
obtained from the University of Cape Town regarding the MRI experi-
mental studies. The bore of the normal 3T MRI are larger and not suitable
for small animal imaging, hence, the small polarized circular coil of inner
Fig. 1. (a) Considered transmural regions on the septal wall, (b) MRI image of long
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diameter of 70 mm was used to receive and transmit the signal [18]. The
MRI data was processed and imported to Segment [19]. In this case both
left and right ventricles were segmented manually to ensure that good
accuracy is achieve. Several stakes of imagines were obtained from the
MAGNETOM Allegra 3T MRI. The MRI data was segmented from the
short-axis of the rat heart. The segmented data was there exported to
Segment® software designed for heart imagine segmentation [19].
Fig. 1(a) shows the 3D segmented rat heart model with visible remod-
eling infarct in the LV. The segmented data was then exported to
Microsoft Excel in x,y,z coordinates. The SolidEdge® TS5 was then used
to produce 3D CAD rat heart models for finite element modeling
(Siemens PLM Software, Inc.) from the x,y,z data from Segment® soft-
ware as shown in Fig. 1 (b and c). Biventricular FE models of both the
healthy and remodelling models were created using the animal-specific
surface geometries from MRI data and the mesh were generated using
(Abaqus® FEA (D S Simulia. ©Dassault Systemes, Providence, USA,
2007). 10-node tetrahedral elements were used to mesh the ventricles
with approximately 8510 as shown in Fig. 2 (b). The values of material
parameters used in this model are shown in Table 1 [20]. These pa-
rameters were changes during validation processes and were amended as
shown in Table 1. The transmural mesh density was adjusted until the
ventricular volume changed by 5% for a given load. It was found that
three elements are sufficient for accurate ventricular volume calculations
and computational efficiency [21]. During the heart cycle of contraction
and relaxation, the fibre arrangement plays a vital role in the functioning
of the heart [22]. Furthermore, fibre arrangement in the heart wall en-
sures that electrical signals are used for accurate contraction of the heart
[23]. RTO model the myofibre of the heart, myofibre angles a custom
inhouse ORIENT Abaqus© subroutine was used to assign the fibre angle
at each node. This fibre distribution was used throughout the entire
healthy rat heart model including left ventricle (LV), the septum, and RV
free wall. Fiber angles at the infarcted regions were not assigned [9].
Ventricular remodelling and tissue healing after myocardial infarction
are dynamic and simultaneous processes [24]. To apply the boundary
conditions, at the basal position, the nodes were constrained in both the
circumferential and longitudinal directions.

To mimic the heart movement at the base, all elements were left to
have free movement. The inner endocardial pressures of 2.4 kPa and 0.08
kPa were assigned on the cavities of left ventricle and right ventricle,
respectively (See Fig. 2a). User-defined material subroutine in the
explicit FE solver of Abaqus® [25] was used to simulate the nearly
incompressible, transversely isotropic and hyperelastic constitutive
models for passive [20]. The healthy and infarcted material were both
modelled as passive material using the Fung model [26]. The Fung model
is represented by the strain energergy function as follows:

W ¼ 1
2
C
�
eQ � 1

�

Where:
-axis segmentation of the rat heart and (c) Short axis segmentation of rat heart.



Fig. 2. 3D rat heart model created by segmenting the MRI data (a) Endocardial pressure applied on the RV and LV of the 3D rat heart model to mimic passive filling.
(b) 10-node tetrahedral quadratic elements applied on the 3D rat heart model.

Table 1
Fung model material parameters applied on the LV and RV 3D rat heart model to
mimic the mechanical behaviour of passive myocardium [20].This Table shows
the material properties used in the Fung model for modelling the healthy tissue of
the rat heart.

Parameter Fibre strain
coefficient

Cross-fibre strain
coefficient

Shear strain
coefficient

Stress scaling
factor

Constants b1 b2 b3 C (MPa)
Value 9.2 3 3.7 0.002
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Q ¼ bfE2
11 þ bt E2

22 þ E2
33 þ E2

23 þ E2
32 þ bfs E2

12 þ E2
21 þ E2

13 þ E2
31
� � � � ��

Where E11, E22 and E33 are the fibre, cross-fibre and radial strains,
respectively. E23, E12 and E13 are shear strains, transverse plane strains
and the shear strains in the fibre-cross-fibre and fibre-radial planes,
respectively. C is regarded the the material constant of the Fung model.
To model the stiffness of the infarct in the left ventricle, the C was
assigned value of ten times the value of the healthy myocardium. Values
for the material constants b1, b2 and b3 were chosen as 9.2, 3.0 and 3.7,
respectively, based on the previous studies of rat myocardium [20]. The
rat heart 3D model was validated by adjusting the material constant C
until the match of left ventricle and right ventricle end-diastole volumes
matched with that of the MRI data (See Table 2). It should be noted that
the myocardial material properties [27] have been used in previous
biventricular FE simulations of the rat heart.

