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Abstract: Nanoscale Fe3O4-Sn@CNFs was prepared by loading Fe3O4 and Sn nanoparticles onto
CNFs synthesized via electrostatic spinning and subsequent thermal treatment by solvothermal
reaction, and were used as anode materials for lithium-ion batteries. The prepared anode delivers
an excellent reversible specific capacity of 1120 mAh·g−1 at a current density of 100 mA·g−1 at the
50th cycle. The recovery rate of the specific capacity (99%) proves the better cycle stability. Fe3O4

nanoparticles are uniformly dispersed on the surface of nanofibers with high density, effectively
increasing the electrochemical reaction sites, and improving the electrochemical performance of the
active material. The rate and cycling performance of the fabricated electrodes were significantly
improved because of Sn and Fe3O4 loading on CNFs with high electrical conductivity and elasticity.

Keywords: Fe3O4; Sn; carbon nanofibers; lithium-ion batteries; anode material

1. Introduction

With the development of the social economy, the imbalance of energy supply and de-
mand has become prominent. The development of new energy and new energy-materials
has become an important topic. Lithium-ion batteries, as electrochemical power sources,
have been widely used in mobile phones, laptops, cameras, and other portable electronic
devices [1–3], hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs),
due to their advantages of environmentally friendliness, high capacity, high power density,
high safety, long cycle life, and so on. However, graphite, the most common commercial an-
ode material, only has a theoretical lithium storage specific capacity of 372 mAh·g−1 [4–6],
which is far below the application requirements. Therefore, finding alternative anode
materials with better electrochemical performance, such as silicon-based composites [7–9],
metal intermetallic alloys [10–14], and transition metal oxides [15–17], has become increas-
ingly important [18–20]. Among these anode materials, cobaltous oxide and tin are very
promising candidates to replace graphite, and have attracted the attention of many scholars.
Fe3O4, as a transition metal oxide (MxOy, M = Co, Cu, Fe, Mn), is well-known because
of its high theoretical lithium storage capacity (890 mAh·g−1), great safety performance,
nontoxicity, and low cost [21]. In addition, Sn, as a metal, also has a high theoretical specific
capacity (994 mAh·g−1) [22,23]. However, the practical application of Fe3O4 and Sn still
faces a series of enormous problems, namely, rapid capacity decay and poor capacity
retention ability and cycle performance, owing to the large volume changes of the material
occurring during the lithium insertion/de-insertion process. Fe3O4, for example, will
generate approximately 200% of the volume change, and lead to pulverization due to the
action of internal stress. In addition, the volume expansion also causes an increase in
electrical contact resistance and results in a decrease in the electrochemical performance of
the material [24–28].
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Studies on Fe3O4 and Sn anodes of lithium-ion batteries have mainly focused on
improving the cycle life and reversible capacity by nanometer materials and compound-
ing with other elastic materials. Optimization of the nanostructure and preparation of
composite materials can effectively inhibit volume expansion, reduce the electrical contact
resistance, and improve the electrochemical performance of materials. Associated prepara-
tion methods of synthesizing revolutionary nanocomposites include electrospinning [29],
pyrolysis [30], templating [31], chemical vapor deposition [32], sol-gel methods [33], and
so on. A series of Fe3O4-based nanomaterials were prepared, such as Fe3O4 nanowire
arrays [34], Fe3O4/graphene composites [35,36], Fe3O4/carbon nanotube composites [37],
hexahedral Fe3O4 [38], and hollow Fe3O4 spheres. [39]. The same strategies can also be
applied to the optimization of Sn, such as improving the discharge capacity through the
preparation of Sn-M-C composites (M = Fe, Ni, CO) [40–43] to inhibit volume expansion
via N-doped Sn@carbon composites [44], tin alloys [45–47], and tin balls. [48,49]. Carbon
nanofibers (CNFs) with high electrical conductivity and surface area are suitable for prepar-
ing composites, and have been used in many areas, such as sodium-ion batteries [50],
direct methanol fuel cells [51], selective detection of dopamine [52], biosensors [53]. The
excellent microstructure of the CNFs which have higher conductivity, and a larger specific
surface area to complete better electrical contact between the electrode and electrolyte, and
have good structural stability to provide more space for the expansion and contraction of
materials, is beneficial to improve the electrochemical performance. All of these factors
will contribute to improving the performance of lithium-ion batteries.

