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Abstract

Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria
and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying
copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these
sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible
for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a
framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models
of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the
numerical (computer simulation) analysis of the properties of these models with parameters in the ranges estimated for
Escherichia coli and its phage and conjugative plasmids indicate: (1) In the presence of lytic phage there are broad
conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria
with otherwise higher Malthusian fitness. (2) These conditions for the existence of CRISPR are narrower when there is
envelope resistance to the phage. (3) While there are situations where CRISPR-mediated immunity can provide bacteria an
advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions
for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models
can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from
the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I
suggest protocols for estimating these parameters and outline the design of experiments to evaluate the validity of these
models and test these hypotheses.
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Introduction

For many species of bacteria, adaptive evolution is through the

expression of chromosomal and extrachromosomal (plasmid- and

prophage - borne) genes or clusters of genes (pathogenicity and

nicer islands) acquired by horizontal gene transfer (HGT) from the

same or even quite distant species [1,2]. Thus, on first

consideration it may seem that bacteria and their accessory

genetic elements would have mechanism to promote the

acquisition, incorporation and expression of genes from without.

And, indeed there are mechanisms like integrons [3–7] that

appear to have that function. On the other side, DNA acquired

from external sources may be deleterious. This is certainly the case

when that DNA is borne on lytic bacteriophage, but also for

plasmids that engender fitness costs [8,9] or chromosomal DNA

from the wrong source [10,11]. To deal with these contingencies,

it would seem that bacteria would have mechanisms to protect

themselves against infection by deleterious foreign DNA [12]. And

indeed there are systems like restriction-modification (restriction

endonucleases) which appear to have that role [13,14].

The most recently discovered mechanism postulated to provide

bacteria immunity to infectious genetic elements are Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR). For

recent reviews see [15,16]. CRISPR is particularly intriguing

because of its ubiquity, appearing in ,90% and ,40% of archaeal

and eubacterial sequenced genomes, respectively, and because of

the adaptive mechanism by which it provides immunity to

infections by a virtually indefinite diversity of bacteriophage and

plasmids. DNA from infecting phage and plasmids is incorporated

into the CRISPR array. Through a yet to be fully elucidated

mechanism, bacteria abort the replication of infecting phage [17]

or the establishment of conjugative plasmids [18] bearing copies of

the DNA incorporated into their CRISPR arrays, also see [19].

Further support for CRISPR being an adaptive immune system

that is maintained because it protects bacteria from infection with

phage comes from studies of the community ecology of bacteria

and phage; DNA in the CRISPR regions of the bacteria from

those communities corresponds to that in the co-existing phage

[20–23]. For an intriguing perspective on CRISPR as a witness to

the coevolutionary history of bacteria and phage, see [24].
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CRISPR-mediated immunity has been likened to a Lamarckian

mechanism [25], because the selection pressure, the infecting

phage and plasmids, determine the genotype. This analogy

however does not account for the evolution and maintenance of

the machinery responsible for taking up the infecting phage and

plasmid DNA and the mechanism employed to prevent the

replication or establishment of infecting genetic elements with

those sequences. Under what conditions will adaptive immunity to

phage and plasmid infection be the selection pressure responsible

for establishing and maintaining CRISPR-mediated immunity in

populations of archeae and bacteria? What about other mecha-

nisms of resistance, like structural modification blocking phage

adsorption (envelope resistance) and restriction-modification?

How do these mechanisms interact with CRISPR – acquired

immunity and contribute to its establishment and maintenance?

To address these questions and provide a framework and

hypotheses for their study experimentally, I use mathematical

models of the population dynamics of bacteria, phage and plasmids

to explore the conditions under which a CRISPR–like adaptive

immune mechanism will provide bacteria a selective advantage in

competition with bacteria without this immune system. The results

of the numerical analysis of the properties of these models suggest

that with bacterial replication and phage infection parameters in

realistic ranges, there are broad but not universal conditions where a

CRISPR–like adaptive immune system can be favored and will be

maintained in populations of bacteria confronted with lytic phage.

While this model predicts conditions where CRISPR-mediated

immunity will be favored when bacteria compete with populations

bearing conjugative plasmids, these conditions are relatively

restrictive. The parameters of these models can be independently

estimated, the validity of the assumptions behind their construction

and the hypotheses generated from the analysis of the properties can

be tested in experimental populations of bacteria with lytic phage

and conjugative plasmids. Procedures for doing these experiments

are outlined and their potential outcomes described and/or

speculated upon. Also discussed are the broader implications of

CRISR-mediated adaptive immunity to the population and

evolutionary biology and ecology of bacteria and phage.

Model

Bacterial growth and population maintenance
Both the lytic phage and conjugative plasmid models used here

assume a chemostat-like habitat. The bacteria grow at a rate that is

a monotonically increasing function of the concentration of a

limiting resource, R mg/ml [26].

yi(R)~Vi
R

Rzk

� �

where Vi hr21 is the maximum growth rate of the ith strain of

bacteria and k the concentration of the resource when the growth

rate is half its maximum value (the ‘‘Monod constant’’). The

populations are maintained in a vessel of unit volume, (1ml) into

which medium containing the limiting resource from a reservoir

where it is maintained at a concentration A mg/ml flows in at a

rate w per hour. Excess resource and wastes are removed from the

vessel at the same rate. As in [27], the rate of uptake of the

resource by the bacteria is proportional to the density, the resource

concentration-dependent growth rates of the different populations

of bacteria and a conversion efficiency parameter, e mg/per cell.