3. Results

Passive filling was modelled by applying inner pressure on the free
wall and septal wall. The same magnitude of pressure was applied in
healthy (healthy free wall and septal wall) (HFHS) model and infarcted
(infarcted free wall and healthy septal wall) (IFHF) model. The average
Table 2
Fung model material constant c applied for the healthy and remodelling (four-
week infarcted) models. The collagen changes in the infarcted myocardium
stiffens the mechanical behaviour of the materials. To account for the effect of
material behaviour change the scalling factor c is changed to 0.02 MPa in the
infarcted myocardium.

C - Material constant
Healthy heart model

C - Material constant
Remodelling Infarcted model

Healthy model 0.002 MPa n/a
Four-week 0.002 MPa 0.02 MPa
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stresses and strains in the radial, circumferential and longitudinal di-
rections were calculated using selected regions/paths as shown in Fig. 1
(a). The stresses and strains in the radial, circumferential and longitu-
dinal directions are presented in Figs. 3 and 4. Figs. 3 and 4 show a
contour plot in the x-axis (mid-heart) and in the long-axis, respectively.

The graphic shows the stresses and strains of biventricular model of
rat heart of both the HFHS and IFHF models. The radial, circumferential
and longitudinal stresses and strains at epicardium, mid-wall and endo-
cardium of IFHS and HFHS models are presented in Figs. 5 and 6,
respectively. In order to understand the effect of remodelling heart on the
mechanics of septal wall, the average stresses and strains were plotted for
both IFHF and HFHFmodels in Figs. 5 and 6. Generally, for both the IFHF
and HFHS models, the greatest radial stress is observed in the endocar-
dium, the followed by the mid-wall and the smallest radial stress
magnitude was observed in the epicardium (see Fig. 6).

Similarly, in both IFHF (remodelling infarcted rat heart) and HFHS
(healthy rat heart) models, the highest circumferential stress was found
in the endocardium. The smallest circumferential stress was observed in
Fig. 3. Contour plots of end-diastolic strain in long axis of the 3D rat heart
model of the healthy and remodelling (four-week model) heart models. (a)–(b):
Radial strain and (c)–(d): Circumferential strain.



Fig. 4. Contour plots of end-diastolic stress in long axis of the 3D rat heart
model of the healthy and remodelling (four-week model) heart models. (a)–(b):
Radial stress and (c)–(d): Circumferential stress.
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the epicardium (see Fig. 5. As shown in Fig. 5, the highest radial,
circumferential and longitudinal strain in both IFHF and HFHS model
were found in the endocardium. Generally, as shown in Fig. 5, the lowest
radial, circumferential and longitudinal strain were recorded in the
epicardium for both IFHF and HFHS models. The average stresses and
strains for IFHS and HFHS models are calculated by considering region I,
J, K and L in the septal wall. The average stress and strain are shown in
Figs. 5 and 6, respectively. Validation of MRI data and the reconstructed
3D computational models are shown in Table 3.

4. Discussion

The computational modelling of the cardiovascular system has been
further improved by the recent improvement of computer technology
[28, 29]. Electrophysiological and mechanical response of the healthy
and infarcted hearts may be developed by using the virtual heart models
[30]. For decades now, several researchers have studied the effect of
myocardial infarction on the performance of the heart [31]. The
behaviour of wall mechanics due to infarct healing and post infarct
ventricular remodelling were also studied [20, 32, 33, 34, 35, 36, 37, 38].
Fig. 5. End-diastolic stress for healthy (HFHS model) and four-week (IFHS model)
gitudinal stress at paths I, J, K and L. All units in kPa.
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The effect of overload RV interventricular Septum (here referred as septal
wall or mid-wall) have been studied intensively [29]. The current study
has however also assessed in detail the changes in wall mechanics of the
septal wall in presence of an infarct in the LV free wall. The current study
differs with [29] as the main approach was to investigate the effect of
remodelling infarct present on the LV on the septal wall. However,
myocardial fibre stress in healthy control increased due to overloaded
RV. In this study, it was found that both radial and circumferential
stresses in the interventricular septum increased to due remodelling
infarct present in the LV. As pointed out before, the septal wall is not
exposed to infarct injury and healing but remains healthy and functional,
i.e. contractile while the LV infarct region and LV undergoes the stages of
infarct healing and ventricular remodelling. Substantial changes in
strains and stresses have been observed in the septal wall between the
healthy heart and the infarcted heart.

