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sur Yvette, France

Received November 17, 2020; Revised May 10, 2021; Editorial Decision May 31, 2021; Accepted June 17, 2021

ABSTRACT

The huge body of publicly available RNA-sequencing
(RNA-seq) libraries is a treasure of functional infor-
mation allowing to quantify the expression of known
or novel transcripts in tissues. However, transcript
quantification commonly relies on alignment meth-
ods requiring a lot of computational resources and
processing time, which does not scale easily to large
datasets. K-mer decomposition constitutes a new
way to process RNA-seq data for the identification
of transcriptional signatures, as k-mers can be used
to quantify accurately gene expression in a less
resource-consuming way. We present the Kmerator
Suite, a set of three tools designed to extract specific
k-mer signatures, quantify these k-mers into RNA-
seq datasets and quickly visualize large dataset char-
acteristics. The core tool, Kmerator, produces spe-
cific k-mers for 97% of human genes, enabling the
measure of gene expression with high accuracy in
simulated datasets. KmerExploR, a direct application
of Kmerator, uses a set of predictor gene-specific
k-mers to infer metadata including library protocol,
sample features or contaminations from RNA-seq
datasets. KmerExploR results are visualized through
a user-friendly interface. Moreover, we demonstrate
that the Kmerator Suite can be used for advanced
queries targeting known or new biomarkers such as
mutations, gene fusions or long non-coding RNAs
for human health applications.

INTRODUCTION

Publicly available human RNA-sequencing (RNA-seq)
datasets are precious resources for biomedical research.
RNA-seq data are widely used to identify actively tran-
scribed genes, quantify gene or transcript expression, iden-
tify new fusion transcripts or identify alternative splicing
or mutation events. The search for specific transcriptional
events or RNAs across large-scale data has become essential
in precision medicine. Advanced tools such as recount2 (1)
have achieved transcript counts in large datasets, available
in an online resource. However, these tools are reference
based and only provide counts for precomputed transcripts.
An increasing number of studies attempt to analyze in a ret-
rospective fashion the vast repository of RNA-seq data, in-
cluding normal and pathological conditions, to discover or
validate RNA biomarkers for disease diagnosis (2,3).

For this purpose, it is important to select relevant RNA-
seq datasets with homogeneous characteristics and suffi-
cient samples among thousands of publicly available files.
The reanalysis of RNA-seq datasets poses two major chal-
lenges. The first challenge is to filter data series and select
the most homogeneous and reliable set of libraries for ex-
ploration in the context of incomplete metadata (4). The
second challenge is to perform RNA biomarker quantifi-
cation in reasonable time and with sufficient accuracy to
extract biological information in such datasets. Alignment-
based methods like STAR (5) and CRAC (6) require signifi-
cant computational resources, making them inadequate for
querying datasets on the order of 100–1000 files for a spe-
cific biomarker. Pseudo-alignment algorithms like Kallisto
(7) and Salmon (8) are much faster but most commonly
use a reference transcriptome far from the real complex bi-
ological RNA diversity. This highlights the need for tools
enabling fast and specific quantification of candidate se-
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quences in a large set of RNA-seq data. Recently, ap-
proaches relying on k-mers from raw sequence files have
emerged and are used for the query of transcriptomic data.
These methods require less time and computational re-
sources than common ones and are suited to various bio-
logical questions, including the analysis of unannotated and
atypical RNA transcriptional events. For instance, Oka-
mura and Kinoshita proposed an ultrafast mRNA quan-
tification method, based on unique k-mers, that outper-
forms conventional approaches (9). Yu et al. (10) investi-
gated gene fusion queries of all tumor samples from The
Cancer Genome Atlas project using k-mer sets. The DE-
kupl pipeline developed by Audoux et al. (11) finds differ-
ential events between two groups of RNA-seq data at the
k-mer level.

Moreover, classical methods fail to interrogate the whole
transcriptome complexity as each RNA is the result of
a complex chain of events that combines genetic varia-
tion, transcription regulation and RNA processing com-
bined with pathological alterations (12). The k-mer ap-
proach we propose is not an equivalent method compared
to the above-mentioned ones, but a new way to explore
RNA-seq data that could also be used for in-depth explo-
ration outside the reference.

Although any transcript sequence can be decomposed
into k-mers, only a subset of these k-mers is specific for the
transcript. We call this subset the k-mer signature. These
specific k-mers can then be quantified in RNA-seq raw data,
making it quick and easy to measure the candidate tran-
script expression level in a wide range of RNA-seq datasets.

In this paper, we present the Kmerator Suite, a set of three
tools designed to (i) extract k-mer signatures from tran-
scripts, (ii) quantify these k-mers into RNA-seq datasets
and (iii) visualize large RNA-seq dataset characteristics us-
ing precomputed signatures. The core of this suite is Kmer-
ator, which generates k-mer signatures specific for genes or
transcripts. The second tool, countTags, is used to quantify
selected k-mers across raw RNA-seq files. We first tested the
performance of Kmerator + countTags over the whole tran-
scriptome and showed that k-mer signature quantification
results were close to simulated count data. The third tool,
KmerExploR, demonstrates the capacity of the Kmerator
+ countTags pipeline combined to a set of predefined k-
mer signatures, to perform metadata extraction from raw
RNA-seq data. KmerExploR extracts sample characteris-
tics related to the sequencing protocol (ribosomal deple-
tion, polyA+, strand-specific protocol, 5′/3′ bias, etc.), tis-
sue origin (sex) and possible contaminations (mycoplasma,
virus, other species or cell lines). Such high-level quality
control procedures are valuable as a screening tool be-
fore analyzing datasets of uncertain quality, such as public
datasets. KmerExploR can also be used in advanced appli-
cations to look for user-defined transcripts resulting from
mutated alleles or gene fusions in RNA-seq datasets.