The phage model
The model developed here is an extension of that in [28]. There

are four populations of bacteria. Two are sensitive to the phage, N,

non–CRISPR and C, CRISPR and two that are either fully

resistant (envelope resistance), or immune because of CRISPR, NR

and CR, respectively. The variables N, C, NR and CR are the both

the densities (bacteria per ml) of these populations and used as

their designations. There is one population of phage, with density

and designation, P particles per ml.

The phage adsorb to the N and C and CR bacteria with rate

constants, dN and dC (ml per phage per cell per hour) respectively.

Phage do not adsorb to bacteria with envelope resistant, i.e. the NR

cells. To account for a possible multiplicity of infection (MOI)

effect on survival of phage-infected CR, the effective killing rate

constant for phage adsorption to CRISPR can be an increasing

function of the ratio of free phage and CR cells, M = P/CR.

dCR(M)~dMINzx
dMAX Mn

qzMn
ð1Þ

where dMIN and dMAX are the minimum and maximum

adsorption rates. The parameter x is a coefficient (0#x#1) that

specifies the magnitude of the MOI effect, q is the MOI where the

adsorption rate is half its maximum value and n is an exponent

which contributes to the shape of the distribution. At low

multiplicities, dCR (M) the CRISPR cells would be effectively

immune (resistant) (Figure 1). At high multiplicities, however,

immune CRISPR cells can be overburdened by phage, their

immunity would be overridden, and the phage would replicate,

killing the cells. On the other side, we assume that the phage are

removed from the population by adsorption to immune CRISPR

cells at the maximum adsorption rate, dMAX.

For convenience I neglect the latent periods of the phage infection

but assume that the phage have potentially different burst sizes, bN,

bC, and bCR particles per cell, for N, C and CR cells, respectively.

Phage-immune CRISPR cells, CR are produced from C at a rate

proportional to the rate at which the phage adsorb to them and a

Author Summary

CRISPR is the acronym for the adaptive immune system
that has been found in almost all archaebacteria and
nearly half the eubacteria examined. Unlike the other
defenses bacteria have for protection from phage and
other deleterious DNAs, CRISPR has the virtues of
specificity, memory, and the capacity to abort infections
with a virtually indefinite diversity of deleterious DNAs. In
this report, mathematical models of the population
dynamics of bacteria, phage, and plasmids are used to
determine the conditions under which CRISPR can become
established and will be maintained in bacterial populations
and the contribution of this adaptive immune system to
the ecology and (co)evolution of bacteria and bacterio-
phage. The models predict realistic and broad conditions
under which bacteria bearing CRISPR regions can invade
and be maintained in populations of higher fitness
bacteria confronted with bacteriophage and narrower
conditions when the confrontation is with competitors
carrying conjugative plasmids. The models predict that
CRISPR can facilitate long-term co-evolutionary arms races
between phage and bacteria and between phage- rather
than resource-limited bacterial communities. The param-
eters of these models can be independently estimated, the
assumptions behind their construction validated, and the
hypotheses generated from the analysis of their properties
tested with experimental populations of bacteria.

Conditions for the Existence of CRISPR
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constant m (0#m#1) which is the probability that a phage infection

will be aborted and a CRISPR strain will be produced. At a rate v

per cell per hour, CRISPR lose their immunity, CRRC. For the N

and C populations the loss of the adsorbed phage is subsumed in the

value of the burst size (which is one less than the number of phage

produced). For the CR population, the loss of the phage due to

adsorption is specifically considered because only a small fraction of

the adsorbed phage replicate when the MOI is low.

In Table 1, I separately define these parameters and in Figure 2,

illustrate the interactions between the different populations of

bacteria and the phage. The equations for this model follow.

dR

dt
~w(A{R){(VN NzVCCzVNRNRzVCRCR)

eR

(Rzk)

dN

dt
~NyN (R){dN NP{mN{wN

dC

dt
~CyC(R){dCCPznCR{wC

dCR

dt
~CRyCR(R){dCR(M)CRPzmdCPC{nCR{wCR

dNR

dt
~NRyNR(R)zmN{wNR

dP

dt
~dN NbN PzdCC(bC{1)P(1{m)zdCR(M)CRbCRP

{dMAX CRP{wP

The conjugative plasmid model
The model developed here is an extension of that in [29]. There

are five bacterial populations. Two populations do not code for

CRISPR, N and NP, and three populations code for CRISPR, C

and CP and CX. The NP and CP populations bear the conjugative

plasmid and CX, carries CRISPR and plasmid sequences that

make it completely immune to the receipt of these plasmids.