Therefore, a novel composite comprising Fe3O4-Sn@CNFs was fist synthesized by elec-
trostatic spinning and solvothermal reaction. When utilized as anode electrode material for
lithium-ion batteries, this novel Fe3O4-Sn@CNFs electrode exhibits an excellent reversible
specific capacity of 1120 mAh·g−1 at a current density of 100 mA g−1. The recovery rate of
the specific capacity (99%) proves the better cycle stability. This work plays a guiding role
in the development of lithium-ion batteries.

2. Experiment Procedure
2.1. Preparation of Carbon Nanofibers

In a typical preparation, 1 g polyacrylonitrile (PAN, Mw = 150,000, Sigma-Aldrich
Co., Shanghai, China) was dissolved in 9 g N, N-dimethylformamide (DMF) (Aladdin Co.,
Shanghai, China) and then stirred to form a homogeneous transparent polymer solution at
room temperature. The result solution was then transferred to five 10-mL syringes with
needles connected to the anode of a high-voltage DC power supply. Electrospun nanofibers
were collected on a roller wrapped with aluminum foil, and the distance between the
tip and the collector was 15 cm. The applied voltage was 27 kV, and the flow rate of
the solution was 15 µL min−1. The obtained fibers were first heated to 270 ◦C at a rate
of 1 ◦C min−1 in air to stabilize the fibers, and kept at 270 ◦C for 1 h. Then they were
carbonized by continued heating to 1000 ◦C at a rate of 5 ◦C min−1 in nitrogen atmosphere
and kept for 1 h. The obtained products were denoted as CNFs.

2.2. Preparation of Sn@CNFs

The preparation approaches of Sn loading on carbon nanofibers are similar to those
of CNFs except that: tin (II) acetate is first added to the prepared PAN and DMF mixed
solution and then stirred for 12 h to obtain the homogeneous solution. Second, in the
heat treatment, stabilization was carried out at 230 ◦C for 1 h at a rate of 1 ◦C min−1,
and carbonization was carried out at 800 ◦C for 1 h. The obtained products were de-
noted as Sn@CNFs.

2.3. Preparation of Fe3O4@CNFs

The solvothermal route used in this work has been reported in previous work [54,55].
In a typical synthesis, 40 mg CNFs was dispersed in 20 mL DMF under sonication for 2 h
to form a uniform black solution at a concentration of 2 mg mL−1. Then, 10 mL tetraethy-
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lene glycol (TEG) (Aladdin Co., Shanghai, China) and 100 mg iron (III) acetylacetonate
(Fe(acac)3) (Aladdin Co., Shanghai, China) were added to the solution, and stirred for
30 min. The mixed solution was transferred to a Teflon-lined stainless steel autoclave
(Yipin Technology Co., Shanghai, China) to proceed with solvothermal reaction at 180 ◦C
for 2 h. After the solvothermal reaction was completed, the autoclave was cooled to room
temperature. The product of Fe3O4@CNFs was collected after centrifugation, washed with
deionized water three times, and finally dried in a vacuum oven at 60 ◦C overnight.

2.4. Preparation of Fe3O4-Sn@CNFs

The preparation method was the same as Section 2.3, except the CNFs were replaced
with Sn@CNFs.

2.5. Preparation of Fe3O4 Powder

The same method was used to prepare Fe3O4 powder as described in Section 2.3, just
without adding the CNFs powder.