MATERIALS AND METHODS

Kmerator: k-mer signature identification

An overview of the Kmerator Suite is provided in Fig-
ure 1A. Kmerator is a tool designed for the prediction
of specific k-mers from input sequences, considering a

reference genome and an Ensembl-like fasta transcrip-
tome (see Figure 1A and Supplementary Figure S1A). It
is implemented in Julia programming language (https://
julialang.org) and distributed with GitHub (https://github.
com/Transipedia/kmerator). Kmerator strictly depends on
a reference genome [fasta or Jellyfish (13) index format]
and on an Ensembl fasta format transcriptome, to define
a k-mer as specific or not, depending on the number of
occurrences on each reference. The reference genome and
transcriptome fasta, used in this paper, have been down-
loaded here: https://www.ensembl.org/info/data/ftp/index.
html. The procedure also needs a list of gene/transcript
Ensembl IDs (or gene symbols) or sequences in fasta for-
mat from which Kmerator will extract specific k-mers. As
shown in Supplementary Figure S1A, Kmerator first uses
the Jellyfish software to index and count k-mers from the
reference genome and transcriptome. For both genome and
transcriptome fasta files, Jellyfish produces a hash table
including all possible k-mers and their number of occur-
rences. These hash tables are stored for further querying.
Second, using Jellyfish query, Kmerator generates, for each
input gene/transcript, the list of k-mers derived from this se-
quence and their corresponding genome and transcriptome
counts. These k-mers are then filtered according to the fol-
lowing criteria: (i) only k-mers associated with a biological
event (transcript or gene, splice variant, chimeric RNA, cir-
cular RNA, etc.) are retained and (ii) k-mers must be spe-
cific according to Kmerator rules (see Figure 1C and Sup-
plementary Figure S1A). Indeed, Kmerator includes three
different levels of specificity (–level option), ‘gene’, ‘tran-
script’ and ‘chimera’, detailed below:

• Gene level specific k-mers are found zero (to include k-
mers containing splicing junctions) or one time in the
reference genome. They are also present in the reference
transcriptome in at least one isoform transcript sequence.
If we want to select only k-mers matching at least n iso-
forms on a total of N, a threshold can be set to the pro-
portion of isoforms n/N the k-mer has to be specific to,
using the –threshold option.

• Transcript level specific k-mers are found zero or one time
in the reference genome. They also match the reference
transcriptome only once (transcript specificity). If the
candidate transcript is not annotated, the –unannotated
option must be added. In this case, k-mers found zero or
one time in the reference genome and that do not map to
the reference transcriptome are retained.

• Chimera level specific k-mers are found neither in the ref-
erence genome nor in the reference transcriptome. This
level must be combined to the –unannotated option.
Kmerator outputs the list of specific k-mers (also called
k-mer gene/transcript signature) according to the chosen
parameters in fasta format, for each input sequence.

Kmerator command line options. The k-mer length can be
set using the –length option. In the present study, we used
the default 31 nt k-mer length according to the literature
(11). The level of specificity is chosen among ‘gene’, ‘tran-
script’ and ‘chimera’ with the –level option. When using the
gene level, the APPRIS database (http://appris.bioinfo.cnio.
es) can be queried to identify the ‘PRINCIPAL’ transcript,

https://julialang.org
https://github.com/Transipedia/kmerator
https://www.ensembl.org/info/data/ftp/index.html
http://appris.bioinfo.cnio.es
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Figure 1. Kmerator Suite and Kmerator levels: definitions. (A) The Kmerator Suite is a set of three tools: (1) Kmerator extracts gene/transcript k-mer
signatures. It takes as input a reference genome and a reference transcriptome + a list of gene or transcript sequences to extract specific k-mers from.
The output is a set of fasta files (one per input gene/transcript sequence) with the specific k-mers. (2) countTags quantifies input k-mers in a set of input
sequencing raw files (fastq files) and outputs a count table. (3) KmerExploR is a particular application of Kmerator/countTags to visualize input RNA-
seq dataset (set of fastq files) characteristics. The default usage includes characteristics related to the sequencing protocol (ribosomal depletion, polyA+,
strand-specific protocol, 5′/3′ bias), tissue origin (sex) and possible contaminations (mycoplasma, virus, other species or HeLa cell line). Users can also
visualize their own signatures with the advanced usage. Details are given in the text and Supplementary Figure S1. (B) Kmerator extracts gene/transcript
k-mer signatures with three possible levels of stringency. This figure describes how the different levels are defined (transcript, gene or chimera) for two
example genes A and B. Example gene A has three isoforms: A1, A2 and A3. A1 is the only one with a free interval, i.e. a region not covered by other
isoforms, and is defined as the principal transcript (APPRIS database). Therefore, at the transcript level, each transcript has its own specific k-mer set,
depending on its coverage with other isoforms. At the gene level, the principal transcript defined with the APPRIS database is used, and specific k-mers
can be common to several isoforms. At the chimera level (example of A1–B1 fusion), the k-mer is not described in annotations.
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using the –appris option. APPRIS defines as the ‘PRIN-
CIPAL’ isoform a CDS (coding sequence) variant for each
gene, based on the range of protein features. When this op-
tion is not used or no principal sequence is given by APPRIS
[i.e. for long non-coding RNA (lncRNA)], the isoform with
the longest sequence is kept. In this study, we always used
the gene level in combination with the –appris option.

Kmerator usage on the entire transcriptome for performance
assessment. Kmerator was tested to extract k-mer signa-
tures from the whole human Ensembl transcriptome (com-
bination of cDNA and ncRNA fasta files, version 91). The
Ensembl reference transcriptome was filtered to remove any
transcript with alternate loci (labels with ‘ alt’) and have
been processed by Kmerator at both transcript (i.e. 199 181
transcripts) and gene (54 874 genes) levels with the –appris
option previously described. At the transcript level, 62 tran-
scripts have been ignored due to their length inferior to the
k-mer length (31 nt). The processing to generate the specific
k-mers on the whole transcriptome has been completed in
<3 days at the gene level (88 003 855 k-mers) and 24 h at the
transcript level (69 760 957 k-mers), using a LINUX server
with 30 computing cores and 20 GB hard disk space. This
step has to be done only one time for one chosen reference
transcriptome. Once we have all the annotated transcript k-
mer signatures, we can rapidly quantify them in any RNA-
seq data.

K-mer counting and expression quantification

Simulated data. To test the precision of k-mer quantifi-
cation, we created a set of 10 simulated RNA-seq data
for which we have the exact counts. We first used the R
compcodeR package (14) and the ‘generateSyntheticData’
function to simulate a count matrix with two conditions
with five samples in each (samples.per.cond = 5). Each
line of this matrix corresponds to a transcript of the En-
sembl v91 annotation. Counts of transcripts with a length
equal or inferior to 200 nt were not simulated. To high-
light the quantification process, we increased the num-
ber of differentially expressed genes (n.diffexp = 10 000)
with balanced over- and underexpressed fractions (frac-
tion.upregulated = 0.5) and with authorized different dis-
persions between the conditions (between.group.diffdisp =
TRUE, fraction.non.overdispersed = 0). Besides, we set the
sequencing depth by RNA-seq file to 100 million reads (seq
depth = 100 000 000) and we did not filter low counts
(filter.threshold.total = 0). Providing this data frame and
the Ensembl reference transcriptome, we used the ‘sim-
ulate experiment countmat’ function, from polyester R
package (15), to generate paired-end and strand-specific (fr
fashion) RNA-seq reads in fasta format. Finally, the fasta
files have been converted to fastq.gz format using seqtk
(https://github.com/lh3/seqtk).

countTags. K-mers designed by Kmerator on the whole
transcriptome were counted into the 10 simulated RNA-
seq data. For this purpose, the list of k-mers was submitted
to countTags (https://github.com/Transipedia/countTags),
a tool written in C language (see Figure 1A). countTags
searches for short sequences (<32 nt) and their reverse com-
plement with an exact match in fastq files and counts their

occurrences. We used a k-mer length of 31 nt (–k 31) and the
paired-end option (–paired), and we also used the count-
Tags normalization option to normalize k-mer counts per
billion of k-mers present in the dataset, using the –kbp op-
tion. As many specific k-mers are associated with one sin-
gle transcript/gene, we computed the mean k-mer count by
transcript/gene.