Plasmids are transferred by conjugation at rates proportional to

the product of the densities of the plasmid-bearing and plasmid-

free populations and rate constants, cNN, cNC, cCN and cCC (ml per

cell per hour) respectively for the transfer of the plasmid from NP

to N, NP to C, CP to N and CP to C., respectively. Plasmids are lost

by vegetative segregation at rates tN and tC per cell per hour, with

NPRN and CpRC. C are converted to CX at a rate proportional to

the rate at which C acquires the plasmid and a probability m

(0#m#1). Cx lose the CRISPR plasmid immunity region and

become C at rate n per cell per hour. Each of the cell lines, have a

maximum growth rate, VN, VNP, VC, and VCP, and VX per hour. In

Figure 3, I illustrate the interactions between the different cell lines

in this model, and, in Table 2, I separately define the parameters

and variables. The equations for this model are:

dR

dt
~w(A{R){(VN NzVNPNPzVCCzVCPCCPzVxCx)

eR

(Rzk)

dN

dt
~yN (R)N{cNN NPN{cCN NCPztN NPzzCzzCX {wN

dNP

dt
~yNP(R)NPzcNN NPNzcCN NCP{tN NPzzCP{wNP

dC

dt
~yC (R)C{cNCNPC{cCCCPCztCCPznCX {zC{wC

dCP

dt
~yCP(R)CPzcNCNPC(1{m)zcCCCPC(1{m){tCCP

{zCP{wCP

dCX

dt
~yX (R)CX zcNCNPCmzcCCCPCm{nCX {zCX {wCX

Numerical solutions
For the numerical solutions to these equations (computer

simulations) I use a differential equation-solving software package,

Berkeley Madonna. For the phage simulations there is a refuge

density, below which the phage are unable to adsorb to the bacteria.

The purpose of this is to control the system from oscillating without

limits, see [30]. In these simulations, if the phage density falls below

1021 particles per ml, the phage are considered to be lost. Copies of

these simulations are available online, www.eclf.net/programs.

Results

The population dynamics and evolution of CRISPR
bacteria with phage

The bacterial growth, resource-uptake, phage adsorption

parameters and burst sizes used in these simulations (Table 1)

are in a range similar to that which we observed for E. coli and the

phages T2 and T7 [28,31].

Invasion and maintenance of CRISPR in the absence of

envelope resistance. In a chemostat with susceptible bacteria

at an equilibrium density N*, a lytic phage can become established

and will maintain a population with sensitive bacteria as long as

the rate of phage production exceeds the rate of washout,

dNbNN*.w [28]. With the parameters used in these simulations,

N*,108 (see [32]). As long as dNbNN*.261029, the phage will

become established and can maintain a population by replicating

on sensitive bacteria (Figure 4A). The oscillations in the densities of

bacteria and phage in these and the following simulations are those

anticipated for the predator-prey nature of these dynamics.

To explore the conditions under which a CRISPR population

will become established and be maintained in the presence of

phage, I consider situations where the C and CR populations have

an intrinsic selective disadvantage relative to N (VN.VC, VCR) and

therefore cannot invade an established N population in the

absence of these bacterial viruses. Because of the immunity of CR,

with phage present and in the absence of a multiplicity effect, an

initially rare CRISPR population will invade and ascend to

dominance despite its lower intrinsic fitness (Figure 4B). With these

parameters, the phage are maintained along with N and C, the

latter being continually generated by the loss of immunity by the

dominant CR population. The N population is maintained because

of its higher intrinsic fitness (growth rate) relative to CR, and

resources, rather than phage predation, limit the bacteria at large.

The phage continue to be maintained by replicating on the N and

C cells. Although the oscillations are damped and in time would

no longer be noticed, that time would be considerably greater than

would be feasible to study experimentally with chemostats. If we

allow for a strong multiplicity effect (x = 0.5), the CRISPR

population becomes established, and both immune and non-

immune CRISPR cells maintain their populations with sensitive

non–CRISPR in a phage- rather than resource- limited commu-

nity (Figure 4C). When the magnitude of the multiplicity effect is

reduced (x = 0.2), the phage continue to be maintained but

immune CRISPR cells ascend to dominance and the community

with three populations of bacteria, N, C and CR are maintained in

a resource- rather than a phage-limited state (Figure 4D).

The invasion and maintenance of CRISPR in the presence

of envelope resistance. In addition to CRISPR immunity,

when confronted with phage, bacteria may generate mutants to

which phage are unable to adsorb or are resistant by other

mechanisms [33]. To explore how this envelope resistance will

affect the conditions for the establishment and maintenance of

CRISPR, we consider the invasion of an envelope resistant strain

of N, NR, into a population of N and phage. In these simulations,

Conditions for the Existence of CRISPR
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the C and CR are less fit than N (VN.VC, VCR) and NR are less fit

than C and CR, (VNR,VC, VCR). Were the NR cells more fit than C

and CR, they would dominate and the CRISPR population would

not invade an would not be established. Whether this fitness

relationship will be seen with real bacteria and what those fitness

will be is an empirical question.

Figure 1. Adsorption rate as a function of the multiplicity of infection (MOI), dMIN = 10214, dMAX = 561029, x = 0.5, or x = 0.2 q = 102,
and n = 2.
doi:10.1371/journal.pgen.1001171.g001

Table 1. Phage model variables and parameters.

