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Kübra Nur Şahi̇n a, Muhammed Sutcu b,* 

a Abdullah Gül University, Faculty of Engineering, Industrial Engineering, Department, Kayseri, Turkiye 
b Gulf University for Science and Technology, College of Engineering and Architecture, Engineering Management Department, Mishref, Kuwait   

A R T I C L E  I N F O   

Keywords: 
Sustainable energy 
Decision models 
Information theory 
Copulas 
Deep learning 

A B S T R A C T   

In the face of environmental degradation and diminished energy resources, there is an urgent 
need for clean, affordable, and sustainable energy solutions, which highlights the importance of 
wind energy. In the global transition to renewable energy sources, wind power has emerged as a 
key player that is in line with the Paris Agreement, the Net Zero Target by 2050, and the UN 2030 
Goals, especially SDG-7. It is critical to consider the variable and intermittent nature of wind to 
efficiently harness wind energy and evaluate its potential. Nonetheless, since wind energy is 
inherently variable and intermittent, a comprehensive assessment of a prospective site’s wind 
power generation potential is required. This analysis is crucial for stakeholders and policymakers 
to make well-informed decisions because it helps them assess financial risks and choose the best 
locations for wind power plant installations. In this study, we introduce a framework based on 
Copula-Deep Learning within the context of decision trees. The main objective is to enhance the 
assessment of the wind power potential of a site by exploiting the intricate and non-linear de-
pendencies among meteorological variables through the fusion of copulas and deep learning 
techniques. An empirical study was carried out using wind power plant data from Turkey. This 
dataset includes hourly power output measurements as well as comprehensive meteorological 
data for 2021. The results show that acknowledging and addressing the non-independence of 
variables through innovative frameworks like the Copula-LSTM based decision tree approach can 
significantly improve the accuracy and reliability of wind power plant potential assessment and 
analysis in other real-world data scenarios. The implications of this research extend beyond wind 
energy to inform decision-making processes critical for a sustainable energy future.   

1. Introduction 

In light of mounting concerns over environmental degradation and the finite nature of traditional energy sources, the quest for 
clean, affordable, and sustainable energy has become an urgent global priority. At the forefront of this imperative is the energy sector, 
the largest contributor to global greenhouse gas emissions, accounting for approximately 73.2% (see Fig. 1 

Given the central role of the energy sector, it is clear that transformative action is essential to reduce its negative impact on the 
environment. Strategies aimed at reducing emissions, switching to renewable energy sources, and improving energy efficiency are of 
paramount importance. In addition, encouraging innovation and implementing sound policies can further advance the energy sector 
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towards a more sustainable future. 
Wind energy has garnered increasing attention as a viable solution in this endeavor, especially given the pressing need to combat 

climate change and transition towards renewable energy sources. As the world seeks to reduce its reliance on fossil fuels and embrace 
cleaner alternatives, wind power has emerged as a key player in the global shift towards renewable energy. Its significance is 
underscored by its crucial role in helping nations meet ambitious targets set forth in milestone agreements such as the Paris Agreement, 
the Net Zero Target by 2050, and the UN 2030 Sustainable Development Goals (SDGs), notably SDG-7, which focuses on ensuring 
access to affordable, reliable, sustainable, and modern energy for all. 

Increasing the proportion of wind energy in the energy production mix and effectively utilizing this resource, wind power potential 
assessment is a fundamental step. Due to the variable and intermittent nature of wind energy, it is essential to assess the potential of a 
site for wind power generation, which offers crucial analysis for decision-makers in terms of financial risk evaluation [2]. This 
evaluation is instrumental in selecting optimal sites for wind power plants and determining their financial and technical feasibility. 
Therefore, comprehensive and reliable wind power assessments are indispensable for the successful development and operation of 
wind power plants [3]. These assessments not only ensure the efficient utilization of wind resources but also contribute to the sus-
tainable growth of wind energy as a key component of the global renewable energy landscape. With these tools analyzing the output 
characteristics of wind power emerges as a strategic and effective response to the inherent uncertainties associated with wind energy. 
These tools involve a thorough examination of the patterns and behaviors in power generation, empowering stakeholders to devise 
resilient strategies for risk mitigation and enhanced optimization of energy production [4–7]. 

The assessment of wind power output (Pw) stands as a critical determinant for evaluating the technical potential and financial 
feasibility of wind power plants [8]. Furthermore, recognizing that the fluctuation in wind power output is attributed to changes in 
wind speed, precise determination of the distribution and fluctuation characteristics of wind speed within the wind power plant 
becomes instrumental for a comprehensive understanding of its overall output [9–11]. When it comes to assessing the potential of wind 
energy, several techniques are commonly employed, including statistical time series models, distribution fitting methods such as the 
Weibull distribution, and various estimation models [12–16]. 

Given the unpredictable nature of the factors influencing wind energy production, it becomes essential to employ multivariate 
analysis techniques. Through multivariate analysis, which accounts for the interactions among diverse factors, a more comprehensive 
understanding of wind patterns and their behavior can be attained [17]. These advanced analytical methods not only enhance the 

Fig. 1. Global greenhouse gas emissions by sector. Adopted from [1].  
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accuracy of wind power potential assessments but also contribute to informed decision-making processes in the development and 
operation of wind energy projects. 

In the analysis of wind power plant energy potential in the literature, wind-related meteorological uncertainties are often treated as 
completely independent variables, and the joint probability distributions of these uncertainties are constructed using approaches such 
as the isotropic Gaussian distribution [18], anisotropic Gaussian distribution [19], and anisotropic logarithmic Gaussian distribution 
[20], among others. However, these approaches have limitations because meteorological uncertainties are not inherently independent. 
While the techniques employed in the literature have provided valuable insights, they may not fully capture the complex dependencies 
and non-linear interactions present in wind data, leading to limitations in accuracy and reliability. Consequently, there is a need for 
more advanced methods that can better account for the interconnected nature of meteorological variables, improving the accuracy of 
wind power potential assessments and enhancing the reliability of wind energy projects. 