Comparison with Kallisto. We compared the Kmerator
+ countTags pipeline with Kallisto regarding the perfor-
mances in transcript/gene expression quantification on sim-
ulated data detailed above. As our pipeline cannot quan-
tify genes/transcripts without specific k-mers, we limited
Kallisto quantification to the genes/transcripts having spe-
cific k-mers. Kallisto 0.43.1 (7) was run using the –fr-
stranded option with the Ensembl v91 annotation file. For
each pipeline, TPM (transcripts per million) counts were
compared to true normalized TPM using the Spearman’s
correlation, either at the transcript level or at the gene level.
Counts estimated by Kallisto were merged at the gene level
by summing normalized transcript counts.

KmerExploR: exploring large RNA-seq datasets

KmerExploR is a command line tool powered by the back-
end pipeline Kmerator + countTags. KmerExploR pro-
vides k-mer quantification results in RNA-seq samples as
a graphical and user-friendly html interface (see Figure
1A). To deal with data heterogeneity and the weaknesses of
RNA-seq technology, we developed a turnkey application
using KmerExploR. Characterization of a requested RNA-
seq dataset can be improved with the quantification of se-
lected genes (predictor genes) via the Kmerator + count-
Tags pipeline. Predictor genes and their corresponding spe-
cific k-mers are included in KmerExploR and have been se-
lected based on the literature to answer specific biological
questions:

• Are my RNA-seq data based on polyA selection protocol
or ribo-depletion?

• Are my RNA-seq libraries stranded or not?
• What is/are the sex corresponding to my samples?
• Is there a read coverage bias from 5′ to 3′ end along my

dataset transcripts?
• Are my RNA-seq data contaminated by HeLa (presence

of HeLa-derived human papillomavirus 18), mycoplas-
mas or other viruses such as hepatitis B virus?

• What is/are the species present in my samples?

Implementation. KmerExploR is a command line tool
written in python 3. It can be installed on a server or on
a personal computer from GitHub or with pip command
(see https://github.com/Transipedia/kmerexplor). No addi-
tional modules are required. KmerExploR does not need a
lot of memory and can be launched from a laptop. Indeed,
for a common analysis of 36 paired-end samples (80 GB
of fastq files), it takes 250 MB of memory (RAM per core)
and 24 min. In comparison, the popular useful and comple-
mentary QC tool fastQC (https://qubeshub.org/resources/
fastqc) takes 3300 MB of memory (RAM per core) and
15 min. KmerExploR includes countTags, described above.

https://github.com/Transipedia/countTags
https://github.com/Transipedia/kmerexplorerexplor
https://qubeshub.org/resources/fastqc
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From input fastq files, KmerExploR runs countTags, with
a multithreading option, to quantify built-in k-mer selec-
tion associated with each predictor gene. The detailed dia-
gram is shown in Supplementary Figure S1B. KmerExploR
can also directly take countTags output files, as for large
datasets it could be useful to separately run countTags on
a cluster, for example. KmerExploR outputs an html file
with css and javascript in separate files, using the echart-
sjs library to display user-friendly and graphical informa-
tion (https://echarts.apache.org/en/index.html). Categories
to show are described either in the built-in config file or in
the user personal config file. KmerExploR also produces a
tabulated text file with mean counts for each predictor gene
in each category (rows) and in each sample (columns).

Predictor gene selection. We selected a subset of house-
keeping genes from the list previously published by Eisen-
berg and Levanon (16) as well as some widely expressed
histone genes that produce non-polyadenylated transcripts
barely detected in polyA+ RNA-seq (see Table 1). We also
selected specific genes from chromosome Y that have a
ubiquitous expression, from Maan et al.’s publication (17).
For these different sets of genes, we designed specific k-mers
using Kmerator at the gene level and also computed the k-
mer reversed complementary counterparts for the orienta-
tion category. Housekeeping genes’ ubiquitous expression
profile in various tissues, chromosome Y genes’ specific ex-
pression pattern in male tissues and histone genes’ low ex-
pression in polyA+ RNA-seq samples have been validated
by exploring the GTEx database (https://www.gtexportal.
org) (see Supplementary Figure S2).

For the detection of 5′/3′-end biases, we used the spe-
cific k-mers from ubiquitous genes (orientation set) and in-
dividually attributed them to their corresponding region,
5′ untranslated region (UTR), 3′ UTR or CDS, depend-
ing on their position in the principal transcript, according
to the APPRIS database. For that purpose, we used En-
sembl annotations with the biomaRt R package that gives
the information of the UTR and CDS regions for each tran-
script. We searched the k-mers in transcript CDS and UTR
sequences to label them by region. For mycoplasma tag
selection, we first selected the most frequent mycoplasma
found in cell contamination according to Drexler and Up-
hoff (18). We then downloaded ribosomal RNA (rRNA)
sequences of the six selected mycoplasma species from the
SILVA database v132 (19), which provides updated and cu-
rated rRNA sequences from Bacteria, Archaea and Eukary-
ota. Some species have several associated strains and there-
fore, several rRNA sequences. We have included them all
for the k-mer design. For HeLa detection, we selected HPV-
18 transcripts reported to be expressed in HeLa cells (20).
Using UGENE software (21), we manually modified these
transcripts to match the mutations reported as HeLa spe-
cific in the Cantalupo et al. study (20). We then defined se-
quences taking 30 nt on both sides of each mutation, before
passing them to Kmerator to keep only k-mers not present
in the human genome and transcriptome. For species iden-
tification, we selected those principally found in the SRA
database. We then downloaded mitochondrially encoded
cytochrome c oxidase I (MT-CO1) human gene sequence
and its orthologs in each of the selected species, using the