Variable* or Parameter+ Definition Parameter Definition

N P Sensitive N-C w Dilution rate

NR P Resistant N-C dN Adsorption rate P to N

C P Sensitive C dC Adsorption rate P to C

CR P Immune C dMIN Min. Adsorp. Rate P to CR

P Phage dMAX Max. Adsorp. rate P to CR

R Resource Conc. x Multiplicity Coef. P to CR

VN Max. Growth N n Multiplicity Exp. P to CR

VNR Max. Growth NR q Multiplicity half Max Density

VC Max. Growth C bN Bursts size P on N

VCR Max. Growth CR bC Burst size P on C

K Monod Constant bCR Burst size P on CR

E Conversion Effic. m Mutation rate N to NR

A Reservoir Conc. R m Fraction of infected CRCR

v Rate of Loss of immunity CRRC

N-C – Non CRISPR, C – CRISPR.
*The variables are densities of bacteria or phage per ml or the concentration of the resource, mg per ml.
+See the text for the dimensions of the parameters.
doi:10.1371/journal.pgen.1001171.t001

Conditions for the Existence of CRISPR
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As can be seen in Figure 5A, although the resistant, NR strain is

the least intrinsically fit bacteria in the community (lowest

maximum growth rate), in the presence of phage it ascends

rapidly and achieves dominance. During this initial phase, as a

consequence of the production of immune CR cells, the CRISPR

population also increases in density, but remains a minority

population relative to the resistant non–CRISPR NR. With these

parameters, the phage density declines after the ascent of

resistance and the densities of both the N and C populations

increase. Shortly after the phage are eliminated the highest fitness

N population ascends and lower fitness C, CR and NR decline. If the

phage resistant population is substantially less fit than the other

bacterial populations, the CR population ascends to dominance

and continues to co-exist with the phage, N, and C populations

(Figure 5B).

The population dynamics of CRISPR with conjugative
plasmids

In accord with [34], conjugative plasmids will be maintained as

long as the rate of infectious transfer exceeds the rates of loss of the

plasmid due to selection against the cells carrying it, vegetative

segregation, and the rate of flow through the chemostat. In terms

of the above parameters, the plasmid will be maintained in an N-

NP population as long as

cNNw

(VN{VNP)

VN

wztN

N�
ð2Þ

where N* is the density of plasmid-free cells at the chemostat

equilibrium. For example, if VN = 1.0, VNP = 0.95, w = 0.2,

tN = 1023, the plasmid will be maintained in a population of

density N* = 108 as long as cNN.1.1610210. If the plasmid

augments the growth rate (which in this model is the sole

parameter of cell fitness) of the bacteria that carry it, VNP.VN, as

we would anticipate for antibiotic resistance encoding plasmids in

the presence of the selecting antibiotic, bacteria bearing the

plasmid will be able to invade even without transfer, as long as the

segregation rate, tN, is sufficiently small.

Invasion and maintenance of CRISPR in the presence of a

competing population bearing a conjugative plasmid. The

population dynamics of selection and plasmid transfer in an

equilibrium chemostat in the absence of CRISPR are presented in

Figure 2. Model of the population dynamics of lytic phage with CRISPR-mediated adaptive immunity and envelope resistance in
continuous culture: P – phage, N – phage sensitive non–CRISPR bacteria, NR – envelope resistant, non–CRISPR bacteria C - phage
sensitive CRISPR bacteria, CR - phage immune CRISPR bacteria. The ds are the adsorption rate constants, m is the fraction of C to which
phage are adsorbed that enter the immune state, n is the rate at which immune CRISPR cells lose their immunity, and m is the rate of mutation to
envelope resistance. While the phage adsorb to immune CRISPR cells at the maximum rate and are removed from the phage population, their
replication on CRISPR cells and the rate of mortality of immune CRISPR is either 0 or a monotonically increasing function of the multiplicity of
infection (equation (1)). The bacteria reproduce at a rate proportional to the concentration of a limiting resource and their maximum rates of
replication. Phage replication is through the killing of adsorbed bacteria and their burst size, b, on that cell line. The limiting resource in the reservoir
is at concentration A mg/ml and enters the vessel at a rate, w, which is the same rate at which the phage and bacterial populations and excess
resource, R, are removed from the vessel. For more details see the text.
doi:10.1371/journal.pgen.1001171.g002

Conditions for the Existence of CRISPR
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Figure 3. Model of the population dynamics of a conjugative plasmid with CRISPR-mediated adaptive immunity in continuous
culture. N - plasmid-free non–CRISPR, NP - plasmid-bearing non–CRISPR, C - plasmid-free CRISPR, CP - plasmid-bearing CRISPR, CX - immune CRISPR.
The cs are the rate constants of plasmid transfer, m is the fraction of CP that enter the immune state CX upon receiving the plasmid from an NP or CP,
n is the rate at which immune CRISPR cells lose their immunity and z the rate at which the CRISPR cells lose the CRISPR element and become N or NP.
The bacteria reproduce at a rate proportional to the concentration of a limiting resource and their maximum rates of replication. The limiting
resource in the reservoir is at concentration A mg/ml and enters the vessel at the rate, w, which is the same as the rate at which the phage and
bacterial populations and excess resource, R, are removed from the vessel. For more details see the text.
doi:10.1371/journal.pgen.1001171.g003

Table 2. Plasmid model variables and parameters.