Copulas, among multivariate techniques, have garnered significant attention in recent research due to their ability to model 
intricate dependence structures. Copulas provide a flexible, modular possibility for constructing multivariate distributions that allows 
for the separation between the specification for the marginals and the specification of the dependence structure. Their versatility has 
led to widespread applications in diverse fields such as finance, risk management, rainfall analysis, drought analysis, and energy 
[21–24]. 

Concurrently, in multivariate modeling and analysis, the “dependence tree” approach is utilized to evaluate dependence measures 
hierarchically [25–28]. However, integrating multivariate dependencies into a decision tree is generally computationally intensive, as 
generating conditional distributions for each branch poses a substantial challenge [29]. This computational complexity is further 
exacerbated when the marginal distributions of the variables belong to different families, making the generation of conditional dis-
tributions even more demanding. In such cases, specifying marginal distributions of each variable and employing copulas to compute 
joint distributions is a practical approach to describing the hierarchical structure of multivariate dependence. Despite the potential 
benefits, there has been limited exploration of copula applications in discrete probability trees within decision analysis [29]. 

Furthermore, in the literature, the application of multicriteria decision-making (MCDM) models, notably AHP (Analytical Hier-
archy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Or-
ganization Method for Enrichment Evaluation), ELECTRE (Elimination Et. Choice Translating Reality), and Fuzzy has been widespread 
for assessment of wind energy site. Studies by Emeksiz and Demirci et al. [30] in Turkey, Şahin et al. [31] in the Netherlands, Solangi 
et al. [32] in Pakistan, and Islam et al. [33] in Bangladesh exemplify the utilization of these methods to assess various criteria for 
identifying optimal locations for wind power plants. However, alongside overseeing interdependencies among critical factors, the 
literature underscores challenges in MCDM models assuming linear relationships between variables. This assumption has the potential 
to lead to suboptimal site assessment, emphasizing the need for advanced methodologies that can capture the non-linear dynamics 
inherent in wind energy production. Addressing these limitations is imperative to ensure accurate and robust decision-making pro-
cesses in selecting wind energy sites. 

The copula-based dependent tree approach can be an effective and practical approach to statistically representing the multivariate 
dependence structure of wind data. The most important advantages of this approach are that it is copula-based and each marginal 
distribution is added to the model separately as a decision tree. The decision tree also allows the relationship between model pa-
rameters to be integrated into the model in a binary fashion. In addition, although the distributions of the variables are continuous, the 
decision tree makes it easier for the model to work because they can be integrated into the model in a discrete form. Meanwhile, in 
order to estimate the wind power potential of a site, there is a need to develop a model to generate wind farm power outputs for each 
branch of the dependent tree. Therefore, in that study, a long short-term memory (LSTM) architecture was adopted for this purpose. 

Using multivariate analysis, it is possible to gain a better understanding of the relationships among meteorological variables. 
Despite the intricate nature of interactions between these variables, it is imperative to determine the joint distributions of the variables 
and their conditional distributions, as well as to estimate the power output values, for the assessment of wind power plant potential. 
Nevertheless, earlier methods have exhibited limitations in terms of their effectiveness and computational complexity. To address this 
challenge, we have developed a copula-deep learning-based multivariate modeling framework. The primary objective of this study, 
therefore, is to present a comprehensive and robust framework for the evaluation of wind power plant potential, capable of capturing 
complex dependencies and patterns in the data while leveraging the capabilities of deep learning. By employing this framework, 
energy stakeholders will be empowered to make more informed decisions regarding the planning, design, and operation of wind 
energy systems. 

The main contributions of the study can be summarized as follows: (1) this study challenges the prevalent practice of assuming 
independence among meteorological variables. This assumption has traditionally been employed due to the complexity and 
computational burden associated with defining a multivariate joint distribution. In contrast, the research adopts a copula-based 
dependence structure, which allows for the incorporation of intricate and nonlinear dependencies and patterns that are often over-
looked in conventional analyses. By doing so, the study enriches the understanding of the interrelationships among meteorological 
variables, offering a more nuanced perspective on their collective influence, (2) introducing an innovative approach that integrates 
Copula and Deep Learning within decision trees for assessing the energy potential of wind power plants at specific locations. This 
fusion methodology represents a novel advancement in the field, as it combines the strengths of Copula-based modeling in capturing 
complex dependencies with the powerful predictive capabilities of Deep Learning algorithms. By applying this approach, the study 
aims to provide a more accurate and comprehensive assessment of wind power plant potential, considering the inherent uncertainties 
associated with meteorological variables.; and (3 the findings of this research are expected to have significant practical implications for 
the wind energy sector. By offering insights into the techno-economic feasibility of wind power projects, the study can inform decision- 
making processes for policymakers and stakeholders involved in wind power plants. Furthermore, the research outcomes can serve as a 
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valuable decision support mechanism, enabling stakeholders to make informed choices regarding the planning, design, and operation 
of wind energy systems. Ultimately, the study aims to contribute to the effective utilization of wind energy as a sustainable and 
abundant resource. In summary, the research makes substantial contributions to the field by challenging existing assumptions, 
introducing innovative methodologies, and offering practical insights for the advancement of wind energy technologies and practices. 

The rest of the paper is organized as follows: Section 2 discusses the Copula-LSTM based decision tree framework. The imple-
mentation of the proposed framework and the performance analysis are provided in Section 3. Finally, Section 4 concludes this paper. 

Fig. 2. The flowchart of proposed methodology.  
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2. Methodology 

The main steps of the proposed methodology are data analysis, feature selection, identifying the most suitable marginal probability 
distributions, modeling multivariate distributions with copulas, parameter estimation for the underlying copula, copula-based tran-
sient tree structure, inverse marginal transformation, and LSTM neural networks. The flowchart of the proposed methodology is shown 
in Fig. 2. 

