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A B S T R A C T   

Introduction: Several recent studies indicate that deep gray matter or thalamic volume loss (VL) might be 
promising surrogate markers of disease activity in multiple sclerosis (MS) patients. To allow applying these 
markers to individual MS patients in clinical routine, age-dependent cut-offs distinguishing physiological from 
pathological VL and an estimation of the measurement error, which provides the confidence of the result, are to 
be defined. 
Methods: Longitudinal MRI scans of the following cohorts were analyzed in this study: 189 healthy controls (HC) 
(mean age 54 years, 22% female), 98 MS patients from Zurich university hospital (mean age 34 years, 62% 
female), 33 MS patients from Dresden university hospital (mean age 38 years, 60% female), and publicly 
available reliability data sets consisting of 162 short-term MRI scan-rescan pairs with scan intervals of days or 
few weeks. Percentage annualized whole brain volume loss (BVL), gray matter (GM) volume loss (GMVL), deep 
gray matter volume loss (deep GMVL), and thalamic volume loss (ThalaVL) were computed deploying the Ja-
cobian integration (JI) method. BVL was additionally computed using Siena, an established method used in many 
Phase III drug trials. A linear mixed effect model was used to estimate the measurement error as the standard 
deviation (SD) of model residuals of all 162 scan-rescan pairs For estimation of age-dependent cut-offs, a 
quadratic regression function between age and the corresponding annualized VL values of the HC was computed. 
The 5th percentile was defined as the threshold for pathological VL per year since 95% of HC subjects exhibit a 
less pronounced VL for a given age. For the MS patients BVL, GMVL, deep GMVL, and ThalaVL were mutually 
compared and a paired t-test was used to test whether there are systematic differences in VL between these brain 
regions. 
Results: Siena and JI showed a high agreement for BVL measures, with a median absolute difference of 0.1% and 
a correlation coefficient of r = 0.78. Siena and GMVL showed a similar standard deviation (SD) of the scan-rescan 
error of 0.28% and 0.29%, respectively. For deep GMVL, ThalaVL the SD of the scan-rescan error was slightly 
higher (0.43% and 0.5%, respectively). Among the HC the thalamus showed the highest mean VL (− 0.16%, 
− 0.39%, and − 0.59% at ages 35, 55, and 75, respectively). Corresponding cut-offs for a pathological VL/year 
were − 0.68%, − 0.91%, and − 1.11%. The MS cohorts did not differ in BVL and GMVL. However, both MS cohorts 
showed a significantly (p = 0.05) stronger deep GMVL than BVL per year. 
Conclusion: It might be methodologically feasible to assess deep GMVL using JI in individual MS patients. 
However, age and the measurement error need to be taken into account. Furthermore, deep GMVL may be used 
as a complementary marker to BVL since MS patients exhibit a significantly stronger deep GMVL than BVL.   
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1. Introduction 

Magnetic resonance imaging (MRI)-derived whole brain volume loss 
(BVL) is increasingly recognized as an important imaging marker of 
neurodegeneration in multiple sclerosis (MS), and has recently been 
recommended to be included into the “no evidence of disease activity” 
(NEDA) criteria (Giovannoni, et al., 2015). However, measurement of 
BVL in individual MS patients is a matter of controversy (Barkhof, 2016; 
Zivadinov, et al., 2016). Individual measures appear impacted by short- 
term biological noise (De Stefano, et al., 2017; Hagemann et al., 2011), 
such as hydration status (Duning, et al., 2005) and the difficulty that 
with increasing age also BVL increases, even in the absence of patho-
logical processes (Hedman, et al., 2012). Several recent publications 
addressed these issues. Age dependent cut-offs for annual BVL (BVL per 
year) have been suggested to help distinguishing physiological from 
pathological BVL (Battaglini, et al., 2019; Opfer, et al., 2018a). 
Furthermore, the measurement error and magnitude of potential short- 
term biological confounders such as hydration status have been deter-
mined (Narayanan, et al., 2020; Opfer, et al., 2018b). 

A number of these studies showed that BVL in MS is not homoge-
neous but rather has a more focal distribution (for review see (Lansley, 
et al., 2013)). Most studies found patterns of gray matter (GM) volume 
loss (GMVL) in relapsing remitting MS (RRMS) patients involving deep 
GM structures such as the thalamus and basal ganglia (Lansley, et al., 
2013). The MAGNIMS study group proved deep GM volume loss (deep 
GMVL) a driver of disability worsening (Eshaghi, et al., 2018). 
Furthermore, in recent phase III MS drug trials thalamic volume loss 
(ThalaVL) and GMVL were included as an exploratory (Cohen, et al., 
2010; Kappos, et al., 2010) or even a secondary endpoint (Cohen, et al., 
2019; Comi, et al., 2019). 

As is the case in BVL, it is important to determine age dependent cut- 
off values and the magnitude of the measurement error in order to allow 
for a solid interpretation of deep GMVL in individual MS patients. Due to 
the mentioned more focal distribution of BVL it is not possible to apply 
results established for BVL to measurements of regional VL (Azevedo, 
et al., 2019). 

In this study Jacobian integration (JI) (Ashburner, 2007; Nakamura, 
et al., 2014) was used to determine GMVL, deep GMVL, and ThalaVL. 
Siena (Smith, 2002) is an established method used in many phase III 
drug trials to quantify BVL. However, since Siena critically depends on 
brain surface changes, it is not a suitable methodology to determine 
regional VL. JI uses elastic registration between a baseline and follow-up 
image. The volume change is derived from the transformation between 
these two images (more precisely from the Jacobian determinant of the 
transformation field). Therefore, JI can be used to compute BVL (like 
Siena) but regional VL in addition. The JI method has previously been 
validated (Nakamura, et al., 2014) and is widely accepted as a tool to 
assess regional VL in structural MRI (Steenwijk, et al., 2017). However, 
there are different implementations of JI available. Depending on the 
deployed underlying registration algorithms, results derived from JI can 
differ significantly (Beadnall, et al., 2019). 

The aim of this paper is to define age-dependent cut-off values for 
GMVL, deep GMVL, and ThalaVL. For these measures an estimation of 
the measurement error shall be determined, which provides an estima-
tion of the confidence in a measurement of an individual patient. A 
cohort of MS patients with longitudinal MRI data was used to determine 
the fraction of patients showing pathological VL taking the patient’s age 
into account. 