corresponding animal reference genome and transcriptome
sequences (Ensembl v91 for each). Finally, sequences of
virus genomes have been downloaded from RefSeq using
the common virus list provided by Uphoff et al. (22). All
these potential contamination sequences were used to pro-
duce specific k-mers using Kmerator at the chimera level,
to select tags that can be found neither in the human refer-
ence genome nor in the transcriptome. For the advanced ap-
plication of KmerExploR, we designed k-mers correspond-
ing to new or rare transcriptional events detected in the
Leucegene dataset (https://leucegene.ca/). For chimera de-
tection, we used two well-known fusion RNA examples as-
sociated with chromosomal translocation and their recip-
rocal counterparts [RUNX1–RUNXT1 t(x,21) RUNXT1–
RUNX1, PML–RARA t(15,17) and RARA–PML]. Spe-
cific k-mers are designed with Kmerator on 60 bp sequences
spanning the junction. For mutation detection, we manually
designed 31 bp k-mers centered on the mutation for refer-
ence and alternative sequences of three genes currently used
in acute myeloid leukemia (AML) diagnosis: TET2, KRAS
and CEBPA. We finally designed k-mers with Kmerator at
the transcript level for a new lncRNA previously published
in (23) as NONE ‘chr2-p21’.

RNA-seq dataset. In this paper, we illustrated KmerEx-
ploR output on several datasets, depending on the bio-
logical question, all described in Supplementary Table S1.
Characteristics related to RNA-seq protocol, which we
call basic features, are tested on 103 paired-end samples
from ENCODE (Dataset-FEATURES). For the contami-
nations part, we used the 33 single-read samples from the
PRJNA153913 study (24) previously described as highly
contaminated by mycoplasma (Dataset-MYCO) (25). We
also selected three public RNA-seq samples by species to
check the relevance of our species-specific k-mers (Dataset-
SPECIES). HeLa contamination was tested in three cer-
vical cancer CCLE (Cancer Cell Line Encyclopedia) cell
lines: one HeLa and two negative controls (Dataset-HELA-
CLE). Finally, for virus detection we used 19 samples from
the CCLE dataset reported by Uphoff et al. (22) as con-
taminated by viruses and three control non-contaminated
cell lines also included in the Uphoff et al. study (Dataset-
VIRUS-CCLE).

RESULTS

Kmerator performances

To assess the Kmerator methodology, we first extracted
k-mer signatures from all the human Ensembl transcrip-
tome (i.e. 199 181 transcripts) and genes (i.e. 54 874 coding
and non-coding genes). We were able to identify specific k-
mers (k = 31 nt) for 83% of human transcripts and 97% of
human genes as shown in Figure 2A and B.

This way, the transcriptome information has been almost
entirely summarized by 69 760 957 k-mers at the transcript
level and 88 003 855 k-mers at the gene level, corresponding
to 23.8% and 30% of the total number of k-mers in the refer-
ence transcriptome, respectively. The attribution of specific
k-mers at the gene and transcript levels is fundamentally
different: whereas the gene level (–appris option) accepts
specific k-mers shared with other isoforms, the transcript

https://echarts.apache.org/en/index.html
https://www.gtexportal.org
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Figure 2. Kmerator performances on the whole transcriptome. We extracted k-mer signatures from all the human Ensembl transcriptome v91 at both gene
(54 874 coding and non-coding genes, left) and transcript (i.e. 199 181 transcripts, right) levels. (A) The first pie chart represents the proportion of genes
having specific k-mers (turquoise) versus those without specific k-mers (red). (B) In the same way, we represented the proportion of transcripts having
specific k-mers (turquoise) or not (red). For these two classes, we looked at the percentage having free intervals, i.e. regions in the transcript not shared with
other isoforms (secondary pie). Most of the transcripts lacking specific k-mers do not have free intervals (91%). We tested Kmerator sensitivity to quantify
simulated data, at both gene (C) and transcript (D) levels. We represented the k-mer counts normalized per billion of k-mers in the sample (Y-axis) as a
function of the true expression in TPM (X-axis), on the whole simulated dataset. R is the Spearman’s correlation coefficient between k-mer counts and
TPM. Each point on the graph is a transcript and the color scale depends on the transcript density on the graph.

level is more stringent and eliminates each k-mer shared
by other ones. This explains the higher percentage of tran-
scripts without specific k-mer compared to the gene level.
To explain the absence of specific k-mers for some tran-
scripts, we used BiomaRt genomic intervals to calculate the
part of each transcript not covered by other isoforms, con-
sidering the strand, and named it ‘free interval’ (see Fig-

ure 1B). As expected, 91% of transcripts without specific k-
mer have no ‘free interval’, which means that they are com-
pletely covered by other transcripts, thus confirming the val-
idation of the Kmerator process. The set of specific k-mers
designed with Kmerator strongly depends on the input se-
quence and on the level of selection. At the gene level, we
observed that the length of the input sequence was corre-
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lated with the number of designed specific k-mers (R = 0.91,
P < 2.2e−16; see Supplementary Figure S3A) but not at the
transcript level (R = 0.22, P < 2.2e−16; see Supplementary
Figure S3B). On the contrary, the transcript level depends
on the overlap between the input transcript and the differ-
ent isoforms. A high number of isoforms is correlated to a
low number of specific k-mers (R = 0.79, P < 2.2e−16; see
Supplementary Figure S3C) and, in addition, the length of
free intervals is strongly correlated to the number of spe-
cific k-mers (R = 0.94, P < 2.2e−16; see Supplementary
Figure S3D). Finally, k-mer design differs between biotypes
and selection levels: the biotypes without specific k-mers
mainly correspond to small RNAs (miRNAs, rRNA) at the
gene level (see Supplementary Figure S3E) and to coding
and pseudo-genes at the transcript level (see Supplementary
Figure S3F).

The Kmerator Suite has been designed as a new way to
explore RNA-seq data and rapidly quantify some chosen
sequences called predictors. Kmerator, the first key element
of this suite, can extract unique k-mers from any sequence.
In combination with countTags, it is used to generate large
k-mer count tables. To situate our tool in relation to a widely
used, referenced and benchmarked quantification tool, we
tested the Kmerator + countTags pipeline accuracy to es-
timate gene and transcript expression using simulated data
(see the ‘Materials and Methods’ section). Indeed, using a
simulated dataset, for which we have the exact counts, even
if it fails to capture the complexity of real data, is the best
way to proceed to illustrate our purpose (26). We have run
Kmerator and countTags to search for all human gene and
transcript expression levels in a set of 10 simulated data.
We assessed Spearman’s correlation between normalized k-
mer counts and the ground truth. We used countTags k-
mer mean count per transcript reported to the total of k-
mers contained in the input fastq. As shown in Figure 2,
the Spearman’s correlation factor comparing Kmerator +
countTags results to the truth is 0.86 for the gene level (Fig-
ure 2C) and 0.94 for the transcript level (see Figure 2D),
indicating a highly positive relationship with normalized
counts (P < 2e−16).