2.1. Data analysis 

The correlations between meteorological conditions are investigated to gain a comprehensive understanding of their interactions. 
Tests of Spearman, Kendall [34] and Pearson [35] are applied to measure the dependencies between the variables; temperature, 
humidity, pressure, wind speed, wind gust, and wind bearing. 

The relationships between meteorological conditions are investigated through a correlation analysis, and both linear and mono-
tonic dependencies are discovered. Temperature and humidity, as well as temperature and pressure, have negative correlations, 
highlighting their interconnectedness. Furthermore, the positive monotonic relationship between wind speed and wind gust highlights 
the consistency of their variation. 

Significant relationships emerged from the analysis. Notably, a negative correlation was observed between temperature and hu-
midity (Spearman’s ρ = − 0.620, p < 0.05), indicating their interconnectedness. Similarly, a negative correlation was found between 
temperature and pressure (Kendall’s τ = − 0.454, p < 0.05), highlighting the interplay between these meteorological factors. 

Additionally, a positive monotonic relationship surfaced between wind speed and wind gust (Pearson’s r = 0.907, p < 0.05), 
suggesting a consistent variation in wind speed corresponding to changes in wind gust. 

Fig. 3. Copula-based tree structure  

K.N. Şahi̇n and M. Sutcu                                                                                                                                                                                             



Heliyon 10 (2024) e28270

6

To deepen the interpretation of these correlations, effect size measures were calculated. For example, Cohen’s d for the negative 
correlation between temperature and humidity yielded d = − 0.612, indicating a moderate effect size. Likewise, for the correlation 
between temperature and pressure, Kendall’s effect size τ-b was calculated as τ-b = − 0.616, signifying a moderate effect. 

These effect size measures enhance the understanding of the correlations, providing valuable insights into the magnitude and 
practical significance of the observed meteorological dependencies. The findings contribute to the robustness and applicability of the 
research by offering nuanced insights into the relationships among meteorological variables. However, for a more comprehensive 
exploration of complex dependence structures, copulas provide a versatile framework. They excel in modeling multivariate de-
pendencies beyond linear correlations, capturing intricate patterns such as tail dependencies, asymmetric relations, and non- 
monotonic behaviors. Incorporating copulas into the analysis further refines the understanding of meteorological dependencies, 
acknowledging the nuanced nature of these relationships and contributing to the depth and applicability of the research findings. 

2.2. Feature selection and identifying the most suitable marginal probability distributions 

In the context of the dependent decision tree approach, feature selection is essential to identify the most relevant variables that 
significantly contribute since it helps to reduce the complexity of the model and enhance its performance. When the number of 
variables increases, the depth of the decision tree grows linearly, but the number of branches grows exponentially with the number of 
features. 

Forward selection, backward elimination, lasso regularization, decision tree importance, recursive feature elimination, and mutual 
info techniques are used in this study to reduce the computational complexity of the model and determine the most informative set of 
features. Feature selection through various techniques followed by a voting approach is used as a tool to improve model performance. 
The voting approach aggregates the selection of the individual feature selection techniques. The ensemble of various feature selection 
techniques with majority voting helps in making robust predictions, reducing overfitting, and improving the model’s generalization 
performance. With this approach, the set of selected features that is likely to capture relevant information while minimizing 
computational burden is determined. 

In addition, to accurately capture the inherent characteristics of a variable, deriving the best-fitted marginal probability distri-
bution is crucial. The evaluation metrics mainly used to measure the fitting performance of the theoretical distribution are the Root 
Mean Squared Error (RMSE), Mean Squared Error (MSE), Kolmogorov-Smirnov, and Chi-square tests. In that study, MSE is used to 
evaluate the fitting performance of the distribution. 

2.3. Modelling multivariate distributions with copulas 

In recent years, there has been growing interest in copula models to examine the structure of interdependence between variables in 
a variety of research fields such as energy, medical science, banking, and economics. Copulas are powerful statistical tools to develop a 
dependent structure of multivariate random variables where the marginal distributions of random variables are independently 
determined. The term “Copula” was first introduced by Sklar, in 1959 [36]. The proposed idea is that a joint distribution can be 
expressed as a function of the marginal distributions [36]. Variations in the correlation of the variables in different parts of marginal 
distributions can be explained by copula models [37]. Mathematically, it can be expressed as 

C( F1(x1),F2(x2), ..,Fn(xn))=F(x1, x2,…, xn) (1)  

and, 

F(X1)=U1,F(X2)=U2, ..,F(Xn)=Un (2) 

Thus, 

C(u)=C(u1, u2,…, un)=P(U1 ≤ u1,U2 ≤ u2,…,Un ≤Un) (3)  

where x = (x1, x2, .., xn) ∈ Rn and U = (U1,U2,..,Un) is a n-dimensional random vector with Ui ∼ Unif(0,1),∀i = 1,2,…,n. This is well- 
known Sklar’s Theorem (1) enables us to express any multivariate distribution in terms of its marginal distributions and a copula that 
captures dependencies between the variables. If X is a continuous random vector, then the copula C is unique [36]. 

With the cumulative distribution function of a joint distribution, the joint probability distribution function (PDF) can be derived as 
follows: 

f (x1, x2,…, xn)=
∂nF(x1, x2,…, xn)

∂x1∂x2…∂xn
=

∂nC( F1(x1),F2(x2), ..,Fn(xn))

∂F1(x1)∂F2(x2)..∂Fn(xn)

∂F1(x1)

∂x1

∂F2(x2)

∂x2
…

∂Fn(xn)

∂xn
= c( F1(x1),F2(x2), ..,Fn(xn))

∏n

i=1
fi(xi)

(4) 

where fi(xi) denotes the marginal pdf of Xi and c( F1(x1), F2(x2), .., Fn(xn)) denotes the copula density that is obtained from the 
partial derivative of the copula. Thus, any joint probability density function can be written as the product of its marginal probability 
density functions. Detailed information about copulas in general can be found in the books by Nelsen [38]. 