2. Methods and materials 

2.1. Longitudinal cohort of healthy controls (HC) 

A cohort of 189 individuals with no history of or currently ongoing 
neurological or psychiatric condition, with at least two MRI scans of the 
same scanner and same acquisition protocol and no structural 

abnormalities on these brain MRIs according to visual inspection by an 
experienced radiologist (C.G.) was consecutively extracted from a group 
of asymptomatic, healthy subjects undergoing a brain MRI scan as part 
of an extensive medical prevention program at the Conradia Medical 
Prevention Center in Hamburg, Germany. All subjects gave written 
informed consent. The study was approved by the Ethics Committee of 
the Board of Physicians in Hamburg, Germany. Eligible subjects 
received two or more MRI examinations on the same 1.5 Tesla (T) 
Magnetom Avanto scanner (Siemens Medical Solutions, Erlangen, Ger-
many) using identical sequence settings. The sequence was obtained 
before contrast agent administration. Scanner, protocol settings, head 
coil, and software version were kept unchanged for all subjects enrolled 
into this study. Mean age of the 189 individuals was 53.9 years with a 
standard deviation (SD) of 10.6 years. Mean interval between first and 
last MRI scan was 3.5 years. An average of 2.4 scans was available for 
each patient with a mean time interval between two consecutive scans of 
2.5 years. Detailed protocol settings as well as a clinical characterization 
of all cohorts are provided in Table 1. 

2.2. Longitudinal cohort of MS patients 

2.2.1. Zurich MS cohort 
This data set of 94 MS patients is part of an observational study 

carried out at the University Hospital of Zurich, Switzerland. All images 
were acquired with a 3.0 T Philips Ingenia scanner (Philips, Eindhoven, 
Netherlands). Mean age was 34.2 years (SD 8.8 years). Mean interval 
between first and last MRI scan was 2.8 years. For each patient an 
average of 3.5 scans were available with a mean time interval between 
two consecutive scan of 1.1 years. All subjects gave written informed 
consent. The study was approved by the local ethics committee. 

2.2.2. Dresden MS cohort 
MRIs from 33 MS patients were included, acquired at Institute of 

Diagnostic and Interventional Neuroradiology, University Hospital Carl 
Gustav Carus, with a 3.0 T Siemens Verio scanner. Mean age was 38.2 
years (SD 10.1 years). 32 patients had 4 scans each with a mean time 
interval between two consecutive scans of 1.1 years. For one patient 
only two scans were available. Mean interval between first and last MRI 
scan for all patients was 3.9 years. All subjects gave written informed 
consent. The study was approved by the local ethics committee. 

2.3. Reliability datasets 

As in a previous study (Opfer, et al., 2018b) three publicly available 
MRI datasets were used to estimate the magnitude of the measurement 
error. 

2.3.1. Maclaren dataset 
This freely available MRI dataset contains data from three healthy 

subjects (2 males, 1 female; 26, 31 and 30 years old) (Maclaren, et al., 
2014). For each subject, 20 MRI examinations were performed within a 
31-day period on a 3.0 T General Electric (GE) MRI scanner. In each 
scanning session, every subject was scanned twice with repositioning of 
the subject between scans. 

2.3.2. OASIS reliability dataset 
The OASIS reliability dataset is part of the cross-sectional Open Ac-

cess Series of Imaging Studies (OASIS (Marcus, et al., 2007), http: 
//oasis-brains.org/) and contains data from 20 healthy controls who 
received two MRI examinations on a 1.5 T Siemens scanner. Median age 
is 22 (interquartile range (IQR) 20–25) years and median interval be-
tween the two scans 11 (IQR 3–31) days. 

2.3.3. Biberacher dataset 
The freely available MRI dataset from Biberacher and colleagues 

(Biberacher, et al., 2016) provides data from two relapsing-remitting MS 
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patients (both female; 29 and 24 years old). Within three weeks, patients 
received five or six MRI examinations, each time on three different 3.0 T 
scanners (Philips, Siemens and GE) with an interval of several days 
between scans. 

2.4. Lesion filling 

To mitigate the effect of mis-registration between baseline (BL) and 
follow-up (FU) scan due to appearance of new or enlarged lesions a 
lesion filling procedure was performed as a first processing step for all 
images (BL and FU) belonging to the longitudinal MS cohorts. For both 
MS cohorts a 3D FLAIR MRI sequence was acquired in the same imaging 
session the corresponding T1 weighted sequence (Table 1) was acquired. 
Hyperintense lesions were contoured on the corresponding FLAIR im-
ages with a semiautomatic procedure. The resulting lesion maps were 
rigidly registered to the corresponding T1 image and the lesion map was 
used to replace the voxel intensities of lesion voxels in the T1-weighted 
MRI image with estimated “healthy” white matter intensity using the 
algorithm by Valverde and colleagues (Valverde, et al., 2017). The 
Statistical Parameter Mapping (SPM version 12, Oxford, UK) software 
package (short SPM12) toolbox “SLF_lesion_filling” as provided by this 
author was deployed. For the MS cohorts the lesion filled images were 
used for further computations in Section 2.5 (Siena) and 2.6 (Jacobian 
integration). 

2.5. BVL loss with Siena 

BVL between two time points was quantified using the Structural 
Image Evaluation using Normalisation of Atrophy (Siena, version 5.06) 
method (Smith, 2002), which is part of the FMRIB Software Library 
(FSL; http://www.fmrib.ox.ac.uk/fsl). It is well known that the perfor-
mance of Siena can differ greatly depending on parameter settings and 
preprocessing steps (Cover, et al., 2014) (Popescu, et al., 2013). As in 
(Opfer, et al., 2018a, 2018b) we applied the FSL script “fslreorient2std” 
to match the orientation of all images to that of the standard template 
image (Montreal Neurological Institute). In addition a neck removal as 
recommended in (Popescu, et al., 2012) was performed. As recom-
mended in the mentioned papers Siena settings “-B -f 0.2 -m” were used, 
which differ from the default settings. The parameter “-B -f 0.2” means 
that the default option for the brain extraction tool (BET) is changed 
from default 0.5 to 0.2 and “-m” enforces a standard-space masking in 
addition to BET. With the configuration described, BVL (in %) was 
calculated for all MRI data pairs. 