Quantification results are comparable when using the
Kallisto pseudo-alignment method, despite slightly higher
correlation factors (gene and transcript R = 0.97; see Sup-
plementary Figure S4A and B). This result is consistent with
the recent paper describing Matataki (9), another quantifi-
cation tool based on k-mers. Our pipeline being not specif-
ically dedicated to gene quantification but for rapid explo-
ration of large datasets is accurate enough to evaluate gene
and transcript expression levels in RNA-seq data. Inter-
estingly, the precision of Kallisto quantification decreases
strongly with transcripts/genes not covered by Kmerator
(see Supplementary Figure S4C and D), showing that each
protocol using the k-mer principle struggles to correctly
quantify sequences that do not possess distinctive k-mers.

Finally, we tested speed performance of countTags pro-
cessing time on random subparts of sample simulated data
(10 million, 101 nt paired-end reads), while increasing the
number of quantified k-mers (1/1000/1 million). It appears
that processing time remains low compared to alignment-
based protocols (∼1 min for 10 million reads) and depends
on the number of k-mers quantified (see Supplementary

Figure S4E). These results support an optimized usage of
the Kmerator Suite protocol for its primary usage: the re-
search of a limited number of signatures in large RNA-seq
datasets.

KmerExploR for inspecting large RNA-seq datasets

We developed KmerExploR to improve the characteriza-
tion of large RNA-seq datasets using the quantification of
selected predictor genes. Predictor genes have been selected
based on the literature to answer specific questions (see Ta-
ble 1). As described in the ‘Materials and Methods’ section,
we first extracted with Kmerator sets of specific k-mers from
gene sequences and use KmerExploR to count the k-mer
occurrences in RNA-seq datasets and visualize the results.
Here, we present the results obtained with specific datasets
(Table 1 and Supplementary Table S1) selected to highlight
the rapid control of biological and technical parameters us-
ing KmerExploR. The results of the basic features, includ-
ing sample sex, polyA or ribo-depletion, orientation and
5′/3′ bias, are presented in Figure 3.

As previously described, sample sex is determined by
searching for k-mers corresponding to genes located on
the Y chromosome. The k-mer signature clearly separates
samples depending on the sex. To help the user classify
his samples, we defined, in KmerExploR, a threshold of
five k-mers per billion, above which we expect with con-
fidence that it is a male. Moreover, Y chromosome gene
expression variance between the samples can be explained
by the variability of cell types and public RNA-seq exper-
iment parameters, including sequencing depth and meth-
ods of RNA extraction and selection. For instance, the four
male samples with the lowest expression (ENCFF232KGN,
ENCFF434EMO, ENCFF831HCD and ENCFF992HBZ)
come from a unique study (ENCSR999ZCI). However, the
sex classification is more complicated in case of cancer-
ous data. When we are looking at cancerous RNA-seq
cell lines, some samples with male metadata show low
Y chromosome-specific gene expression (data not shown).
This extreme downregulation of chromosome Y gene ex-
pression has already been described in previous studies and
strongly associated with cancer risk in men (27).

Gene abundance can be measured in RNA-seq data
through sequencing of mRNA or ribo-depleted total RNA
samples. The mRNA protocol relies on polyA selection,
when the total RNA method is based on rRNA depletion
(Ribozero protocol). However, non-polyadenylated tran-
scripts should only be found in data produced using this
procedure, when they should barely be detectable in mRNA
samples. As the majority of histone transcripts are known
to be non-polyadenylated, we used this characteristic first to
detect sample contamination by non-polyadenylated RNA,
and second to infer from the result the RNA preparation
procedure. We first investigated the expression level of all
histone genes and retained the most highly expressed ac-
cording to the literature. Second, we analyzed their expres-
sion pattern using the GTEX resource. As RNA-seq from
GTEX are exclusively produced from polyA selected RNA
samples, we used this database to select histone genes show-
ing the lowest expression levels (see Supplementary Fig-
ure S2B). We used this set of histone genes to test a se-
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Figure 3. KmerExploR default usage: basic features. All presented bar plots are direct output of KmerExploR and they are generated from the Dataset-
FEATURES described in Supplementary Table S1 (103 paired-end ENCODE samples) except for the orientation (C), which is a subset of eight RNA-seq
from the Dataset-FEATURES. For each bar plot, the legend lists the set of predictor genes for which k-mer mean counts are computed (see also Table
1). Samples are on the X-axis. Panels (A), (B) and (C) have the mean k-mer counts by gene normalized per billion of k-mers on the Y-axis. (A) Sex
determination. Samples are sorted by sex in the order female, then male. (B) PolyA+ selection versus ribo-depletion by histone detection. Samples are
sorted by protocol in this order: polyA, ribo-depletion, unknown. (C) Stranded versus unstranded sequencing protocol. For this category, both fastq files
by sample are shown. The first four samples are unstranded and the last four samples are stranded. (D) Read position biases along 5′ UTR, 3′ UTR and
CDS regions. After computing k-mer mean counts by gene, they are summed up by 5′ UTR, 3′ UTR or CDS regions and converted in % (Y-axis).
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Table 1. List of predictor genes, by category, included in KmerExploR and associated RNA-seq dataset names used in this paper

Datasets Predictor genes
Total k-mer

number
References and
details

PolyA/RiboD Dataset-
FEATURES

HIST2H2AC, HIST2H2AB, HIST1H4J, HIST1H4I,
HIST1H4F, HIST1H4D, HIST1H4C, HIST1H4B,
HIST1H3I, HIST1H3H, HIST1H3G, HIST1H3F,
HIST1H3E, HIST1H3C, HIST1H3B, HIST1H3A,
HIST1H2BN, HIST1H2BM, HIST1H2BL,
HIST1H2BH, HIST1H2BF, HIST1H2BE, HIST1H2BB,
HIST1H2BA, HIST1H2AK, HIST1H2AH,
HIST1H2AG, HIST1H2AB, HIST1H1T, HIST1H1E,
HIST1H1D, HIST1H1B, HIST1H1A

24 512 Supplementary
Figure S2

Orientation Dataset-
FEATURES

VPS29, SNRPD3, REEP5, RAB7A, PSMB4, PSMB2,
GPI, EMC7, CHMP2A, C1orf43, VPS29 rev,
SNRPD3 rev, REEP5 rev, RAB7A rev, PSMB4 rev,
PSMB2 rev, GPI rev, EMC7 rev, CHMP2A rev,
C1orf43 rev