In the literature, numerous families of copulas emphasizing various distributional properties have been proposed, such as the 
Archimedean, Elliptical, Placket families. These copula families include a wide range of patterns of tail dependences and various types 
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of asymmetries. The well-known elliptical copulas are the Gaussian and Student’s t copula which represent symmetrical tail de-
pendencies. In addition to elliptical copulas, the most known Archimedean copulas are Frank, Gumbel, and Clayton copulas. These 
types of copulas capture various types of tail dependence. The Frank is symmetric with no tail dependence [39], while the Gumbel 
copula exhibits upper-tail dependence [40], the Clayton copula has lower-tail dependence [41]. Table 1 illustrates the mathematical 
descriptions of the copula families used in this study. 

The characteristics of copula theory allow for the construction of decision tree structures that incorporate the dependence structure 
obtained by copulas and marginal densities. A transient probability tree can be created based on copulas, which can capture various 
types of multivariate dependencies. After determining the marginal distributions of the variables, the conditional distributions of each 
branch of the dependent decision tree can be obtained. 

The generation of random uniform variables from multivariate copulas is performed to build a transient probability tree. This 
process can be called sampling. One approach for sampling a uniform random variable (u1, u2,…, un) from n-dimensional normal 
copula is to use Cholesky decomposition for the generation of the uniform variables [42]. After the Cholesky factorization process is 
applied to the correlation matrix Σn; i.e., Σn = AA′, we can generate n independent z = (z1, z2,…, zn) and x = (x1, x2,…, xn) which is Az 
[43]. N-dimensional t-copula can be obtained similarly with parameters Σn and d. For Archimedean copulas, as a first step to generate 
two-dimensional random variable (u1,u2), two independent uniform random variables u1 and w will be generated. To obtain u2 value 
using the quasi-inverse function of conditional distribution P(U2 ≤ u2|U1 = u1) that is u2 = C− 1

2|1(w|u1). We calculate the conditional 
copula as following, 

C2|1
(
u2|u1)=

∂C2(u1, u2)

∂u1
(5) 

For multivariate case (n-dimensional, n ≥ 3) u1 and w1,w2,…,wn− 1 are generated as bivariate case and u2, u3,…, un random var-
iables are obtained by 

u2 = C− 1
2|1(w1|u1)

u3 = C− 1
3|1,2(w2|u1, u2),

un = C− 1
n|1,2,…,n− 1(wn− 1|u1, u2,…, un− 1),

where 

Cn|1,2,…,n− 1(un|u1, u2,…, un− 1)=P(Un ≤ un|U1 = u1,U2 = u2,…,Un− 1 = un− 1)=

(
∂n− 1Cn(u1, u2,…, un)

)/
(∂u1∂u2…∂un− 1)

(
∂n− 1Cn− 1(u1, u2,…, un− 1)

)/
(∂u1∂u2…∂un− 1)

(6) 

Let considers the bivariate Archimedean copula case. For any continuous random variables X1 and X2 to generate u2 given that u1 =

P(X1 ≤ x1) = α1, we need to obtain the conditional distribution of X2 given X1 = x1 from the partial derivative of the copula function. 
For each given percentile P(X2 ≤ x2|X1 = x1) = α2 and ∂C(u1, u2)/∂u1 = Cu1 (u2) = α2 then, u2 = C− 1

u1
(α2). Thus, with unconditional and 

conditional percentile values obtained by using copula functions, a transient probability tree structure can be built [29]. 

Table 1 
Formulas of elliptical and archimedean copulas.  

Family Mathematical Expression Partial Derivative of the copula w.r.t u1 u2 

Normal 
Copula 

Cn = (F1(X1),F2(X2)) = φr(φ− 1(F1(X1)),

φ− 1(F2(X2)))
φ
(φ− 1(u2) − rφ− 1(u1)

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√

)
u2 = φ(rφ− 1(α1) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2φ− 1(α2)

√
)

t-copula CT = (F1(X1),F2(X2)) = tr,v(t− 1
v (F1(X1)),

t− 1
v (F2(X2)))

tr,v
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v + 1

v + (t− 1
v (u1))

2

√

.
t− 1
v (u2) − rt− 1

v (u1)
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√

)

u2 = tv
(

rt− 1
v (α1) +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v + (t− 1
v (u1))

2

v + 1

√

t− 1
v+1(α2)

)

Clayton 
Copula CClayton(u1,u2) = (u− θ

1 + u− θ
2 − 1)

− 1
/

θ u− θ− 1
1 (u− θ

1 + u− θ
2 − 1)

− 1/θ − 1 
u2 =

((
α
− θ/1 + θ
2 − 1

)
α− θ

1 + 1
)− 1

/

θ 

Gumbel 

Cgumbel(u1,u2) = exp
{

−

[(− ln u1)
θ
+ (− ln u2)

θ
]

1
/

θ}

∂C
∂u1

(u1 , u2) =
φ− 1(1)(c2)

φ− 1(1)(c1)
where 

c1 = φ(u1) = (− ln (u1))
θ 

c2 = φ(u1) + φ(u2)

= (− ln (u1))
θ
+ (− ln (u2))

θ and φ− 1(1)(t) = −

1
θ
e− t

1
/

θ(
t
1
/

θ)1− θ 

The value can be obtained by solving the 
given equations. 

Frank 
CFrank(u1,u2) = −

1
θ

ln
(

1 +

(e− θu1 − 1)(e− θu2 − 1)
e− θ − 1

)

(e− θu2 − 1)(e− θu1 )

(e− θ − 1) + (e− θu1 − 1)(e− θu2 − 1) u2 = −
1
θ

ln
(

1 +
(e− θ − 1)α2

e− θα1 − (e− θα1 − 1)α2

)
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2.4. Parameter estimation for the underlying copula 

Since the dependency structure is modeled by copulas, specific parameters of copulas should be estimated. The methods that are 
proposed to estimate copula parameters are the method of moments (MOM) [44] known as inversion of Kendal’s τ, inversion of 
Spearman’s rho, canonical maximum likelihood (CML), minimum distance method (MDM) [45–47] and maximum pseudo-likelihood 
(MLP) [48]. 