2.6. Regional VL with Jacobian integration (JI) method 

Regional VL was computed by a number of processing steps as 
described in the following. The processing was performed using SPM12 
under MATLAB 2014a. For the statistical analysis the Statistics and 
Machine Learning Toolbox by MATLAB was used. 

2.6.1. Image registration and JI 
For longitudinal assessment of regional VL the “longitudinal pairwise 

registration” toolbox as provided by SPM12 was used. The longitudinal 
registration technique is based on a pairwise inverse-consistent highly 
elastic diffeomorphic alignment of the BL and the FU scan to a halfway 
space of the subject. The approach incorporates rigid registration into a 
halfway space (a space between BL and FU image) and correction for 
intensity inhomogeneities (Ashburner, 2007; Ashburner and Ridgway, 
2012). The tool provides the Jacobian determinant (short, the Jacobian) 
of the transformation field as an output image in the same space as the 
halfway image space. The output Jacobian is the composition of two 
Jacobians: the Jacobian of the transformation field from the halfway 
space image to the FU scan and the negative Jacobian from the halfway 
image to the BL scan. Each voxel of the Jacobian therefore describes the 
percentage volumetric change between BL and FU image for that 
particular voxel location. In order to obtain volumetric change of certain 
subregions of the brain the signal of the Jacobian needs to be integrated 
over a region of interest. Region of interests are defined by image seg-
mentation of the halfway image space. 

2.6.2. Segmentation of gray and white matter 
For each subject the halfway T1 MRI image (lesions were filled for 

the MS patients) was segmented into gray matter (GM) and white matter 
(WM) using a previously described and validated atlas-based volumetry 
approach implemented in SPM12 (Huppertz, et al., 2010; Opfer, et al., 
2016). The resulting GM and WM maps are probability maps in the 
halfway image space of the subject with values between 0 and 1. 

2.6.3. Segmentation of deep gray matter structures 
Deep GM structures in the halfway image space of each subject were 

segmented using the FIRST module from the FMRIB’s Software Library 
(FSL; version 5.0; http://fsl.fmrib.ox.ac.uk/fsl). The FIRST module 
provides binary segmentation masks of the thalamus, caudate, putamen, 
pallidum, hippocampus, amygdala and accumbens. 

Table 1 
Patient characteristics and MRI protocol details.   

Healthy controls MS patients Reliability datasets 

Cohorts Zurich Dresden Maclaren OASIS Biberacher 

sample size 189 94 33 3 20 2 
healthy 189 NA NA 3 20 NA 
MS type at BL (CIS/RRMS/SPMS/PPMS) NA 33/54/0/3 0/33/0/0 NA NA 0/2/0/0 
female 43 (22%) 58 (62%) 20 (60%) 1 (33%) 12 (60%) 2 (100%) 
age (years) 53.9 (±10.6) 34.2 (±8.8) 38.2 (±10.1) 26, 31 and 30 22 (20–25) 29 and 24 
disease duration (years) NA 2.7 (±4.5) 5.2 (±4.8) NA NA 5 and 5.5 
EDSS NA 1.3 (±1.3) 2.7 (±1.6) NA NA 1 and 2 
mean no. of scans per patient 2.4 3.5 3.9 40 2 5 or 6 
mean interval between two consecutive 

scans 
2.5 years 1.1 years 1.1 years 1 (max 3) days 11 (3–31) days 3 (3–4) days 

mean scan interval first and last scan 3.5 (±1.9) years 2.8 (±1.3) years 3.0 (±0.4) years 30 days 11 (3–31) days 2–3 weeks 
MRI scanner 1.5 T Siemens 

Avanto 
3 T Philips Ingenia 3 T Siemens Verio 3 T GE Discovery 1.5 T Siemens 

Vision 
3 T GE Signa 
3 T Philips Achiva 
3 T Siemens Verio 

voxel size in mm 1 0.7 1.25 1 1 0.9, 1, 1 
slice thickness (mm) 1 0.9 1.5 1.2 1.25 1 
flip angle (◦) 15 8 9    
TR (ms) 980 8.9 2000 7.3 9.7 8.2, 9, <9 
TE (ms) 2.95 4.07 2.8 3 4 3.2, 4, 2.45 
TI (ms) 600 NA 900 400 20 450, 1000, 900  
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2.6.4. Computing regional VL 
Regional VL was computed as the weighted sum over the Jacobian 

for the following regions  

• whole brain volume loss: BVLJI =
∑

Jacobiani⋅(gmi +wmi)/
∑

(gmi +

wmi),  
• gray matter volume loss: GMVLJI =

∑
Jacobiani⋅gmi/

∑
gmi,  

• deep gray matter volume loss: deep GMVL JI =
∑

Jacobiani⋅deepgmi/
∑

deepgmi,  
• thalamic volume loss: ThalaVL JI =

∑
Jacobiani⋅thali/

∑
thali, 

with the sum over all image voxels i. Deep GM was defined as the sum 
of the thalamus, caudate, putamen, amygdala, and the pallidum. The 
same definition was used in the recent study by the MAGNIMS study 
group (Eshaghi, et al., 2018). 

2.6.5. Regularization 
The JI approach is based on an elastic, highly non-linear registration 

between two longitudinal images. To co-register the images, an opti-
mization problem is solved. The optimization minimizes a weighted sum 
of two terms. The first term describes the similarity between the 
deformed image and the target image and the second regularization 
term describes the complexity of the applied non-linear transformation. 
This regularization term is introduced to prevent sharp discontinuities in 
the resulting transformation fields and to achieve anatomically consis-
tent and meaningful results. In general a higher weight on the regula-
rization term will result in a more rigid transformation field. In 
(Ashburner and Ridgway, 2012) the influence of the 5 regularization 
parameters is described. The default regularization parameter provided 
by the toolbox (the values [0 0 100 25 100]) were used. The SPM12 
longitudinal pairwise registration toolbox allows specifying a time in-
terval in years between the scans. In the default implementation the 
values [0 0 100 25 100] are divided by the scan interval in years, 
resulting in a lower regularization. This approach is based on the 
assumption that healthy individuals exhibit approximately − 0.2% BVL 
per year. Since BVL depends on the age and since MS patient can have 
significantly higher BVL per year than healthy individuals this approach 
was modified. The regularization was chosen to be inversely propor-
tional to the BVL measured by the Siena method (see above). The reg-
ularization parameters [0 0 100 25 100] were divided by the factor abs 
(measured BVL Siena)/0.2 and the time interval was set to 1 year 
regardless of the true scanning interval. The interval was set to 1 year in 
order to prevent the built-in scaling of the regularization parameter with 
the scan interval. The resulting BVL was annualized by dividing the 
measured BVL with the true scan interval in years (BVL per year or short 
BVL/year). For an individual with a BVL of 0.2% per year this would 
result in the default setting for a one-year interval. For higher BVL the 
regularization is relaxed and allows the transformation field to be more 
flexible regardless of the time interval. 