Variable* or Parameter+ Definition Parameter Definition

N Plasmid-free N-C e Conversion efficiency

NP Plasmid-bearing N-C cNN Pl rate constant NP to N

C Plasmid-free C cNC Pl rate constant NP to C

CP Plasmid-bearing C cCN Pl rate constant CP to N

CX Immune C cCC Pl rate constant CP to C

R Resource Conc. tN, Pl Segreg. Rate NP to N

VN Max. Growth N tC Pl Segreg. Rate CP to C

VNP Max. Growth NP u Rate of loss of Immunity CX to C

VC Max. Growth C m Fraction of infected C become CX

VCX Max. Growth CP w Dilution rate

VX Max. Growth X A Resource Conc. Reservoir

k Monod Constant z Rate of loss of CRISPR into N or NP

N-C Non–CRISPR, C- CRISPR.
*Variables are bacteria per ml or for the resource mg/ml.
+See the text for the dimensions of the parameters.
doi:10.1371/journal.pgen.1001171.t002
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Figure 6A. If the conditions specified in equation (2) are met, the

plasmid- bearing cells become established and ascend to dominate

the N-NP community, whether cells bearing the plasmid are

favored or not. If the plasmid is maintained by transfer or selection

for the genes it carries and tN.0, there will be a stable population

of plasmid-free cells. When the rate constant of plasmid transfer is

too low, the deleterious plasmid will be lost.

To consider the effects of CRISPR on the population dynamics

of bacteria with conjugative plasmids and the conditions under

which CRISPR immunity will provide an advantage to bacteria, I

let the maximum growth rates of the CRISPR strains (the sole

measure of intrinsic, phage-independent fitness) be somewhat

lower than the corresponding non–CRISPR cells. In Figure 6B,

the population is initially at equilibrium with a plasmid-free, non-

immune CRISPR population and a low density of plasmid-

bearing non–CRISPR bacteria are introduced. The plasmid

spreads rapidly from NP to C producing a CP population which

in turn generates immune CRISPR, CX. While the C and CP

populations die out, CX ascends to dominance and minority

populations of N and NP are maintained. Although the CX

population has a lower growth rate than N, in the presence of a

deleterious conjugative plasmid they have an advantage because

they cannot be infected by that element. They do not eliminate the

N and NP populations due to the loss of the CRISPR region and

the conversion into N. As can be seen in Figure 6C, with these

parameters and a lower growth rate, CX can invade an equilibrium

N-NP population, but the rate of increase in the density of Cx is

low. The invasion rate for CX would even be further reduced if,

instead of CX, a plasmid-free C invaded an NP population,

because it would be some time before the CX is produced and, in a

finite population, may not be produced at all (‘‘data’’ not shown).

A very different situation obtains when the plasmid confers a

growth rate advantage to the infected host (Figure 6D). Under

these conditions, the C populations and its derivatives, CP and CX,

are eliminated.

Discussion

‘‘All models are wrong, some are useful.’’ (George Box)

It has been less than eight years since the ubiquitous clusters of

palindromic repeats now known as CRISPR first acquired this

moniker [35]. Although there had been compelling circumstantial

Figure 4. Population dynamics of lytic phage, P, with sensitive non–CRISPR bacteria, N, non-immune and immune CRISPR-encoding
cells, C and CR, respectively. Changes in the densities of the bacterial and phage populations and the concentration of the limiting resource, R. In
this and the other simulations, A = 50 mg/m, w = 0.2 per hour, e = 561027mg, k = 0.25 mg. In these phage simulations, bN = bC = bCP. (a) The dynamics
of sensitive bacteria and phage in the absence of CRISPR, VN = 1.0 hr21, dN = 561029. (b) Invasion of CRISPR in the presence of phage, no MOI effect
(x = 0), VN = 1.0. VC = 0.95, VCR = 0.90, dN = dC = 561029, dCP = dMIN = 10214 (dMAX = 561029) (c) Invasion of CRISPR with presence of phage VN = 1.0.
VC = 0.95, VCR = 0.90, dN = dC = 561029, Strong MOI effect (x = 0.5, n = 2.0, q = 102, dMIN = 10214, dMAX = 561029). (d) Invasion of CRISPR with presence of
phage, VN = 1.0. VC = 0.95, VCR = 0.90, dN = dC = 561029, Modest MOI effect (x = 0.2, n = 2.0, q = 102, dMIN = 10214, dMAX = 561029).
doi:10.1371/journal.pgen.1001171.g004
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evidence that CRISPR was part of an adaptive immune system

that provides protection against infecting phage and plasmids, it

has been less than four and three years respectively since the

publication of the first direct (read experimental) evidence that

CRISPR can provide immunity to infection by lytic phage [17]

and conjugative plasmids [18].

In the course of this time a great deal has been learned about

the molecular biology of CRISPR and the mechanisms by which it

provides adaptive immunity to plasmid and phage infection. But

there remain many unanswered questions about these processes.

Most important for this consideration is a dearth of the

quantitative information needed to understand the population

dynamics of CRISPR-mediated adaptive immunity and thereby

the conditions for the establishment and maintenance of CRISPR

in bacterial populations. To my knowledge, this study is the first

formal consideration of these dynamics.

The models
The models developed in this report incorporate what has been

learned about CRISPR-mediated adaptive immunity to phage

and conjugative plasmids, primarily from the studies of

Barrangou and colleagues [17] and Marraffini and Sontheimer

[18], into models of the population dynamics of lytic phage [28]

and conjugative plasmids [29]. Although they may appear

complex, at best they are simplistic caricatures of interactions

between these infectious genetic elements and bacteria with

CRISPR-mediated adaptive immunity. These models are not

intended or anticipated to be numerically precise analogs of these

processes and dynamics.