For a normal copula, the product moment correlation r should be estimated. To estimate the relationships between the product 
moment correlation r for the normal copula Spearman’s rank order correlation ρ or Kendall’s rank order correlation τ can be used [49]. 

r= 2 sin
(πρ

6

)
and r= 2 sin

(πτ
2

)
(7)  

For the Archimedean family, using the MOM approach, the parameters are estimated using the relationship between the Kendall’s τ 
and the generator function φ of the copula [44]. 

τ= 1 +

∫ 1

0

φ(t)
φ′(t)

dt (8)  

The relationship between Kendall’s rank order correlation τ and θ is summarized in Table 2 [38] (see ). 

2.5. Copula-based transient tree structure 

Discrete approximations to conditional probability distributions with the underlying copula are used to construct a probability tree 
(Fig. 3). Discretization techniques are mostly used in decision analysis because using the true distribution is computationally costly. 
Using discretization techniques in the decision analysis approach enables us to estimate the expected value of the decision without any 
prior knowledge about the probability distribution function of any uncertainties. There are many methods for discretization in the 
literature such as McNamee-Celona Shortcut (MCS) [50], Extended Swanson-Megill (EMS) [51], Extended Pearson-Tukey (EPT) [52], 
Zaino-D’Errico “Improved” (ZDI) [53], Zaino-D’Errico-Tagichi (ZDT) [54] and Miller-Rice One Step (MRO) [55]. The mentioned 
methods all use the 50th percentile, and they differ in the distance to the mean and the probability values (Table 3. This study focuses 
on MCS, which is widely used. 

The application of the MCS method at each layer of the tree is necessary for transient tree structures because the continuous random 
variables are required to be discretely represented. We use the 10th, 50th, and 90th percentiles, which correspond to realizations of 
0.25, 0.5, and 0.25 to discretize each of the n features X1,X2,…,Xn. The dependent uniform random variables that are used as transient 
probabilities in the tree are calculated using copula functions. For instance, the dependent uniform random variable u2 is computed 
based on the unconditional percentile value u1 and the conditional percentile value for the second layer α2 that were obtained after the 
discretization of the second feature X2 using the chosen copula function that is listed in Table 1. Iteratively using this computational 
process, a complete transient tree structure is generated. Since the MCS method is used in discretization, the underlying marginal 
distributions of the feature are not used in this step. 

2.6. Inverse marginal transformation 

After the construction of the copula-based transient tree structure, we proceed with the stepwise inverse transformation after 
obtaining estimates for the multivariate joint probabilities for each quantile combination, which allows us to investigate the depen-
dence structure across various subsets of the complex data sets. The inverse CDF transformation converts the copula generated uniform 
u values to their original scales and distributions based on their marginal distributions. As a result, we obtain discrete approximations 
to the original variables. We construct a complete multivariate dependent tree structure by applying the inverse transformation to the 
transient tree, which provides a discrete approximation for the conditional distributions. 

Table 2 
The relation between Kendall’s τ and θ for archimedean copula.  

Copula Type φ(t) Kendall’s Rank Order Correlation (τ) Range of θ 

Clayton (t− θ − 1)/θ θ
θ + 2 

( − 1,∞) − [0]

Frank 
− log

(exp(tθ) − 1
exp(θ)

)
1+ 4θ− 1(D∗

1(θ) − 1) ( − ∞,∞) − [0]

Gumbel − log (t)θ θ − 1
θ 

[1,∞)

D∗
1 =

1
θ

∫θ

0 
t

et − 1      
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To generate discrete approximations of X1,X2,…,Xn , the inverse transformation needed to be applied to each level of u1,u2,…,uk. 
In situations where expressing conditional density is difficult and computationally expensive, the dependent tree approach is a very 
useful and practical representation of the conditional relationship between the variables. 

2.7. Long short-term memory (LSTM) neural networks 

LSTM is a special type of recurrent neural network that can handle the vanishing gradient problem of the recurrent neural network 
(RNN). The LSTM neural networks can capture long term dependencies and the tendencies of the sequential dataset [56]. Unlike the 
traditional RNN, LSTM networks consist of three layers; the input layer, the recurrent hidden layer, and the output layer (see Fig.4). 
The main objective of LSTM is to transmit and store information in the memory over a long period of time with the use of special units 
that are forgotten, input, update, and output gates. The series of gates is used by LSTM neural networks to control the information flow 
in a data sequence. 

The forgotten gate ( ft ) layer calculates the information that is needed to be forgotten. It takes the output of the previous layer 
( ht− 1 ) and the input ( Xt ) and calculates ft function value. The input gate determines the information that will be stored in the 
current memory cell Ct. Lastly, the update gate updates the cell state, and the output gate computes the output information. The 
functions of the gates can be expressed mathematically as follows: 

ft = σ
(
Wf • [ht− 1, xt] + bf

)
(9)  

it = σ(Wi • [ht− 1, xt] + bi) (10)  

C̃t = tanh(WC • [ht− 1, xt] + bc) (11)  

Ct = ft∗ Ct− 1 + it ∗ C̃t (12)  

ot = σ(Wo • [ht− 1, xt] + bo) (13)  

Table 3 
Discretization methods.  

Discretization Method Discretization Values Probabilities 

ESM 10th, 50th, 90th 0.3, 0.4, 0.3 
MCS 10th, 50th, 90th 0.25, 0.5, 0.25 
EPT 5th, 50th, 95th 0.185, 0.63, 0.185 
ZDI 4.2nd, 50th, 95.8th 0.167, 0.667, 0.167 
ZDT 11th, 50th, 89th 0.333, 0.333, 0.333 
MRO 8.5th, 50th, 91.5th 0.248, 0.504, 0.248  

Fig. 4. Architecture of an LSTM unit  
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ht = ot∗tanh ( Ct) (14)  

where Wf ,Wi,Wo are the weight matrices of forgotten gate, input gate, and output gate, bf ,bi, bo are the bias terms of forgotten gate, 
input gate and output gate and σ is the sigmoid activation function, ht− 1 the output value at the previous step, C̃t is the new candidate 
state and xt is the input at the current step. 