2.6.6. VL for more than two time points 
For many individuals more than two MRI scans were available. In 

these cases, VL was calculated for each pair of two consecutive MRI 
scans. Annualized VL was calculated for each subject from the regression 
line fitted to all VL measurements for that subject. More precisely, if 
bvlidenotes the percentage VL between the age of the patient agei and 
agei+1, then the participant’s brain volume voli+1at age agei+1, will 
change according to the formula voli+1 = voli⋅(1+ bvli/100). Example: 
vol0 = 1000ml, age0 = 50years, age1 = 52years, bvl0 = − 0.2% then the 
brain volume at age 52 years will be vol1 = 998 ml. A linear regression 
function ffitting the data(agei, voli) was computed. The final annualized 
percentage BVL for each study participant was then determined by 100⋅ 

f(age0)− f(agen)
f(age0)(agen − age0)

where age0 is the age at baseline and agen is the age at the 
last follow-up scan. The VL/year computed with the formula above is 
independent from the brain volume vol0 at baseline (since this value is 

unknown it was set to 100 in our computation). In the case there are only 
two MRI scans available (and thus only one VL measurement) the above 
procedure boils down to the known formula for annualized VL: 100⋅ 

f(age0)− f(age1)
f(age0)(age1 − age0)

= bvl1
age1 − age0

. 

2.7. Manual quality control 

As described above, the BVL was computed with Siena and with JI. 
All timely consecutive image pairs with an absolute difference between 
the Siena and the JI measurement of more than 2% where subjected to a 
manual quality control. The data pair was excluded from the original 
cohort if an objective reason for the large deviation between the two 
measurements (Siena and JI) was found. In addition all MRI images were 
reviewed to check whether they met the minimum image quality stan-
dard. Objective reasons for exclusion were  

• strong motion artefacts in one of the two images,  
• gadolinium contrast in one of the two images, or  
• strong distortions in one of the two images. 

2.8. Comparison of BVL with Siena and JI 

For all the remaining data pairs BVL was computed with Siena and 
with JI and annualized as described in the section above. The two 
methods were compared for the HC and for the two MS cohorts. The 
Pearson correlation coefficient was used to compute the level of agree-
ment between the two methods. In addition the mean difference be-
tween Siena and JI was computed. A paired t-test was used to test 
whether there are systematic differences between the two methods. 
Finally, the 25th, the median, and the 75th of the absolute percentages 
differences were computed. 

2.9. Estimation of measurement error 

The measurement errors were estimated by means of the three reli-
ability datasets with scan intervals of days to weeks for BVL with Siena 
and JI, GMVL, deep GMVL and ThalaVL. Since no VL is expected in that 
short time period VL measurements comprise the intrinsic measurement 
error of the method and the potential short-term (days/weeks) biolog-
ical fluctuations of the brain volume (Opfer, et al., 2018b). For each pair 
of consecutive MRI scans VL was computed for each of the three reli-
ability datasets. For the Maclaren dataset for each of the three subjects 
20 MRI examinations were performed. In each session each subject was 
scanned twice with repositioning of the subject between scans. Since in 
each session two MRIs were acquired for each pair of timely consecutive 
MRI sessions there are 4 possible pairs of MRIs. However, VL was only 
computed between the first of the two scan-rescans and between the 
second scans (e.g. between scan1_timepoint1 vs. scan1_timepoint2 and 
between scan2_timepoint1 vs. scan2_timepoint2). Therefore, for each 
subject we obtained (2*19 = ) 38 VL measurements and hence alto-
gether (3*38 = ) 114 VL measurements. For the OASIS dataset 20 VL 
measurements were obtained (20 subjects with 2 scans within 1 to 31 
days). The Biberacher dataset resulted in 13 (5 times GE, 4 times Philips, 
and 4 times Siemens) BVL measurements for patient# 1 and 15 (5 times 
GE, 5 times Philips, and 5 times Siemens) VL measurements for patient# 
2. All data were pooled into one single data set. As subjects contributed a 
varying number of scans, we performed an analysis using a linear mixed 
effect model. The 25 subjects as well as the 5 different scanners involved 
were used as random effects (model was ‘BVL ~ 1 + (1 | Subject) + (1 | 
Scanner)’). The full covariance matrix was used in the mixed effect 
model. Despite the large number of VL measurements analyzed, our 
cohort contains only 25 subjects, with an age range between 20 and 31 
years. Therefore an adjustment for age, sex or baseline brain volume was 
not possible with the chosen cohorts and beyond the scope of this 
manuscript. The standard deviation (SD) of the model residuals is a 
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suitable measure for the SD of the pooled VL measurements since it takes 
repeated measurements into account. In addition the median and the 
95th percentile of the absolute VL measurements were computed for the 
pooled data and for each cohort individually. 

2.10. BVL, GMVL, deep GMVL, and ThalaVL in healthy aging 

For the HC cohort a quadratic regression function between age and 
the corresponding VL measurements (BVL, GMVL, deep GMVL and 
ThalaVL) per year was computed. Since regression can be distorted by 
outliers the regression was performed in an iterative fashion. After the 
first regression the standard deviation (SD) of the residuals was deter-
mined. Points with a distance to the regression function higher than 3.5 
times the SD were removed from the second regression computation. 
Points on the second and final regression line can be interpreted as mean 
VL per year for a particular age. The 5th and 20th percentile of the re-
siduals of the second regression function were computed. The regression 
function was shifted down by the magnitude of the 5th and 20th 
percentile, respectively. For each age we can expect 95% of the mea-
surements to exceed the 5th percentile and 80% to exceed the 20th 
percentile line. Therefore, the 5th percentile can be used as a cut-off for 
pathological VL per year with an error probability of 5% and the 20th 
percentile can be used as a cut-off with an error probability of 20%. 