The role of these mathematical models is similar to that of the

diagrammatic models (cartoons) used to illustrate the molecular

basis and mode of action of CRISPR, i.e., to provide a framework

for understanding these processes, designing experiments, and

interpreting their results. In this case, these experiments are on

population and evolutionary dynamics of bacteria with CRISPR-

mediated immunity confronted with lytic phage and competing

bacteria bearing conjugative plasmids. The purpose of these

models for this experimental enterprise is: (i) to identify and, in a

quantitative way, evaluate the role of the different factors

(parameters) contributing to these dynamics and the conditions

for the establishment and maintenance of CRISPR in bacterial

populations, and (ii) to generate hypotheses about these dynamics

and existence conditions that can be tested (and rejected) in

experimental populations.

Figure 5. Population dynamics of lytic phage, P, with sensitive and resistant non–CRISPR bacteria, N and NR, non-immune and
immune CRISPR-encoding cells, C and CR, respectively. Changes in the densities of the bacterial and phage populations and the
concentration of the limiting resource, R. Unless otherwise noted, the parameter values used are those in Figure 4B. (a) Invasion of C and NR into a
population with phage, modest cost of resistance, VNR = 0.85. (b) Invasion of C and NR into a population with phage, with a greater cost of resistance,
VNR = 0.70.
doi:10.1371/journal.pgen.1001171.g005
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Predictions and some interpretations/speculations
The results of the analysis of the properties of the phage -

CRISPR model are consistent with the proposition that in the

presence of lytic bateriophage there are broad conditions under

which a CRISPR–like adaptive immune system can become

established and will be maintained in bacterial populations. With

population densities, growth rates, and phage infection parameters

in realistic ranges, these models predict that despite a growth rate

disadvantage, bacteria with CRISPR–like acquired immunity to

infecting phage will increase in frequency when initially rare and

will be maintained. The necessary condition for this is that the

phage population continues to persist at a sufficiently high density

for CRISPR-mediated adaptive immunity to overcome an

intrinsic disadvantage associated with the costs of carrying and

expressing these genes.

When will the phage maintain their populations at sufficient

levels for this outcome? With the parameters used to address this

question, the phage will be maintained under broad conditions,

but may eventually be lost if a population with envelope or other

resistance ascends to dominance. I emphasized the word may for

two reasons. The first is theoretical, if the relative growth rate of

the resistant population is adequately low, the phage and thereby

CRISPR will be maintained. The second is empirical, even when

resistant bacteria dominate experimental populations of bacteria

and phage, in general the phage continue to be maintained

[30,31,36].

The CRISPR plasmid model predicts that because of the

immunity to infection with conjugative plasmids, a lower growth

rate (Malthusian fitness) CRISPR population can become

established and will be maintained when competing with bacteria

with a greater Malthusian fitness but bearing deleterious (fitness-

reducing) conjugative plasmids. Although these conditions are met

with plasmid fitness costs in the range estimated for ‘‘laboratory’’

plasmids [9,37], it is not clear that naturally occurring plasmids

would be as burdensome as those maintained in the Lab. The

greater the Malthusian fitness burden attributed to the plasmid,

the greater the advantage of CRISPR-mediated immunity.

The rate constants of plasmid transfer used in these simulations

are those for plasmids with permanently derepressed conjugative

pili synthesis. Wild type conjugative plasmids are more likely to be

repressed for the production of these transfer organelles and would

have substantially lower rates of transmission than plasmids that

Figure 6. Population dynamics of a conjugative plasmid with non–CRISPR, N and NP and CRISPR, C, CP and CX populations; changes
in the densities of the bacterial populations. Unless otherwise noted all of the rate constants of plasmid transfer, the cijs = 1029 [38], the
segregation rates, tN and tC = 1023, the rate of loss of immunity n= 1023, upon receiving the plasmid the rate of conversion of CP to CX = 0.2, and the
rate of conversion of CRISPR cells to N or NP, z = 1028. (a) No CRISPR – Just N and NP 1 - Deleterious plasmid VN = 1, VNP = 0.95; 2 - a beneficial plasmid
VN = 1, VNP = 1.2 and 3- deleterious plasmid VN = 1, VNP = 0.95, cNN = 10211. (b) Invasion of bacteria carrying a deleterious plasmid into a lower fitness
CRISPR, C, population, VN = 1, VNP = 0.95, VC = 0.97, VCP = 0.88, Vx = 0.96, (c) Invasion of CRISPR X into a equilibrium population of plasmid-bearing and
plasmid free cells, N-NP with a deleterious plasmid (parameters the same as b). (d) Invasion of cells carrying a higher fitness plasmid, NP, into a C
population, VN = 1, VNP = 1.2 VC = 0.97, VCP = 1.1, Vx = 0.96.
doi:10.1371/journal.pgen.1001171.g006
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are permanently derepressed for plasmid transfer [38,39]. Indeed,

it is not clear whether in natural populations conjugative plasmids

that engender fitness cost can be maintained by transfer alone.

Their persistence may require periodic episodes where bacteria

carrying them have an advantage [34,40], but also see [41]. If the

rate of infectious transfer is not sufficient to maintain deleterious

plasmid in a population and they persist by continually or

periodically enhancing the cells Malthusian fitness, immunity to

these plasmids would not be sufficient to maintain CRISPR-

encoding cells that have an intrinsic fitness disadvantage.