The selection of parameters for any machine learning algorithm has a significant impact on how well it performs. The best set of 
parameters is determined with hyperparameter optimization. Hyperparameter optimization, which significantly affects model per-
formance and convergence, is crucial to the success of LSTM neural networks. Some hyperparameter optimization techniques adapted 
for LSTM neural networks include grid search, random search, genetic algorithm, Bayesian optimization, and particle swarm opti-
mization. Thus, we applied grid search to investigate the hyperparameters that control the behavior of LSTMs, such as the units, 
learning rate, activation function, number of epochs, and batch size. The grid search technique extensively evaluates the model 
performance for all possible combinations of a predefined set of hyperparameters. The performance of the grid search is evaluated 
using cross-validation on the training set. The predefined hyperparameter set is determined as follows: [units = 50, 100, 150 ], 
[activation function = relu,elu ], [learning rate = 0.001,0.01,0.1 ], [batch size = 32,64,128], [epochs = 50,100,200]. The optimal set of 
parameters with the highest accuracy is identified after the grid search algorithm has been applied. 

Pw =
1
2

ρπR2
r Cpw3 (15) 

The power output of a single wind turbine can be calculated with the well know Equation (15) where ρ, Rr,Cp, and w are 
respectively the density of air, the rotor radius, the power coefficient of the proportion of available power, and wind speed. Even so, the 
wind power output of a turbine, however, cannot be precisely estimated with the given equation due to the variable nature of wind and 
complex dynamics within and between turbines. In this study, LSTM neural networks were used to capture short and long-term de-
pendencies and then to estimate wind power output using the data produced by the Copula-based dependent tree for the branches. A 
copula-generated dataset is processed by employing an LSTM model to gain more insights. This combination enables a more thorough 
understanding of complex data structures, making it especially useful in applications such as financial modeling, risk assessment, and 
time-series analysis. After the output value is generated for each branch, the expected value for the tree is calculated for each type of 
copula structure. 

3. Empirical results 

In this study, the proposed Copula-LSTM based decision tree framework for assessment of wind power plant energy potential was 
evaluated using real wind power plant data from Turkey. The hourly measured power output of the power plant as well as meteo-
rological data from January 2021 to December 2021 are included in the study. The features in the dataset and their units are given in 
Table 4. 

To reduce the computational burden of the model, a majority voting strategy is applied after the feature selection methods are used. 
Table 5 illustrates votes for every feature selection technique used in the study. The feature votes were used to determine whether the 
feature should be included in the final subset. If the majority (i.e., more than half) of the feature selection methods choose a given 
feature, then the feature is included in the final feature set. Thus, as the final set of features humidity, wind speed, and wind gust are 
obtained, which will be denoted by X1,X2, and X3 respectively. 

A multivariate distribution can be constructed with marginal distributions and a copula function that shows the dependence 
structure. The marginal densities for the variables must be derived to build a copula-based joint density that will be used to estimate 
conditional probabilities. The marginal distributions Normal, Gamma, Exponential, Lognormal Erlang, Weibull, and Beta were used. 
The mean squared error used to evaluate the goodness of fit of the distribution mathematical expression can be written as follows, 

MSE= E
[
Xo − Xp

]2
=

∑N

i=1

[
Xo(i) − Xp(i)

]2

N
(16)  

where N is the number of values, Xo is the observed value and Xp denotes obtained value from the distribution. The selected distri-
butions for the variables are given in Table 6. 

Since humidity, wind speed, and wind gust are approximated as different distributions in modeling their joint distribution, there 

Table 4 
Feature descriptions.  

Features Unit 

Temperature ◦C 
Humidity % 
Pressure hPa 
Wind Speed m/s 
Wind Gust degree 
Power Output kWh  
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are limited modeling approaches available (Fig. 5). One of the approaches as mentioned earlier is using copula theory. Thus, the joint 
density function is constructed as a multivariate generalization of the marginals. 

For modeling various types of dependencies, normal copulas from the elliptical copula family as well as Clayton and Frank copulas 
from the Archimedean copula family have been applied. Since parametric families of copulas are considered in the present study to 
build dependence structures between variables, the parameters of the specified copulas were estimated with inversion of Spearmen’s 
rho and MOM approaches. The normal copula is generally parametrized in terms of product-moment correlation. The relation between 
product moment correlation and Spearman’s rank order correlation is used to determine the normal copula correlation. For Archi-
medean copulas, the copula correlation is determined by the parameter θ. The value of θ can be easily obtained by the relation between 
θ and τ given in Table 2. The Kendall’s τ is determined from the observations, whose mathematical expression given as 

τN =

(
N
2

)− 1

(Pn − Qn) (17)  

where Pn denotes the number of concordant pairs and Qn denotes the number of discordant pairs [57]. τN is the estimate of τ. The 
copula correlation parameters are critical since they enable us to shape the copula according to the unique structure of the data, which 
is essential for many statistical and financial applications. Using the specified copula and its specified parameters, a decision tree is 
modeled with discrete approximations to the conditional probability distributions at each branch of the tree. Figs. 6–8 illustrates the 
potions of constructed transient copula trees for the uniform random variables u1,u2, and u3. The trees are constructed as follows: First, 
u1 was estimated at three discrete points with MCS and then u2 given that u1 and the conditional percentiles were calculated with the 
equations from Table 1. Finally, the u3 given that u1 and u2 was estimated. 