36 638 Supplementary
Figure S2 (16)

Sex Dataset-
FEATURES

UTY, TMSB4Y, TBL1Y, RPS4Y1, NLGN4Y, EIF1AY,
DDX3Y

21 996 Supplementary
Figure S2 (17)

5′/3′ bias Dataset-
FEATURES

VPS29, SNRPD3, REEP5, RAB7A, PSMB4, PSMB2,
GPI, EMC7, CHMP2A, C1orf43

12 705 Supplementary
Figure S2 (16)

Mycoplasma Dataset-MYCO Mycoplasma orale, Mycoplasma hyorhinis,
Acholeplasma laidlawii, Mycoplasma hominis,
Mycoplasma arginini, Mycoplasma fermentans

363 025 (18)

Virus Dataset-VIRUS-
CCLE

Human gammaherpesvirus 4, Human herpesvirus 4,
Human herpesvirus 8, Murine leukemia virus,
Hepatitis C virus genotype,
Human immunodeficiency virus 1,
Human T lymphotropic virus 1,
Squirrel monkey retrovirus,
Human T lymphotropic virus 2,
Human papillomavirus type 92, Hepatitis B virus strain,
Human immunodeficiency virus 2,
MuLV related virus 22Rv1/CWR,
Bovine viral diarrhea virus

516 882 (22)

HeLa Dataset-HELA-
CCLE

L1 mut7486, L1 mut7258, L1 mut6842, L1 mut6625,
L1 mut6460, L1 mut6401, L1 mut5875, E7 mut806,
E7 mut751, E6 mut549, E6 mut485, E6 mut287,
E6 mut104, E1 mut2269, E1 mut1994, E1 mut1843,
E1 mut1807, E1 mut1353, E1 mut1012

589 (20)

Species Dataset-
SPECIES

Homo sapiens MT CO1, Danio rerio mt co1,
Zea mays COX1, Saccharomyces cerevisiae COX1,
Rattus norvegicus Mt co1, Mus musculus mt Co1,
Gallus gallus MT CO1,
Drosophila melanogaster mt CoI,
Caenorhabditis elegans ctc 3 MTCE,
Arabidopsis thaliana COX1

12 119 MT-CO1 (and
orthologs)

Chimeras Dataset-
LEUCEGENE

PML–RARA, RARA–PML, RUNX1T1–RUNX1,
RUNX1–RUNX1T1

724

lncRNA Dataset-
LEUCEGENE

NONE 78 (23)

Mutations Dataset-
LEUCEGENE

TET2, KRAS, CEBPA 10

The samples included in each dataset and some metadata are detailed in Supplementary Table S1.

lection of ENCODE samples that metadata indicates ei-
ther polyA or ribo-depletion protocol (Supplementary Ta-
ble S1). The results clearly demonstrate differences between
libraries prepared by ribo-depletion versus polyA selection
for most of the chosen histone genes. We observe histone
gene expression variability between the samples demon-
strating again the disparity of public data. To help users cat-
egorize their RNA-seq data, we defined in the KmerExploR
tool a threshold of 200 k-mer counts per billion for this cat-
egory, above which we expect to have only the ribo-depleted
samples and not the polyA ones.

Strand-specific and unstranded library preparation are
two commonly used preparation protocols that differ by

their ability to retain or not RNA strand information. To
detect this characteristic from RNA-seq data, we designed
k-mers, specific for a set of ubiquitous genes (Table 1) and
their reverse complement counterparts. K-mers on the for-
ward strand are counted as positive and their reverse com-
plement as negative, permitting to determine the orienta-
tion of the library. If forward and reverse tags are found
in equivalent proportions in the same fastq file, data are
considered as ‘unstranded’. This leads graphically to a bal-
anced distribution between positive and negative counts.
As shown in Figure 3, using this property we are able to
clearly separate unstranded and stranded libraries. 5′ to 3′-
end bias is a difference of reads’ repartition along the tran-
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scripts, classically linked to library preparation: incomplete
retrotranscription or specific protocols. A comparison be-
tween polyA selection and ribo-depletion protocols has pre-
viously shown coverage differences across transcripts with a
poor 5′-end coverage with the polyA selection method (28).
Knowing whether an RNA-seq sample possesses a read
repartition bias is critical for isoform detection, or simply to
give an indication on the library construction protocol used
in large-scale analysis of public data. Using previously de-
scribed housekeeping genes (Table 1), we have selected dif-
ferent sets of specific k-mers depending on their position in
the regions defined as 5′ UTR, 3′ UTR and CDS. Figure
3C shows the repartition in percent of these k-mers across
the Dataset-FEATURES samples. Representing the mean
k-mer counts as a percentage allows us to evaluate the dis-
tribution homogeneity across 5′ UTR, 3′ UTR and CDS
regions between the 103 ENCODE samples. This global
representation grouping together several genes allows us
to identify samples for which one region has a very little
coverage. Here, four samples have <10% 5′ UTR coverage
(ENCFF734ZAD, ENCFF770NYA, ENCFF419GVS and
ENCFF016TGP). We can also notice a better homogeneity
of coverage for ribo-depleted samples.

Detection of potential contamination

Different microorganisms like mycoplasma and virus can
contaminate samples and cell cultures, modifying the
metabolism of the cell and therefore biasing the results
of ensuing analysis. Moreover, cancer research has shown
that viruses are responsible for ∼20% of human cancers
(29). To detect contaminants in RNA-seq data, tools rely-
ing on alignment like DecontaMiner (30) or viGEN (31)
have been widely used, but the alignment step is time and
memory consuming. Exact alignment of k-mer-based ap-
proaches like Kraken (32) and Taxonomer (33) is an al-
ternative for taxonomic classification. However, these tools
are complex and involve data cleaning from adaptors (trim-
ming), the use of internal and external databases and/or
probabilistic models for contaminant classification. Us-
ing a specific and reduced set of k-mers, we have seen
an advantage to quickly detect principal contaminants of
human cells in RNA-seq datasets, free from alignment
methods.