2.11. BVL, GMVL, deep GMVL, and ThalaVL for MS patients 

The mean VL and SD of VL were computed for the HC cohort as well 
as for both MS cohorts. Since VL increases with age and subjects of the 
HC cohort are significantly older than MS patients it is not possible to 
directly compare VL of HC subjects and MS patients. We therefore 
adjusted all VL measurements by computing the residuals to the 
quadratic regression function as described above. All adjusted VL/year 
values were tested for differences between males and females with a 
two-sample t-test (p = 0.05). In order to understand better which brain 
region is best suited to discriminate between HC and MS patients a 
receiver operating characteristic (ROC) curve was computed. The ROC 
was computed for varying percentiles of the age adjusted VL measures 
for the HC cohort ranging from 0 to 100. Each percentile was used as 
potential cut-off value to discriminate between normal and pathological 
VL. For the 20th percentile, for example, 20% of the HC cohort would be 
wrongly classified as pathological. The sensitivity for a particular cut-off 
was determined as of being the ratio of MS patients below that threshold 
(e.g. correctly classified as pathological). 

2.12. Comparison of VL for different brain regions 

We compared VL adjusted for age between the investigated brain 
regions by computing the mean difference between these regions for the 
Zurich and the Dresden MS cohorts. A paired t-test was used to test 
whether there are systematic differences in VL. 

3. Results 

For the HC cohort no MRI was excluded for reasons of image quality 
issues. Three MRIs were excluded belonging to three different patients 
from the Zurich MS cohort due to Gadolinium contrast (which was not 
indicated in the DICOM header). Since for these three patients more than 
2 MRIs were originally available, no patient had to be removed from the 
study. For the Dresden MS cohort 9 MRIs were not included into the 
study. All 9 MRIs were the last ones of the 4 MRI scans. Consequently, for 
9 patients only 3 instead of 4 MRIs were used for the analyses. The 
reason in all 9 cases was a distortion in the last MRI scan. This is illus-
trated in Fig. 1. Images A and B show time points 3 and 4 of one of the 
excluded cases. For illustration, both images were rigidly registered into 
the halfway image space of the two images. Subplot C shows a tile plot of 
images A and B. The images are superimposed showing alternating 
image A and B. The upper part of the skull seems to be distorted. The 
Jacobian would provide wrong information on the superior part of the 
brain. 

Fig. 7 shows the Jacobians for two sample cases. Image A and B of 
Fig. 7 show a male subject from the HC cohort at 69.2 and 75.1 years, 
respectively. Plot C shows the corresponding Jacobian. This HC case 
features a BVL JI of − 0.52% per year. Image A1 and B1 show an MS 
patient of the Dresden cohort at 32.7 and 34.0 years, respectively. Plot 
C1 shows the corresponding Jacobian. The MS patient features a BVL JI 
of − 1.21% per year and a ThalaVL of − 2.11% per year. 

Table 2 and Fig. 2 demonstrate the comparison between BVL per year 

Fig. 1. One of the 9 excluded MRIs from the Dresden MS cohort. The images A and B show time points 3 and 4 of one of the 33 MS patients. Both images are rigidly 
registered into the halfway image space of the two images. Subplot C shows a tile plot of images A and B. The images are superimposed showing alternating image A 
and B. The upper part of the skull seems to be distorted. 

Table 2 
Comparison between BVL per year in % measured with Siena and JI for the 
cohort of healthy controls (HC) and for the two MS patient cohorts (Zurich and 
Dresden).   

Correlation BVL/ 
year (Siena vs. JI) 

BVL/year (Siena – 
JI) [%] 

BVL/year abs(Siena – JI) 
[%]  

r p Mean p 25th median 75th 

HC  0.88  <0.001 − 0.07  0.0248  0.03  0.09  0.15 
Zurich MS  0.77  <0.001 0.00  0.1787  0.06  0.13  0.23 
Dresden MS  0.75  <0.001 0.07  0.3488  0.07  0.15  0.24 
All  0.78  <0.001 − 0.02  0.3488  0.04  0.10  0.19  
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in % measured with Siena and JI for HC subjects and for the two MS 
patient cohorts. There is a quantitative agreement between the two 
methods for all three cohorts with a correlation coefficient of r = 0.88 
(HC), r = 0.76 (Zurich MS), and r = 0.77 (Dresden MS). The median 
absolute difference between the two methods was 0.09% (HC), 0.12% 
(Zurich MS), and 0.14% (Dresden MS). For the HC cohort Siena 
measured slightly stronger BVL per year than the JI method (mean 
difference − 0.07% per year, p = 0.02). There was no significant dif-
ference between the methods for the Zurich and Dresden MS cohorts. 

In Table 3 and Fig. 3 the measurement error for Siena as well as JI 
(for the different brain regions) is shown. Estimate of the SD of the 
model residuals were smallest for Siena (0.28%). Deep GMVL JI and 
ThalaVL JI featured the largest error of 0.43% and 0.50%, respectively. 
The intercept of the model was not statistically different from zero for all 
brain regions. 

In Table 4 the age-dependent cut-offs for pathological VL for all 
anatomical structures are presented. As explained above, the cut-off 
values are derived from the HC cohort. Mean BVL per year for Siena 
and JI was − 0.08% vs. − 0.07%, − 0.29% vs. − 0.23%, and − 0.63% vs. 
− 0.44% at ages 35, 55, and 75, respectively. The thalamus featured the 
highest mean volume loss per year namely − 0.16%, − 0.39%, and 
− 0.59% at ages 35, 55, and 75, respectively. The cut-offs for a patho-
logical ThalaVL per year (with an error probability of 5%) were 0.68%, 
0.91%, and 1.11% at ages 35, 55, and 75, respectively (see last two 
columns per block in Table 4). 

In both MS cohorts and for all brain regions there was no statistically 
significant difference in VL between male and female. 

In Table 5 VL between HC and MS patients is compared. Column 2 
and 4 of Table 5 summarize VL for the HC and for the two MS cohorts for 
all anatomical structures under consideration. Column 5, 6, and 7 list the 
same values but adjusted for age. For BVL Siena, Zurich MS patients 
showed 0.22% more BVL per year and Dresden MS patients showed 
0.21% more BVL than the HC. In the thalamus MS patients featured 
0.47% for Zurich and for Dresden 0.60% more VL per year than the HC. 