After the calculation of the uniform variables, the discrete approximations to the original variables are calculated with inverse 
transformation. The portion copula-based tree structures for each type of copula are shown in Figs. 9–11. In the trees, the first un-
certainty X1 follows a normal distribution. The second and third uncertainties X2 and X3 follow beta distribution, and gamma dis-
tribution respectively. The uncertainty advances at each node in response to earlier decisions or events in a tree structure that 
represents a series of dependent uncertainties. The results of each node depend on the results of the preceding nodes, which produce a 
sequence of events. For instance, in Frank copula, the humidity, X1 is modeled as a three-branch discrete chance node with outcomes 
0.32, 0.56, and 0.8 and with the probabilities 0.25, 0.5, and 0.25 assigned to each outcome. The wind speed, X2, is a conditional chance 
node and if X1 is 0.56 (50th percentile) then X2 given that X1 is modeled at three points with the values 0.862, 1.951 and 3.433. If X2 

given that X1 is 1.951 (50th percentile) then X3 given that X1 and X2 is modeled at three discrete 
Since obtaining mathematical expression of conditional densities is not available or computationally challenging, the dependent 

decision tree structure creates a practical way to create conditional distributions with discrete approximations. 
To assess the potential of a wind power plant, the data generated by a copula-based tree model should be converted into corre-

sponding power output data. The use of the LSTM model to transform data produced by copula-based decision trees is a promising 
technique with the potential to improve the performance of the framework. We employed an LSTM model trained with the historical 
hourly data for this purpose. The Copula-based tree structure is used to obtain the test input feature set. In this study, the optimal 
values of the parameters have been determined through the grid search technique. The learning rate, batch size, and number of epochs 
are all set to 0.01, 50, and 64, respectively, for the model. The hidden layer activation function is used as a ReLU (rectifier linear unit), 
and Adam is used as an optimizer. 

Overall, in the study, the Copula-based dependence tree approach is used to model the dependence between the variables, and the 
LSTM model is used to transform the input data into power output values. The LSTM network is utilized to learn the variables (X1,X2 
and X3) of wind power and establish estimation model. This integrated approach allows for a more accurate representation of complex 

Table 5 
Feature selection methods.  

Feature Selection Methods Temperature Humidity Pressure Wind Speed Wind Gust 

Forward Selection  • • •

Backward Elimination  • • •

Lasso Regularization  • • •

Decision Tree Importance • • •

Recursive Feature Elimination • • •

Mutual Info   • • •

Table 6 
Marginal distributions for the variables.  

Variable Distribution Parameters Range 

Temperature Normal μ = 11,σ = 9.11 [ − 15.08,34.19]
Pressure Normal μ = 1020,σ = 6.17 [995.8,1036.3]
Wind Speed Scaled Beta α = 2.94,β = 8.44, [0.33,7.87]
Humidity Normal μ = 0.558,σ = 0.185 [0.07,0.99]
Wind Gust Gamma α = 0.861,β = 3.81 [0.71,16.61]
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Fig. 5. Probability distribution fitting of the variables  

Fig. 6. Normal copula tree  
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data patterns. In order to successfully recognize samples, the LSTM model first learns the existing patterns that characterize wind 
power and then maintains long-term memory while learning the information in the sample. 

Following the acquisition of the power output values for each of the 27 branches using the LSTM model and the probability values 
in the dependent tree structure, the expected value is calculated. The expected value is the sum of all the power output values 
multiplied by their respective probabilities. The expected values are shown in Table 7 for each type of copula used in this study. All 
types of copulas, apart from the independence copula, which consistently understates the true expected values, produce results that are 
closer to the actual mean value of historical data. The independence copula assumes that all variables are completely independent, 
which may not be true in many real-world situations where variables frequently exhibit some degree of interdependence or correlation. 

It is a common practice for some analytical tools and models to operate under the fundamental premise of variable independence in 
the context of statistical modeling and analysis. This presumption makes mathematical calculations easier and frequently provides a 
useful starting point for many analytical tasks. However, it is crucial to acknowledge that the intricate and connected nature of real- 
world data may not always line up with such an assumption. 

Variables in a given system or dataset frequently show varying degrees of interdependence and correlation, according to empirical 
findings and data-driven insights. Although independence was initially assumed, actual results frequently deviate from these 
straightforward models. These deviations raise doubts about the validity of the analytical framework’s independence assumption and 
its suitability for capturing the complex interrelationships between variables. 

Innovative strategies are developing in the area of statistical modeling in response to this difficulty. Utilizing a decision tree 
framework built on a Copula-LSTM is one such approach. Copula modeling, which captures intricate relationships between variables, 
is combined in this proposed framework with decision trees and LSTM networks. By combining these components, the framework 

Fig. 7. Frank copula tree  
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provides a more reliable way to model and analyze data, especially when dealing with non-independence among variables. 
In conclusion, the independence assumption still simplifies analytical procedures, but when applied to real-world data, it has 

serious drawbacks. As a result of becoming aware of these inconsistencies, modeling approaches are being reevaluated, and the 
adoption of cutting-edge frameworks like the Copula-LSTM based decision tree approach is being encouraged. In addressing the 
complex interdependencies inherently present in the data, this method exhibits effectiveness and offers a convincing response to these 
difficulties. 

4. Conclusion 

In this study, we evaluate the optimal theoretical distributions of meteorological factors as marginal probability distributions and 
analyze their ability to replicate the properties of wind energy power output through the use of Copula-LSTM based decision trees. We 
validate the effectiveness of this framework and demonstrate its applicability beyond this specific study, showcasing its potential for 
integration into other research areas related to wind energy resource assessment, thus enabling more accurate results. While the joint 
distribution model we present, incorporating humidity, wind speed, and wind gust, constitutes a valuable contribution to the field, it is 
essential for academics to acknowledge the considerable scope for further improvement. Future research efforts should focus on 
enhancing the accuracy and comprehensiveness of the analytical framework. 