2.6. Characterization of Materials

The surface morphology of all samples was examined by scanning electron microscopy
(SEM, NOVA NANOSEM450, FEI Co., Ltd., Hillsborough, NC, USA). The size, distribution,
and coating of the nanoparticles were observed by transmission electron microscopy (TEM,
JEM-2000 FXII, JEOL Ltd., Tokyo, Japan). X-ray diffraction (XRD, D8 ADVANCE, Bruker
AXS Co., Karlsruhe, Germany) analysis of samples for the chemical composition and the
degree of crystallinity were performed with Cu Kα radiation (λ = 0.154 nm). The elemental
distribution of Fe3O4-Sn@CNFs was examined by X-ray photoelectron spectroscopy (XPS,
ESCALAB 250Xi, Thermo Fisher Scientific Inc., Waltham, MA, USA). The electrochemical
performances were determined using a coin cell (type CR2032), which was assembled
in a glove box filled with argon. Copper foil was coated with a slurry of 80 wt% active
material, 10 wt% super P (as the conductive agent), and 10 wt% hydroxymethyl cellulose
(CMC, as the binder) dissolved in a proper amount of NMP to form the working electrode.
Lithium foil was used as the counter and reference electrodes and a microporous polymer
separator (Celgard® 2400) (Celgard LLC, Charlotte, NC, USA) was placed between the two
electrodes. The electrolyte was a solution of 1 M LiPF6 dissolved in a mixed solution of
ethylenecarbonate (EC) and dimethyl carbonate (DMC) (1:1 by volume) (Zhangjiagang
Guotai Huarong Chemical New Material Co., Zhanjiagang, China). The battery case and
polypropylene film must be dried at 100 ◦C in a vacuum to remove oxygen and water,
and the amount of oxygen and water in the glove box must be less than 0.1 ppm. Electro-
chemical impedance spectroscopy (EIS) measurements were used to test the impedance
changes, and cyclic voltammetry (CV) measurements were used to study the process of the
electrochemical reactions, both of which were conducted on a CHI660E electrochemical
workstation (CH Instruments, Shanghai, China). The discharge and charge test, including
cycling and the rate performance, was conducted on the LAND-CT2001A battery cycle
system (LAND Electronics, Wuhan, China).

3. Results and Discussion

The novel Fe3O4-Sn@CNFs composite nanomaterial was fabricated via a simple elec-
trospinning and subsequent calcination process combined with a hydrothermal method.
Figure 1 shows a schematic illustration of the preparation of Fe3O4-Sn@CNFs. Electro-
spinning is a convenient and important technique to prepare continuous one-dimensional
carbon nanofibers [56–59] that were used in this study to synthesize Sn loading on carbon
nanofibers (Sn@CNFs), which were then coated with Fe3O4 by a solvothermal method.
Fe3O4 is distributed uniformly at a high density on the surface of fibers with nanoscale
diameters. CNFs, as elastic materials characterized by flexibility and ductility, can alleviate
the volume changes of Fe3O4 and Sn during the lithium insertion/de-insertion process,
and maintain structural stability. Concurrently, the presence of Sn@CNFs enhanced the
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electrical conductivity of the material and promoted the transfer of electrons and ions.
More importantly, the high density of nanoscale Fe3O4 particles and Sn provided more
active sites, which greatly improved the specific capacity of the composite. Therefore, the
as-prepared Fe3O4-Sn@CNFs nanocomposites exhibited high reversible specific capacity,
better rate capability, and excellent cycling durability.
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Figure 1. Schematic illustration of the preparation process for Fe3O4@Sn-CNFs.