In Fig. 4 VL measurements are plotted against age (left column). The 
plot shows the quadratic regression function as well as the 5th and 20th 
percentile lines fitting the HC data. In the right column of Fig. 4 the VL 
measurements are adjusted for age and shown as box plots for the HC as 
well as for the MS patients. In Column 8 and 9 of Table 5 for each brain 
region the ratio of MS patients which are below the 5th and 20th 
percentile line is determined. For instance for BVL measured with JI 
66.1% of all MS patients are below the 20th percentile line which means 
that these patients have a lower BVL than 80% of the HC. For deep 
GMVL there are 77.17% below that 20th percentile line. In Fig. 5 ROC 
curves for the different brain regions is shown. The curve for the deep 
GMVL is steepest in the range between the 0 and 40 percentile. 

In Fig. 6 and Table 6 the comparison between brain regions for both 
MS cohorts is shown. For both cohorts there is no significant difference 
between BVL JI and GMVL JI. However, the Zurich MS patients show on 
average 0.16% more deep GMVL JI than BVL JI (p = 0.02) and the 
Dresden MS patients show 0.30% more deep GMVL JI than BVL JI (p =
0.03). For both MS cohorts there was no significant difference between 
deep GMVL JI and ThalaVL JI. 

4. Discussion 

In this study JI was used to determine age-dependent cut-offs to 
distinguish physiological from pathological VL for various brain regions. 
Stability of the method and the implementation was investigated by 
deploying reliability data sets consisting of short term repeated scans 
with scan intervals between days and a few weeks. In addition the 
method was used to analyze two longitudinal cohorts of MS patients. 
The ratio of MS patients showing pathological volume loss in the 
investigated brain regions was determined. Finally, the BVL, GMVL, 
deep GMVL, and ThalaVL were mutually compared for the two MS pa-
tient cohorts. 

In this study the JI method is based on the longitudinal pairwise 
registration toolbox as provided by Statistical Parameter Mapping 
(SPM12). The toolbox is based on an algorithm by Ashburner and col-
leagues (Ashburner, 2007). The default parameter setting provided by 
the toolbox was deployed. However, the regularization approach was 
changed slightly. It is important to understand the effect of the regula-
rization in JI since the choice of that parameter can greatly impact the 
result. In Ashburner and Ridgway the effect of different regularization 
parameters is explained in detail (Ashburner and Ridgway, 2012). In 
general the regularization term is introduced to prevent sharp discon-
tinuities in the resulting transformation fields and to achieve anatomi-
cally consistent and meaningful results. A higher weight on the 
regularization term will result in a more rigid transformation field. A too 
high regularization will result in a too rigid transformation which might 

Fig. 2. Scatter plot for BVL per year in % measured with Siena against JI for the 
cohort of healthy controls (HC) and the two MS patient cohorts (Zurich 
and Dresden). 

Table 3 
Measurement error of the three reliability datasets for Siena and for JI. Table shows standard deviations (SD) of the model residuals of the pooled reliability datasets 
(column 2). The other columns show the median and the 95th percentile of the absolute (unsigned) VL measurements of the pooled data and for each cohort 
individually.   

pooled Maclaren Biberacher OASIS  

SD median 95% median 95% median 95% median 95% 

BVL Siena  0.28  0.16  0.49  0.15  0.43  0.13  0.93  0.23  0.53 
BVL JI  0.34  0.21  0.65  0.23  0.64  0.18  0.92  0.09  0.34 
GMVL JI  0.29  0.16  0.51  0.19  0.49  0.19  0.93  0.10  0.33 
deep GMVL JI  0.43  0.26  0.81  0.30  0.79  0.27  1.17  0.13  0.36 
ThalaVL JI  0.50  0.33  1.02  0.35  0.96  0.34  1.41  0.18  0.46  
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not capture the true biological changes between the images. In the 
original SPM12 implementation the regularization was inversely pro-
portional to the time interval. The rationale behind this choice (as 
described in the user manual) is that bigger changes between the two 
images are expected for longer time intervals and therefore regulariza-
tion needs to be relaxed in order to allow the algorithm to capture these 
changes. For short time intervals smaller changes are expected and 
therefore in order to improve the stability a higher regularization is 
applied. This approach might be suitable for healthy individuals. How-
ever, MS patients can feature a volume loss far exceeding ranges of what 
can be expected due to physiological aging despite of a relatively short 
time interval between scans. We therefore adjusted this approach in our 
study. The regularization was chosen to be inversely proportional to the 
BVL measured by Siena. In a recent study from the MAGNIMS study 
group (Storelli, et al., 2018) different implementation for the JI method 
were compared. The authors compared the SPM12 implementation of 
the JI method with other available tools. The authors used the default 
regularization. From the four methods compared in Storelli et al. the 
SPM12 implementation turned out to be the most stable one. Stability 
was assessed in that paper by scan-rescan data with only few weeks 

between the scans. As explained above for the default SPM12 imple-
mentation short intervals result in a high regularization and therefore 
stable results by default. The results on the reliability data presented in 
this study (Fig. 3 and Table 3) show a much higher variability. The 95th 
percentile of the error in BVL JI was 0.65% (Table 3) in our study 
whereas in the discussed study it was lower than 0.2% (Fig. 7 in (Storelli, 
et al., 2018)). This can be explained by the different regularization ap-
proaches. The reverse side of the different regularization approach is 
that in (Storelli, et al., 2018) the SPM12 implementation was stable but 
lacked sensitivity to capture effects. The GMVL for the MS patient cohort 
alternated in that study around zero with a mean of + 0.1% (Fig. 6 in 
(Storelli, et al., 2018)) whereas in our study the mean GMVL was 
− 0.44% and − 0.35% for the MS patient cohorts which seems to be more 
reasonable. A similar effect using the default SPM12 pipeline was 
observed in the study by Battaglini et al. (Battaglini, et al., 2018). 

Ideally BVL Siena and BVL JI should provide identical results since 
both methods attempt to measure the same effect. However, since both 
methods follow a very different algorithmic approach this cannot be 
expected in practice. Nevertheless, there was a high agreement of BVL 
measurement between the Siena method and the JI method. This 

Fig. 3. VL measurement error for Siena and for JI for different brain regions. The bar plots show the signed VL measurements of the three reliability datasets.  

Table 4 
Mean, the 80th percentile, and 95th percentile for VL per year in the age range between 35 and 75 years for Siena and JI and different brain regions. The values in the 
last two columns per block can be used as age-dependent cut-offs for pathological VL with an error probability of 20% and 5%, respectively.   