In summary, our study extends conventional independence assumptions by acknowledging and modeling the dependence between 
meteorological variables using a Copula-based approach. By incorporating complex and nonlinear dependencies often overlooked in 
previous studies, we contribute to a more nuanced understanding of the interrelationships among these variables. Furthermore, we 

Fig. 8. Clayton copula tree  
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integrate Copula and Deep Learning techniques into a decision tree framework to assess the energy potential of wind power plants, 
accounting for meteorological uncertainties. This fusion framework represents a substantial advancement in the field, offering a more 
robust and reliable approach to evaluating wind energy potential. 

Our research not only contributes to scientific understanding but also facilitates the efficient utilization of wind energy resources. 
By shedding light on the techno-economic viability of wind power projects, it offers policymakers and stakeholders a mechanism for 
informed decision-making. As we navigate an era where renewable energy sources are crucial, our study emerges as a vital tool for the 
deployment and optimization of wind power plants, ultimately promoting a more sustainable and energy-diverse future. 

Moreover, the emphasis in our study on advocating for mandatory pre-assessment requirements underscores the vital importance of 
adopting a proactive and thorough approach within the wind energy sector. We underscore the need for professionals to utilize so-
phisticated tools during comprehensive site evaluations, ensuring a holistic understanding of the environmental, technical, and 
economic aspects of potential wind power projects. This approach not only aids in cost-effective decision-making but also enables 
strategic resource allocation, optimizing the overall effectiveness and sustainability of wind energy initiatives. By establishing these 
best practices, our research aims to contribute to the long-term success and viability of wind power projects, aligning them with the 
broader goals of a sustainable and diversified energy landscape. 

Even though the proposed framework offers valuable insights into the assessment of wind power plant site potential, it is crucial for 
academics to recognize the significant room for further improvement. Future studies should acknowledge and address the evolving 
conditions induced by climate change. The impacts of climate change introduce a dynamic layer of complexity, necessitating the 
inclusion of related variables such as temperature shifts and the increasing frequency of extreme weather events. Focusing on the 

Fig. 9. Frank copula-based tree  
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adaptability of the framework to these changing climatic conditions is crucial for ensuring its continued accuracy and relevance in 
assessing wind power plant site potential. Collaborating with climate scientists and experts becomes essential to gain insights into the 
anticipated shifts in climate parameters. By considering the broader context of climate change, future studies can strengthen the 
framework to provide more robust predictions, contributing to effective assessments of wind power plant site potential amidst a 
changing meteorological landscape. This approach aligns with the imperative to adapt to and mitigate the impacts of climate change, 
making the framework a valuable tool in anticipating and managing the consequences of evolving weather patterns for wind power 
applications. 

However, it is important to note some limitations of our study. Firstly, the effectiveness of the Copula-LSTM based decision trees 
framework may vary depending on the specific characteristics of the meteorological data and the geographical location of the wind 
power plant. Therefore, further validation and testing of the framework across diverse datasets and locations are necessary to assess its 
generalizability. Additionally, while our framework captures complex dependencies and nonlinear patterns, there may still be other 
factors influencing wind power output that are not fully accounted for in our model. Future research could explore the incorporation of 
additional variables or more advanced modeling techniques to address these limitations and further improve the accuracy of wind 
energy potential assessments. 
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K.N. Şahi̇n and M. Sutcu                                                                                                                                                                                             

https://doi.org/10.1016/j.seta.2019.100562
https://doi.org/10.1016/J.ESR.2024.101307
https://doi.org/10.1016/J.RENENE.2021.03.141
https://doi.org/10.1016/j.renene.2023.119595
https://doi.org/10.2307/2332226
https://doi.org/10.1098/RSPL.1895.0041
https://doi.org/10.1098/RSPL.1895.0041
https://hal.science/hal-04094463
https://doi.org/10.1016/J.JCLEPRO.2023.137959
https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1007/BF02189866/METRICS
https://doi.org/10.1007/BF02189866/METRICS
https://doi.org/10.1080/01621459.1960.10483368
https://doi.org/10.1093/BIOMET/65.1.141
https://doi.org/10.1080/00401706.1962.10490011
https://doi.org/10.1080/00401706.1962.10490011
https://doi.org/10.1016/J.SORMS.2012.04.001
https://doi.org/10.1016/J.SORMS.2012.04.001
https://doi.org/10.1080/01621459.1993.10476372
https://doi.org/10.1080/01621459.1993.10476372
https://doi.org/10.1016/J.JHYDROL.2013.12.006
https://doi.org/10.1016/J.JHYDROL.2013.12.006
https://doi.org/10.1007/S00477-011-0467-7
https://doi.org/10.1016/J.JHYDROL.2015.05.030
https://doi.org/10.1093/BIOMET/82.3.543
https://doi.org/10.1080/01621459.1958.10501481
http://refhub.elsevier.com/S2405-8440(24)04301-9/sref50
https://doi.org/10.1306/8626C70D-173B-11D7-8645000102C1865D
https://doi.org/10.1306/8626C70D-173B-11D7-8645000102C1865D
https://doi.org/10.1287/MNSC.29.5.595
https://doi.org/10.1057/JORS.1989.56
https://doi.org/10.2307/1269802
https://doi.org/10.1287/MNSC.29.3.352
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000387/ASSET/5BAB9F9C-2236-4186-878B-FD6F7CB27D66/ASSETS/IMAGES/LARGE/FIGURE7JPG
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000387/ASSET/5BAB9F9C-2236-4186-878B-FD6F7CB27D66/ASSETS/IMAGES/LARGE/FIGURE7JPG

	Probabilistic assessment of wind power plant energy potential through a copula-deep learning approach in decision trees
	1 Introduction
	2 Methodology
	2.1 Data analysis
	2.2 Feature selection and identifying the most suitable marginal probability distributions
	2.3 Modelling multivariate distributions with copulas
	2.4 Parameter estimation for the underlying copula
	2.5 Copula-based transient tree structure
	2.6 Inverse marginal transformation
	2.7 Long short-term memory (LSTM) neural networks

	3 Empirical results
	4 Conclusion
	Statements and declarations
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