Evaluating the models: estimating their parameters and
testing the validity of their assumptions and predictions

It would be nearly impossible to determine whether the

quantitative conditions predicted by these models for the

establishment and maintenance of CRISPR-mediated immunity

are met in natural populations. On the other hand, the values of

the parameters of these models can be estimated and the validity of

the assumptions behind their construction and hypotheses

generated from the analysis of their properties can be tested in

laboratory culture using CRISPR–positive and CRISPR–negative

bacterial constructs, phage and plasmids of the types used

respectively by Barrangou and colleagues [17] and Marraffini

and Sontheimer, [18] in chemostat culture.

Parameters. All of the parameters of these models (Table 1

and Table 2) can be independently estimated and procedures for

doing so have been published for the majority of them: (1) for the

bacterial growth and resource utilization parameters, the VS, k,

and e, see [26,28]; (2) for the phage latent periods, adsorption rates

ds, and burst sizes, the bs, see [28], (3) for the rate constants of

plasmid transfer, the cs, see [42,43], and (4) for the mutation rate

to envelope resistance, see [44,45]. Estimates of the plasmid

segregation rate, t, can be obtained by plating low-density cultures

of plasmid-bearing cells, and testing colonies for the plasmid

marker. However, unless t is very high (t.0.005 per cell per

division), this procedure would be excessively labor intensive.

However, if low, this parameter would have a negligible

contribution to the dynamics of the plasmid and estimating its

value would not be worthwhile.

Protocols for isolating bacteria with CRISPR-mediated resis-

tance to phage and plasmid infection, can be found in [17] and

[18], respectively. I am, however, unaware of published studies

providing estimates of the fractions of phage and plasmid infected

cells that become immune, the parameter m, or the rates of loss of

these immunities, n, in the models (Figure 2 and Figure 3). In Text

S1, I outline potential ways to estimate these parameters. I

emphasize the word potential because without actually doing these

experiments, it is difficult to anticipate pitfalls and problems with

the proposed procedures.

Assumptions and tests of their validity. In developing the

model, I made a series of assumptions about CRISPR – mediated

immunity and the population dynamics of bacteria with lytic

phage and conjugative plasmids. In the following, I list these

assumptions and briefly describe what would be anticipated

experimentally if these assumptions are correct.

(i) CRISPR immunity to phage infection will have no effect

on the rate at which phage adsorb to immune cells. If this is

correct, the estimated adsorption rate parameter d of a lytic

phage should be the same for CRISPR cells of any

immune state as well as cells of that strain for which

CRISPR is non-functional.

(ii) Phage infecting immune CRISPR cells will be lost. If this is

correct, when low densities of phage are introduced into

relatively high densities of exponentially growing popula-

tions of immune CRISPR cells, there should be a decline

rather than an increase in the density of phage. In the

model, the rate of decline in the density of phage, P,

adsorbing to a population of bacteria with CRISPR

immunity to that phage can be calculated from the

estimated adsorption maximum rate parameter dMAX and

the density and maximum growth rate of bacteria, CR and

VR, respectively.

dP

dt
~{dMAX CR

dCR

dt
~VRCR

If as suggested in [17], the level of CRISPR – mediated

immunity to the phage varies with the extent and nature of

the phage DNA incorporated into the CRISPR region, this

should be reflected as variation in the rate of loss of the

phage.

(iii) There is a multiplicity of infection (MOI) effect. When

CRISPR-encoding cells are confronted with high multi-

plicities of phage to which they are immune, the phage will

replicate and kill the immune cells. If positive results are

obtained in these MOI experiments, by varying the

multiplicity, the functional relationship between the MOI

and the level of immunity can be determined. In doing

these experiments, however, it will be necessary to rule out

the possibility that those that phage that replicate on

immune cells are not host range mutants [24].

(iv) CRISPR immunity to conjugative plasmid transfer is

absolute. If this is correct, the estimated rate constant of

plasmid transfer c for mixtures of donor CRISPR cells

immune to that plasmid would be zero independent of the

density of the culture and ratio of donors and potential

CRISPR recipients. Based on the results reported in [18]

as well as [17], it may well be that the level of CRISPR –

mediated immunity to plasmid infection as measured by

the rate constant of plasmid transfer, dx, would vary with

the extent and nature of plasmid DNA incorporated into

the CRISPR region.

(v) CRISPR immunity to plasmid infection is generated

during the transfer process, when the recipient first receives

the plasmid, rather than during the course of plasmid

carriage. If this the case, bacteria immune to plasmid

transfer, CX, would be rare in cultures of plasmid-bearing

CRISPR, the CP population. That is, they would only be

generated, when CP transfer the plasmid to segregants, C.

Population dynamics and existence conditions

predictions. One way to evaluate how well these models

serve as analogs of the population dynamics of bacteria with

CRISPR adaptive immunity to bacteria and phage is to compare

the results of simulations with independently estimated parameters

to that observed in chemostat populations. Although it would be

gratifying to see quantitative agreement between the anticipated

dynamics and those observed in experimental populations,

populations with CRISPR constructs of bacteria, conjugative

plasmids and phage, it would also be surprising. These models are

far too simple to expect the predicted and observed dynamics to be

numerically coincident. A more modest, realistic, and, I believe,

more useful goal is test predictions made from the analysis of the

properties of these models in a qualitative – semi-quantitative way
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and identify those elements of the model that have to be modified

to make the models more realistic and accurate. In the following, I

list these predictions.

The phage model. (i) When mixtures of otherwise isogenic

CRISPR positive and negative phage –sensitive constructs are

introduced into chemostats in approximately equal frequencies:

(a) CRISPR cells with immunity to the phage will emerge and

ascend to dominance.