The study of the effect of fibrotic infarct on the healthy interven-
tricular septum during passive filling clearly indicates that the infarct
may compromise the global function if the heart [17]. This current study
however looks at the effect of remodelling infarct on the heathy septal
wall. It is now shown that both fibrotic infarct (as previously reported
[17]) and remodelling infarct (in this current study) has an impact on the
effectiveness and efficiency of the septal wall hence the global function of
the heart. As the scar tissue stiffens, the average strain in all directions
decreased. Hence, the average strain in the healthy tissue was found to be
higher that of the scar tissue (see Figs. 5 and 6). In the process of
remodeling ventricle, the structure losses its integrity by decoupling
collagen content [9]. The increase in collagen content in the ventricular
wall may contribute to the increase of stiffness in the remodeling infarct
[15, 39]. During the process of infarct healing, the collagen structures
changes and new deposits develops in the remodelling infarct. Immidi-
ately after structural changes of the collagen, the mechanical behaviour
of the infarct changes. Additionally, the collagen fibers also emerges form
the epicardium to endocardium. During this stage, the stiffness of the
infarct increases [39].

The effect of myocardial infarction has been studied by various re-
searchers [40, 41]. Various therapies have been suggested to prevent
further progression of the condition [41, 42, 43]. The presented results
show that the infarct size has major influence on the average strain in
radial, circumferential and longitudinal directions. It is clear that the
average strain in the septal wall is greatly influenced by the size of the
infarcted tissue in the free wall (see Fig. 5). Surprisingly, the infarct size
on the free wall does not restrain the septal wall; instead it allows the
septal wall to have greater movement. When comparing the infarcted
models to the healthy model, it was found that the average strain has
greatly has increased by up to 50.0 %. Fascinatingly, in the four-week
model (which has the highest infarct size), the average strain has risen
up to 50.0 %. Generally, it was observed that the average stresses (radial,
circumferential and longitudinal) in the septal wall in the IFHS model,
remodelling infarct models. (a) Average radial (b), circumferential and (c) lon-



Fig. 6. End-diastolic strain for healthy (HFHS model) and four-week (IFHS model) remodelling infarct models. (a) Average radial (b), circumferential and (c) lon-
gitudinal stress at paths I, J, K and L. All units in kPa.

Table 3
Comparison of reconstructed andMRI heart geometries - cavity and wall volumes
and cavity area of LV for healthy and four-week infarct models and Comparison
of error for MRI data and 3D reconstructed heart geometries.

Comparison of reconstructed heart geometries - cavity and wall volumes and cavity
area of LV

Cavity Volume (μL) Cavity Area (mm2) Wall Volume (μL)

(LV only) (LV only) (LV plus RV)

Healthy 73.00 108.7 763.9
Four-week
infarct

186.2 166.5 656.52

Comparison of MRI heart geometries - cavity and wall volumes and cavity area of LV

Healthy 73.56 106.23 765.67
Four-week
infarct

188.62 168.54 650.52

Comparison of error 3D reconstructed heart geometries and MRI data

Healthy 0.81 % 2.36 % 0.24 %
Four-week
infarct

1.30 % 1.22 % 0.92 %
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have higher magnitude when compared to the septal wall in the HFHS
model) (see Fig. 5).

The MRI data was used to develop the biventricular rat heart model.
To simulate the end-diastolic pressure, the constant pressure was applied
on the ventricular cavity of the left ventricle and right ventricle. Because
of the stiffening of scar due to the infarct, the free wall becomes subjected
to less strain. The less strain or movement of the free wall contributed to
the high strain of the interventricular septal wall. This is because the
myocardial energy if forced to absorb the energy impact of the high
stiffness of the free wall.

It is concluded that after infarction, the septal wall works much
harder than it used to do due to the restrain movement on the free wall.
These findings have practical implications as when the free wall stretches
beyond its limit, the wall rapturing may occur. Since infarct rigidity and
collagen content increment in parallel among the fibrotic stage, it ap-
pears glaringly evident that collagen content is one essential determinant
of the mechanical properties of the healing infarct amid this stage.

In this study, the infarcted tissue has been found to be stretching in
circumferential and longitudinal directions. Infarct extension is a
generally perceived component of post-infarction remodelling that re-
lates to more abysmal clinical results and has been focused by various
developed therapies, treatments and rehabilitations. Utilizing a finite
element model, we exhibit that the stability between scar hardening
because of collagen aggregation and increased wall stresses because of
infarct dilution can deliver either extension or compaction in the
5

pressurized heart and that loaded dimensions are significantly more
delicate to changes in thickness than in stiffness or hardening.

5. Conclusions

The 3D biventricular rat heart model was developed. Fung model was
utilised in assessing the effect of remodelling infarct present on the left
ventricle in the healthy interventricular septal wall. The stresses and
strains in the circumferential and longitudinal directions were assessed
on healthy and remodelling heart model at end-systole. In this study, the
interventricular septum is considered heathy by the left ventricle (free
wall) is subjected to remodelling infarct. The remodelling infarct in the
left ventricle has an impact on the healthy interventricular septal wall.
Even though the interventricular septal wall was modelled as healthy, it
was observed that it has undergone considerable changes in stresses and
strains in circumferential and longitudinal direction. The observed
mechanism may result in poor global functioning of the heart. Finite
Element Modelling (FEM) tool is efficient in the understanding of various
mechanisms of cardiovascular diseases.
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