Because mycoplasma is a common source of cell culture
sample contamination and could affect host gene expres-
sion (25), we choose to control its presence in RNA-seq
data. Mycoplasma contamination is evaluated through the
detection of specific k-mers corresponding to 16S rRNA
sequences according to the literature. In fact, Olarerin-
George and Hogenesch showed that 90% of the specific
mycoplasma-mapped reads from human RNA-seq samples
mapped to mycoplasma rRNA. We selected six species that
have the highest record rate of detection in cell culture sam-
ples (i.e. Acholeplasma laidlawii, Mycoplasma fermentans,
Mycoplasma hominis, Mycoplasma hyorhinis, Mycoplasma
orale and Mycoplasma arginini) (18) to design our k-mers.
We used part of an RNA-seq data series previously de-
scribed as highly contaminated (25) (PRJNA153913 study)
to test the relevance of our approach. As shown in Figure 4,
we can easily detect the six selected mycoplasma species in

some samples, with a prevalence for the M. hyorhinis species.
Comparing our results with the Olarerin-George and Ho-
genesch study that used Bowtie 1 alignment and BLAST+
to filter non-specific reads, we were able to confirm my-
coplasma rRNA presence for the same samples (see Supple-
mentary Figure S5A). Moreover, we observe a high propor-
tionality between our k-mer counts and their read counts
on the 33 single-read samples (Dataset-MYCO described in
Supplementary Table S1), for each of the six common My-
coplasma species.

Viruses are a significant cause of human cancers. Several
studies interrogate for the presence of major viruses known
to infect human and other mammalian cells (22,34,35). Re-
cently, Uphoff et al. screened >300 CCLE RNA-seq data
using the Taxonomer interactive tool and compared the
results to virus-specific polymerase chain reaction (PCR)
analysis, revealing 20 infected cell lines with different viruses
(22). To rapidly explore the potential presence of viruses in
RNA-seq datasets with our k-mer-based approach, we used
the same virus reference genomes as described in the Uphoff
et al. study. Using Kmerator at the chimera level (absent
from human annotations), we designed specific k-mers for
each virus and searched them in a subset of contaminated
CCLE data according to Uphoff et al. (19 CCLE paired-
end samples) and in negative controls (3 CCLE paired-end
samples), to validate our protocol ability to detect viruses.
Among the contaminated samples, we were able to detect
the main viruses in the same samples as in the Uphoff et
al. study, except for the SRR8615677 sample where we do
not detect any virus, as the bovine polyomavirus is not in-
cluded in our list of common viruses. Our results are shown
in Figure 4B and Taxonomer results from the Uphoff et al.
study are presented in Supplementary Figure S5B. Epstein–
Barr virus (EBV) is a very common virus detected in most of
the samples; we have therefore analyzed it in more detail in
Supplementary Figures S5C (our approach) and S5D (Tax-
onomer quantification). Indeed, our EBV quantification is
correlated with the one from Taxonomer (Pearson’s and
Spearman’s correlation coefficients are 0.99 and 0.89, re-
spectively).

HeLa is the first immortal human cell line, coming from
Henrietta Lacks’ cancerous tissue samples. Her cancer was
triggered by an infection with human papillomavirus type
18 (HPV-18). Nowadays, this cell line is largely used in med-
ical research. Looking for several viruses in public RNA-
seq cancer-related databases revealed the presence of HPV-
18 sequences in many cancers (36) that closely resemble the
HPV-18 viral sequence that is integrated into HeLa cells,
suggesting a contamination. Three segments of HPV-18 are
integrated into the HeLa genome on chromosome 8 and
include the long control region, the E6, E7 and E1 genes,
and partial coding regions for the E2 and L1 genes (20).
These genes are expressed in HeLa cells, and mutations have
been found specifically in HeLa cells. Thus, selecting these
mutated HeLa HPV-18 gene-specific k-mers and counting
them into three CCLE RNA-seq datasets (one positive sam-
ple and two negative controls), we validated the accuracy
of our selection as we are able to find our k-mer selec-
tion specifically in HeLa cells. We also checked the results
in other HeLa samples from the PRJNA639358 study (see
Supplementary Figure S5E).
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Figure 4. KmerExploR default usage: contaminations. All presented bar plots are direct output of KmerExploR and all bar plot datasets are described in
Supplementary Table S1. For each bar plot, the legend lists the set of predictors for which k-mer mean counts are computed (details in Table 1). Samples are
on the X-axis. Panels (A), (B) and (D) have the mean k-mer counts by gene normalized per billion of k-mers on the Y-axis. (A) Mycoplasma contamination
on the Dataset-MYCO (33 single-read samples). (B) Virus detection on the Dataset-VIRUS-CCLE (22 paired-end samples). (C) Species determination on
the Dataset-SPECIES (27 paired-end samples). For this category, after computing k-mer mean counts by species, they are converted in % (Y-axis) to avoid
big expression differences between species. (D) HeLa determination on the Dataset-HELA-CCLE (three paired-end samples). The sample in the middle is
a HeLa cell line and the two others are negative controls (SF767 and SiHa cells).



12 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

As for HeLa cells, cross-species contamination remains
a documented ‘danger’ for the interpretation of results in
molecular biology (37). The probability of mixed cell lines
in sample preparation, usage of PCR that can accidentally
amplify the wrong piece of DNA, and an unknown proba-
bility of error in metadata assignation motivated us to cre-
ate a quality check to determine the species of an RNA-
seq sample. In (38), the usage of mitochondrial DNA for
phylogenetic and taxonomic inference was discussed and
two extreme viewpoints emerged: using exclusively the mi-
tochondrial DNA or fully excluding it. It appears that mi-
tochondrial DNA does not fully answer or impairs the per-
spectives of advanced phylogenetics. However, the ‘mito-
chondrial barcode’ approach does show an interesting gene
marker, MT-CO1 (39), that could be sufficient for a quick
check of the species of RNA-seq data. Indeed, this gene is
highly expressed and reference sequences from many dis-
tinct species of animals are available. Thus, we selected spe-
cific k-mers with Kmerator, at the gene level, for MT-CO1.
We repeated the procedure for MT-CO1 orthologs in dif-
ferent species, principally found in the SRA database, us-
ing the appropriate species reference genome and transcrip-
tome. These k-mers have been then quantified in three pub-
lic data by species to check the efficiency of their usage. As
shown in Figure 4C, the research of MT-CO1 k-mers alone
can discriminate most of the common Ensembl species and
can be usable for a quick quality check. However, without
proper experiments we cannot support its usage with phy-
logenetically close species.

To conclude, we developed KmerExploR to rapidly con-
trol RNA-seq raw data quality and filter samples on un-
usual profiles or presence of contaminations. KmerExploR
is a tool that provides a modular set of analyses like fastQC
(https://qubeshub.org/resources/fastqc). It can be used in a
complementary way to fastQC analysis to complete miss-
ing metadata in public datasets or to give a quick profile of
the RNA-seq contents. The modular analysis is based on a
k-mer selection from predictor genes, included in KmerEx-
ploR. The tool can be used to control any human RNA-seq
dataset, and it can also be easily modified adding any other
modular function.