As shown in Figure 2a, the crystalline textures of CNFs, Sn@CNFs, Fe3O4, Fe3O4@CNFs,
and Fe3O4-Sn@CNFs were analyzed by X-ray diffraction (XRD). The XRD pattern of the
CNFs reveals two broad and smooth peaks approximately at 2θ = 25◦ and 44◦; the former
peak proved the formation of typical amorphous carbon [60,61], and the latter weaker
peak indicated the presence of a little ordered carbon in the CNFs [62]. The XRD pattern
of the Fe3O4 powder exhibited diffraction peaks at 2θ = 18.2◦, 30.0◦, 35.4◦, 37.0◦, 43.0◦,
53.4◦, 56.9◦, and 62.5◦, corresponding to the (111), (220), (311), (222), (400), (422), (511),
and (440) planes, respectively, indicating a cubic Fe3O4 structure with a space group of
Fd-3m (JCPDS No. 89-0688). In addition, compared to Fe3O4 powder, the Fe3O4 peaks of
Fe3O4@CNFs and Fe3O4-Sn@CNFs were weaker in intensity, indicating that Fe3O4 did
not accumulate on the surface of the fibers, but formed a small nanoscale structure. The
corresponding peaks at 2θ = 30.6◦, 32.0◦, 43.9◦, 44.9◦, 55.3◦, 62.5◦, 63.8◦, 64.6◦, 72.4◦, 73.1◦,
and 79.5◦ could be indexed to the (200), (101), (220), (211), (301), (112), (400), (321), (420),
(411), and (312) planes of Sn metal, respectively, and were accordant with a tetragonal
structure, expressing a space group of I41/amd (JCPDS No. 65-0296). Fe3O4-Sn@CNFs
have a similar peak of Sn as Sn@CNFs, implying the microstructure of Sn has not been
influenced by the solvothermal reaction and subsequent treatment process. The decrease
in peak intensity and SEM results proved that many Fe3O4 particles were coated on the
Sn@CNFs and constituted a Fe3O4 shell.