(b) If the phage are maintained, the CRISPR population will

continue to persist.

(c) If non–CRISPR mutants with envelope or other resistance

to the phage evolve, or are introduced, unless they have a

considerable cost in Malthusian fitness, these resistant

bacteria will increase in frequency and may replace the

CRISPR population.

(d) Although not considered in the model, there is the possibility

that CRISPR cells C or CR will acquire envelope resistance.

If so, a CRISPR population with envelope resistance may

dominate.

(ii) When introduced at low frequencies into chemostats with

sensitive non–CRISPR cells in the presence of phage, as long as

immune CRISPR cells are produced, the CRISPR population will

increase in frequency. This will not be the case in the absence of

phage.

The plasmid model. When mixtures of non–CRISPR cells

bearing fitness reducing conjugative plasmids and plasmid-free

CRISPR cells are introduced into chemostats:

(a) CRISPR cells with immunity to the plasmid will emerge.

(b) the immune CRISPR population will increase in frequency,

even if the CRISPR cells have lower growth rates than

plasmid-free non–CRISPR.

(c) the CRISPR population will decline in frequency if the

environmental conditions changed so that selection favors

cells bearing the plasmid. (One way to do this experiment is

to use antibiotic resistance, R- plasmids and periodically add

antibiotics to which the plasmid confers resistance).

Caveats, excuses, recognized limitations, extensions, and
speculations

In this report, I elected to restrict the model and its analysis to

the simplest cases with lowest realistic number of states of bacteria,

phage and plasmids. I have done so because at this time these

minimum number of states models and the predictions generated

from their analysis are more amenable to evaluating and testing

experimentally than models with more states of bacteria, phage

and plasmids. Moreover, these tests, and particularly the

population dynamic experiments, should indicate the importance

of the generation of additional population states by mutation, like

host range phage and host range plasmids, are to these dynamics.

Be that as it may, I also realize that this minimum number of states

model will not account for what may turn out to be the most

important contributions of CRISPR-mediated immunity to the

ecology as well as the population and evolutionary biology of

bacteria and phage.

Generalized resistance. Luciano Marraffini (personal

communication) suggested one potentially important contribution

of CRISPR to the population and evolutionary dynamics of bacteria

and phage. Unlike envelope resistance, which is almost always

restricted to phage that utilize single adsorption organelles, [33],

CRISPR–immunity can be effective against multiple phages with

different adsorption organelles (independent resistance). Moreover,

envelope resistance is likely to engender a cost in Malthusian fitness,

e.g. see [31,36,46] and that cost will almost certainly be greater if

this resistance is for multiple phages that employ different receptors

for infection.

If these interpretations are correct, it would seem experimental

populations with CRISPR-encoding bacteria with envelope

resistance to all the phage will not evolve and CRISPR will

prevail in competition with sensitive non–CRISPR cells. If,

however, the results of a test of this multi-phage hypothesis

Ryzard Koroana and did in a study of the conditions for the

maintenance of restriction endonuclease (restriction-modification,

R-M) immunity are general [47], this hypothesis may be rejected.

E. coli bearing an R-M system conferring immunity to three phage

with different organelles were challenged with a mixture of all

three of these phages. As a consequence of a hierarchy of phage

replication [48], there was sequential selection for the different

resistant states and within a day of exposure, bacteria with

envelope resistance to all three phages dominated the community

[47].
A CRISPR-mediated arms race and phage-limited

communities. A number of years ago, Richard Lenski and I

postulated that the arms race between bacterial resistance and host

range phage would be limited to few cycles and is likely to end with

resistant bacteria to which phage would not be able to generate

host range mutations [46]. The empirical basis of our hypothesis

was the results of experiments with E. coli and its phage and

envelope resistance, [31,46,49,50]. While this interpretation was

also supported by experiments with V. cholerae and its phage JSF4

[36], experiments with Pseudomonas fluorescens and its phage SBW25

[51] suggest extended arms races are possible. Although, to my

knowledge, the mechanisms responsible for the continuous

changes in resistance and host-range reported in this study with

this strain of Pseudomonas and phage have yet to be elucidated,

CRISPR does provide a mechanism for long-term arms races

between bacteria and phage [21,22,24]. By single base changes in

sequences of DNA into the spacer regions of CRISPR, a phage

can infect and replicate on previously immune CRISPR cells. By

incorporating the mutated or other region of that phage into

another spacer, CRISPR cells can generate resistance to these host

range phages. At this time, it is not at all clear how long or through

how many cycles a CRISPR-mediated arms race can proceed. I

would it certainly be interesting, tenable experimentally and fun to

find out. Be it by CRISPR or by sequential resistance and host-

range mutation [52,53] an extended arms race could provide a

way for phage, rather than resources, to limit the densities of

bacterial populations (see Text S2), which is an ecological outcome

with practical as well as theoretical implications, e.g. see [54–59].

Supporting Information

Text S1 Protocols to estimate the probability of formation, m,

and rate of loss, n, of CRISPR-mediated immunity to phage and

conjugative plasmids.

Found at: doi:10.1371/journal.pgen.1001171.s001 (0.03 MB

DOC)

Text S2 Arms races and phage-limited bacterial populations.

Found at: doi:10.1371/journal.pgen.1001171.s002 (0.33 MB

DOC)
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