KmerExploR, an advanced usage for the detection of genomic
or transcriptomic events

The above ‘checking application’ of KmerExploR demon-
strated all its potential in the rapid exploration of large
public RNA-seq datasets before performing any biological
query. However, the KmerExploR tool can also be used in a
more advanced way such as biomarker search or discovery
in human health. This application is a powerful one as it can
compensate for the lack of completeness in genomic or tran-
scriptomic references and we currently know that much im-
portant information may be missed by ignoring the unref-
erenced RNA diversity (12). As a proof of concept, we used
a set of k-mers designed with Kmerator to identify events
outside reference annotations including fusion or chimeric
RNA, oncogene mutations and new lncRNA expression.
We then applied k-mer quantification in a tumoral and a
non-tumoral dataset to evaluate the specificity and perfor-

mance of the approach. The results obtained with a part of
the Leucegene cohort are presented in Figure 5.

The selection includes different AML subtypes and nor-
mal CD34+ cells as control (Dataset-LEUCEGENE de-
scribed in Supplementary Table S1). The results obtained
with two well-known fusion RNAs associated with chro-
mosomal translocation, RUNX1–RUNXT1 t(x,21) and
PML–RARA t(15,17), and their reciprocal counterparts
RUNXT1–RUNX1 and RARA–PML are presented in Fig-
ure 5A. In this case, the k-mers, once designed by Kmerator,
are restricted to those spanning the fusion junction with at
least 10 nucleotides in gene 1 or gene 2 of the fusion. All the
normal CD34+ cells are negative and we only observe an ex-
pression in corresponding positive AML subtypes. Figure
5B illustrates the results obtained for mutations in TET2,
KRAS and CEBPA genes currently used in AML diagno-
sis. Once again, we only observe the presence of these mu-
tations in positive samples, demonstrating the high speci-
ficity of the approach by k-mers. The expression of a new
lncRNA was also quickly searched in the Leucegene dataset
(see Figure 5C); we observe a homogeneous and low expres-
sion in CD34 normal cells compared to a heterogeneous
one in AML subtypes. This lncRNA candidate was already
described in (23), using for the first time the ‘k-mer con-
cept’ for checking new biomarker candidates, and we have
demonstrated a restricted expression of the NONE ‘chr2-
p21’ lncRNA in the hematopoietic lineage using the Leuce-
gene and ENCODE datasets. Hence, for lncRNA candi-
dates, following their discovery in a tissue/disease type, their
specificity could be easily evaluated through quantification
in a wide range of RNA-seq data including normal and
pathological conditions as recently described by Riquier et
al. (40).

In conclusion, the high specific expression of transcrip-
tional events may lead them to be used as biomarkers for bi-
ological and health applications, including cell therapy, di-
agnosis, prognosis or patient follow-up as it is already done
with fusion RNAs and mutations.

DISCUSSION

Considering the growing number of RNA-seq data, the use
of raw data sequences is an important step to check with
RNA-seq protocols or bioinformatic pipelines bias. Here,
we demonstrated that the Kmerator Suite is an efficient
and useful set of tools to verify RNA-seq quality and con-
trol intrinsic method and biological characteristics that of-
ten failed in technical description. We also showed that the
Kmerator Suite can be used to quantify gene/transcript-
specific expression as well as to explore sequence variations
at the transcriptional level. In this first version, the tool is
adapted to human data Ensembl entry, as main public data
are available for this species (164 000 RNA-seq with >30
million reads for Homo sapiens in the SRA database). A
new implementation with adapted predictors is necessary
for other species.

The meta-analyses performed in the present study with
KmerExploR are a proof of concept of the procedure po-
tential and could be extended to other biological RNA-seq
questioning: (i) to extend the application to an enlarged
set of microorganisms including new ones like SARS-Cov2

https://qubeshub.org/resources/fastqc
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Figure 5. KmerExploR advanced usage: quantification of transcriptomic events outside the annotations. All presented bar plots are direct output of
KmerExploR and they are all generated from the Dataset-LEUCEGENE described in Supplementary Table S1 (131 paired-end samples). This dataset
includes normal CD34+ cells as control (in green on the X-axis) and different AML subtypes (in black on the X-axis). For each bar plot, the legend lists
the set of predictors for which k-mer mean counts normalized per billion (Y-axis) are computed. (A) Chimera detection. Two well-known fusion RNAs
associated with chromosomal translocation and their reciprocal counterparts are presented: RUNX1–RUNXT1 t(x,21) and PML–RARA t(15,17). (B)
Mutation detection. TET2, KRAS and CEBPA genes are used in AML diagnosis. The bar plot shows four different mutations for these genes, detected
specifically in some AML samples. The reference allele for each of these mutations is detected in almost all samples. (C) New lncRNA detection: NONE
‘chr2-p21’ lncRNA described in (23). This transcript is expressed in the whole dataset but shows different levels of expression depending on AML subtype.
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detection and (ii) to search for immunophenotyping pro-
file in cancer datasets as already published by Mangul
et al. (41,42). Considering advanced applications, we also
demonstrated the potential of k-mers to explore gene ex-
pression in RNA-seq to reinforce biological questions or
biomarker usage and discovery. Moreover, many other re-
quests could be easily considered for annotated gene explo-
ration like gene co-expression, or to compensate the lack
of completeness in genomic or transcriptomic references
to cover unreferenced RNA diversity and search for new
spliced events, intron retention or new transcript categories
including circular RNAs. In order to increase the potential
of the k-mer approach, access to very large-scale datasets
like SRA level (164 000 human samples) could be consid-
ered with efficient indexing structure development (43).

Finally, we showed that the Kmerator Suite can be used
to quantify gene/transcript expression as well as to ex-
plore sequence variations at the transcriptional level. The
simplicity of specific k-mer extraction principle and quan-
tification provide flexibility of usage. Indeed, Kmerator
Suite quantification does not use probabilistic methods or
expectation–maximization algorithms like in Kallisto (7),
Sailfish (44) or RNA-Skim (45). Therefore, the sets of spe-
cific k-mers for quantification can be created, merged and
updated at will, without consequence on the quantification
itself. The principle of user-owned collection of signatures
of interest that can be searched broadly among datasets is
the core of KmerExploR application.
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Cleland,I., Harrison,P.W., Jayathilaka,S., Kay,S., Keane,T. et al.
(2018) The European Nucleotide Archive in 2017. Nucleic Acids Res.,
46, D36–D40.

https://www.doi.org/10.12688/f1000research.11352.2