BVL Siena BVL JI GMVL JI deep GMVL JI ThalaVL JI 

age mean 20% 5% mean 20% 5% mean 20% 5% mean 20% 5% mean 20% 5% 

35 − 0.08 − 0.23 − 0.47 − 0.07 − 0.19 − 0.40 − 0.11 − 0.22 − 0.46 − 0.09 − 0.23 − 0.51 − 0.16 − 0.35 − 0.68 
40 − 0.12 − 0.28 − 0.51 − 0.11 − 0.23 − 0.43 − 0.13 − 0.24 − 0.48 − 0.16 − 0.31 − 0.58 − 0.22 − 0.41 − 0.74 
45 − 0.17 − 0.32 − 0.56 − 0.14 − 0.26 − 0.47 − 0.15 − 0.26 − 0.50 − 0.23 − 0.37 − 0.65 − 0.28 − 0.47 − 0.80 
50 − 0.23 − 0.38 − 0.62 − 0.18 − 0.30 − 0.51 − 0.18 − 0.28 − 0.52 − 0.29 − 0.43 − 0.71 − 0.34 − 0.52 − 0.86 
55 − 0.29 − 0.45 − 0.69 − 0.23 − 0.35 − 0.55 − 0.21 − 0.32 − 0.55 − 0.34 − 0.49 − 0.76 − 0.39 − 0.58 − 0.91 
60 − 0.36 − 0.52 − 0.76 − 0.27 − 0.40 − 0.60 − 0.25 − 0.35 − 0.59 − 0.39 − 0.53 − 0.81 − 0.44 − 0.63 − 0.96 
65 − 0.44 − 0.60 − 0.84 − 0.32 − 0.45 − 0.65 − 0.29 − 0.40 − 0.64 − 0.43 − 0.57 − 0.85 − 0.49 − 0.68 − 1.01 
70 − 0.53 − 0.69 − 0.93 − 0.38 − 0.50 − 0.71 − 0.34 − 0.45 − 0.68 − 0.46 − 0.60 − 0.88 − 0.54 − 0.73 − 1.06 
75 − 0.63 − 0.78 − 1.02 − 0.44 − 0.56 − 0.76 − 0.39 − 0.50 − 0.74 − 0.48 − 0.63 − 0.90 − 0.59 − 0.78 − 1.11  

Table 5 
Columns 2 and 3 summarize VL for HC subjects and for MS patients for all anatomical structures under consideration. Columns 4 and 5 list the same values but adjusted 
for age. Columns 6 and 7 show ratios of the pooled MS patients which are below the 5th and 20th percentile.   

mean (SD) regional VL per year in % mean (SD) regional VL per year (%) adjusted for age sensitivities (%) for the pooled MS data for error 
probability of  

HC Zurich MS Dresden MS HC Zurich MS Dresden MS 5% 20% 

BVL (Siena) − 0.33 (0.37) − 0.32 (0.32) − 0.35 (0.26) 0.00 (0.32) − 0.22 (0.32) − 0.21 (0.29)  22.05  51.97 
BVL JI − 0.26 (0.27) − 0.39 (0.40) − 0.41 (0.29) − 0.01 (0.23) − 0.31 (0.40) − 0.30 (0.33)  40.16  66.14 
GMVL JI − 0.24 (0.26) − 0.44 (0.4) − 0.35 (0.27) 0.00 (0.24) − 0.31 (0.4) − 0.21 (0.29)  36.22  67.72 
deep GMVL JI − 0.33 (0.33) − 0.57 (0.57) − 0.75 (0.63) 0.01 (0.31) − 0.47 (0.57) − 0.60 (0.72)  48.03  77.17 
ThalaVL JI − 0.42 (0.40) − 0.59 (0.66) − 0.92 (0.75) − 0.01 (0.36) − 0.42 (0.66) − 0.70 (0.81)  37.80  62.20  
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indicates that the regularization approach as discussed above works 
properly. In all three cohorts (HC, and the two MS cohorts) the median 
absolute difference in BVL per year between Siena and JI was less than 
0.14% (Table 1). The proposed regularization approach therefore seems 
to provide a good balance between stability and accuracy. This differ-
ence between the methods was smaller than the corresponding mea-
surement errors (0.16% for BVL Siena, 0.21% for BVL JI, see Table 3). 
For the HC cohort, the Siena method measured slightly stronger BVL per 
year than the JI method (mean − 0.07, p = 0.02). A reason might be the 
longer scan intervals in that cohort. The mean scan interval for two 
consecutive scans in the HC cohort was 2.5 years whereas the MS pa-
tients had a yearly MRI. 

In a recent study by Beadnall et al. (Beadnall, et al., 2019) the Siena 
method was compared to a different implementation of the JI method 
provided by Icometrix, Leuven, Belgium. The authors found a 

correlation coefficient of r = 0.80 between Siena and JI in a cohort of 
102 MS patients. A similar result was shown in an earlier study (Smeets, 
et al., 2016). This is consistent with the correlation between Siena and 
the JI method found in this study (r = 0.88 HC, r = 0.76 Zurich MS, r =
0.77 Dresden MS). 

In Table 4 mean BVL per year for the HC cohort representing BVL in 
physiological aging for the different GM brain regions and ages are 
presented. To our knowledge this is the first paper presenting age- 
dependent cut-offs to distinguish physiological from pathological BVL 
for different brain regions. For BVL with Siena the results are similar to 
those recently presented in Opfer et al. (Opfer, et al., 2018a). This is 
understandable since the applied method (Siena) is the same and the HC 
cohort in our study is an extended cohort used in Opfer et al. ThalaVL 
and deep GMVL seem to have a different dynamic in HC cohort than 
BVL. For 35 year old individuals a mean BVL of − 0.08 (-0.07% for JI) 

Fig. 4. VL measurements are plotted against age (left column). The plot shows the regression line as well as the 5th and 20th percentile lines fitting the HC data. In 
the right column the VL measurements are adjusted for age and shown as box plots for the HC subjects as well as for the MS patients. 
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was found whereas ThalaVL was − 0.16% per year at the same age. These 
results are consistent with other studies (Azevedo, et al., 2019),(Schip-
pling, et al., 2017). In Azevedo et al. HC subjects at the age of 30 showed 
a BVL per year of + 0.01% and annual ThalaVL was − 0.15% (Azevedo, 
et al., 2019). In Schippling et al. (Schippling, et al., 2017) regional mean 
BVL per year was determined from a cross-sectional cohort of HC sub-
jects (which is possible as explained in that paper). Mean ThalaVL at the 
age of 35 was − 0.25% (vs. − 0.16% in our study) and − 0.40% at the age 
of 60 years (vs. − 0.44% in this study). However, at age of 60 a slightly 
higher ThalaVL per year (-0.62%) was determined (Azevedo, et al., 
2019). Reasons for the difference could be the cohort itself, the method 
used to determine the VL (Freesurfer vs. JI in this study), or the statis-
tical analysis. In this study quadratic regression whereas in (Azevedo, 
et al., 2019) linear mixed effect model was used. 

As shown in Table 5 the Dresden cohort has a more pronounced 
ThalaVL and deep GMVL than the Zurich cohort. A reason for this might 
be the different cohort characteristics. The Zurich cohort has a mean 
EDDS of 1.3 and a mean disease duration of 2.7 years whereas the 
Dresden cohort has a mean EDDS of 2.7 and a mean disease duration of 
5.2 years. The Dresden cohort was originally assembled to validate an 
automatic lesion activity detection algorithm (Krüger, et al., 2020). 
Therefore, many patients were included with disease activity and a 

severe cause of the MS. Consequently, MS patient selection was biased 
towards a pronounced disease activity and a severe course of MS. 

In Fig. 6 and Table 6 BVL and GMVL was compared for the two MS 
cohorts. In both cohorts there was a high agreement and no significant 
difference between BVL and GMVL. This indicates that BVL might 
appear uniquely distributed between GM and WM. Another explanation 
is that the applied JI method cannot distinguish between GMVL and 
WMVL. The registration is controlled by areas of contrast, such as the 
cortex or ventricles. Since the T1 scan has little contrast within the WM 
to control the registration, it might happen that the deformation from 
areas with more contrast is smoothly extrapolated into the WM. 

However, the GMVL measurement showed less error compared to 
BVL (Fig. 3) and GMVL might therefore be better suited to measure VL in 
individual patients than BVL. In both MS cohorts deep GMVL was 
significantly more pronounced than GMVL. This is consistent with a 
recent longitudinal study of the MAGNIMS group (Eshaghi, et al., 2018). 
In that study deep GMVL was also associated with disability worsening. 
It might therefore be an interesting approach to use deep GMVL as a 
surrogate for disability progression in individual patients. A larger than 
normal deep GMVL was also found in two recent cross-sectional studies 
on ThalaVL in MS patients (Hänninen et al., 2019; Raji et al., 2018). 

To use the provided information for decision making in an individual 
patient the age dependent cut-offs of Table 4 as well as the magnitude of 
the measurement error provided in Table 3 should be taken into ac-
count. We explain how to aggregate that information by a hypothetical 
example. For instance, we assume that for a 35 years old MS patient deep 
GMVL is − 2.1% with a scan interval between baseline and follow-up of 
two years. The SD of the deep GMVL measurement error is 0.43% 
(second column of Table 3). That means that the true VL lies within the 
interval − 2.1 ± 1.96*0.43 with an error probability of 5%. Assuming the 
most optimistic case the patient features a VL of − 2.1 + 1.96*0.43% 
=-1.25%. Since the scan interval is 2 years, the annualized most opti-
mistic VL per year would be − 1.25/2 = -0.625%. This is still lower than 
the 5% cut-off of − 0.51%. So this patient exhibits a VL in deep GM which 
is pathological with an error probability of 5% at most. More generally, 
if x is the measured VL with a certain scan interval length between 
baseline and follow-up the value (x + 1.96*SD)/interval length should 
be below the cut-off thresholds provided in Table 4 in order to be 
pathological. 

A limitation of this study is that subjects in the HC cohort (mean 53.9 
years) are older than the MS patients in the Zurich and Dresden cohort 
(mean 34.2. and 38.2 years, respectively). Subjects of the HC cohort 
were acquired in a prevention center as part of a health screening pro-
gram. Hence, there are only a few asymptomatic individuals younger 
than 35 years who underwent repeated MRI scans. Moreover most 
publically available datasets containing repeated MRI scans of HC sub-
jects (such as ADNI, OASIS, MIRIAD, etc.) do not contain individuals 

Fig. 5. ROC curves discriminating HC from MS patients for the different 
brain regions. 

Fig. 6. Scatter plot between BVL JI and GMVL JI (left) and between BVL JI and deep GMVL (right).  
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Fig. 7. Jacobian for two examples. Image A and B show a male HC subject at 69.2 and 75.1 years, respectively. Plot C shows the corresponding Jacobian. This HC 
case features a BVL JI of − 0.52% per year. Image A1 and B1 show a MS patients of the Dresden cohort at 32.7 and 34.0 years, respectively. As above plot C is the 
corresponding Jacobian. The MS patient case features a BVL JI of − 1.21% per year and a ThalaVL of 2.11% per year. 
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younger than 35 years. In order to compare the MS patients with the HC 
cohort a regression function was computed and the residuals to the 
regression function were compared. However, since there were few HC 
subjects younger than 35 years the regression might be inaccurate due to 
insufficient data in that range. The HC cohort is still growing and it will 
be an interesting task for future work to repeat the analysis with more 
HC subjects younger than 35 years once being available. 

Overall, our results suggest that it might be methodologically 
feasible to assess deep GMVL in MS patients. When using this mea-
surement for individual MS patients, the patient’s age and the level of 
measurement error need to be taken into account. Deep GMVL may be 
used as a complementary marker to BVL since MS patients exhibit a 
significant stronger deep GMVL loss than BVL, which may increase 
sensitivity in interventional trials. 
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P., Montalban, X., Kubala Havrdová, E., Cree, B.A.C., Sheffield, J.K., Minton, N., 
Raghupathi, K., Huang, V., Kappos, L., 2019. Safety and efficacy of ozanimod versus 
interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, 
randomised, 24-month, phase 3 trial. The Lancet Neurology 18 (11), 1021–1033. 
https://doi.org/10.1016/S1474-4422(19)30238-8. 

Comi, G., Kappos, L., Selmaj, K.W., Bar-Or, A., Arnold, D.L., Steinman, L., Hartung, H.-P., 
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