The XPS diagram of Fe3O4-Sn@CNFs is shown in Figure 2b, which revealed the
presence of Fe, C, O, and Sn elements. All binding energies were calibrated by referencing
the C 1s peak at 284.8 eV. The C 1s spectrum (Figure 2c) can be deconvoluted into three
peaks, located at 288.7 eV, 286.1 eV, and 284.8 eV, which correspond to the chemical bonds
(O=C–O and O=C) formed by O elements remaining in the preparation and calcination
process and the C–C chemical bond in CNFs themselves [63,64]. The peaks at 495 eV
and 486.5 eV in Figure 2d correspond to Sn 3d3/2 and Sn 3d5/2 respectively, which
proved the presence of Sn in the Fe3O4-Sn@CNFs samples [65]. Figure 2e shows the
oxygen element in the XPS pattern of the O 1s spectrum diagram, and two peaks can be
deconvoluted into four peaks. The peak at 530.2 eV corresponds to the Fe-O bond in the
crystalline phase of Fe3O4, and the different combinations of O and C states (O=C and O–C
chemical bonds) correspond to two neighboring peaks at 531 eV and 532.2 eV respectively.
The higher peak at 533.5 eV may be attributed to the O–H bond of the adsorbed water
molecules [66]. Figure 2f shows the Fe 2p spectrum of two peaks located at 725 eV and
710.3 eV, corresponding to Fe 2p1/2 and Fe 2p3/2 respectively, with a satellite peak at
717.5 eV, confirming the presence of Fe [67].
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Figure 3 shows the SEM images of the synthesized Fe3O4 powder, CNFs, Sn@CNFs,
and Fe3O4-Sn@CNFs products. As shown in Figure 3a, Fe3O4 nanoparticles with a diameter
of several nanometers agglomerated together to generate larger particles (with an average
diameter approximately 50 nm) because of magnetism. CNFs (Figure 3b) and Sn@CNFs
(Figure 3d) have interconnecting and overlapping morphologies and uniform diameters
(approximately 260 nm), which enhance the electrical conductivity to a certain extent. The
CNFs in Figure 3b can be clearly observed to have a smooth surface, indicating that PAN
(as the precursor of carbon) was blended well with DMF (as solvent) and turned into fibers
after the electrospinning and calcining process. The surface of Sn@CNFs (Figure 3c) was
rugged because of the tin(II) acetate transforming to metal Sn after the calcining process
and some of the Sn nanoparticles were exposed in the air which destroyed the surface of
nanofiber. The morphology of Fe3O4-Sn@CNFs is shown in Figure 3d, Fe3O4 particles
were loaded on the surface of Sn@CNFs at a high density. However, the size increased to
approximately 8 nm, which might be due to the effect of internal Sn particles that were
exposed to the surface of the fibers on the solvothermal reaction. The increase in density
and particle size combined with the increase in the content of Fe3O4 in the composite
enhanced the specific capacity of the active material. All Fe3O4 nanoparticles grew on
the surface of Sn@CNFs, and were barely flocked together or free Fe3O4 particles, which
could improve the use of materials. In addition, the diameter and surface of the CNFs and
Sn@CNFs did not change after the solvothermal reaction, indicating that carbon and Sn
were not affected by the reaction.
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TEM and high-resolution TEM (HR-TEM) images of Fe3O4-Sn@CNFs are shown in
Figure 4. The graphic in Figure 4a reveals that the fibers with a diameter of approximately
200 nm cross each other and form a stable network structure. Figure 4b shows the HR-TEM
image of the material surface in which the light and dark parts corresponded to the Fe3O4
shell and Sn@CNFs respectively. The Fe3O4 shell (Figure 4c) was well crystallized, and
the crystalline interplanar spacing of Fe3O4 nanoparticles was 0.25 nm, which matched
well with the lattice spacing of the (311) planes of Fe3O4. In Figure 4d, the particles that
assembled into nanofibers mainly existed in an amorphous state, but some crystalline
nanoparticles were still present basically due to the crystallization of Sn. The Sn nanopar-
ticles embedded in the fiber are shown in the upper right corner of the illustrations. The
particle diameter was only approximately 1 nm, and the lattice spacing was 0.29 nm, cor-
responding to the (200) planes of crystalline Sn. No obvious carbon lattice fringes were
observed, indicating that mainly amorphous carbon was present. The mapping diagram
of the elements in Figure 4e also proves that only a small amount of Sn was exposed at
the external surface, and the content of Sn was lower in the material than in the C, O,
and Fe elements.
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Figure 5a shows the initial, second, and fiftieth discharge and charge profiles of
Fe3O4-Sn@CNFs composite electrodes with the voltages ranging from 0.01–3 V at a current
density of 100 mA·g−1. The initial discharge and charge capacity of Fe3O4-Sn@CNFs
were 1597.2 mAh·g−1 and 1197 mAh·g−1 respectively, with an initial coulombic efficiency
of 74.94%, due to the irreversible loss of lithium, and the formation of solid electrolyte
interface (SEI) film on the surface of the material during the discharge process. The
coulombic efficiency of Fe3O4-Sn@CNFs steeply increased to 97.4% in the second discharge
and charge process, having a discharge capacity of 1187.9 mAh·g−1 and charge capacity of
1157 mAh·g−1, and then stabilized at a high-coulombic efficiency of approximately 98.5%.
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Figure 5. (a) Voltage profile of Fe3O4-Sn@CNFs at 100 mA·g−1 in 1 M LiPF6/EC/DMC. (b) Cyclic voltammetry curves
of Fe3O4-Sn@CNFs at 0.2 mV/s scan rate in 1 M LiPF6/EC/DMC. (c) Rate performance of CNFs, Sn@CNFs, Fe3O4,
Fe3O4@CNFs, and Fe3O4-Sn@CNFs at different current densities. (d) Cycle performance and coulombic efficiency of CNFs,
Sn@CNFs, Fe3O4, Fe3O4@CNFs, and Fe3O4-Sn@CNFs at 100 mA·g−1 in 1 M LiPF6/EC/DMC. (e) Long-term cycles of
Fe3O4-Sn@CNFs at 1600 mA·g−1 current densities.
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Cyclic voltammetry measurements from 0.01–3 V (vs. Li+/Li) of the coin cell fabri-
cated by the Fe3O4-Sn@CNFs composite anode, performed at a scan rate of 0.2 mV s−1,
are shown in Figure 5b. During the first cycle, the reduction peak at 0.35 V corresponds
to the conversion of Fe3O4 to Fe and Sn to LixSn, the formation of amorphous Li2O and
partially irreversible solid electrolyte interface (SEI) film on the surface of the materials. In
addition, two weak peaks observed at approximately 0.7 V and 1.4 V can be assigned to the
formation of LixFe3O4 [68,69]. The oxidation peak observed at 0.7 V was generated from
the appearance of Sn during the Li+ deintercalation process, and the broad peak at 1.5–1.9 V
was related to the reduction of Fe3+/Fe2+ to Fe as described in Equations (1) and (2), respec-
tively. In the second cycle, the relatively weak peak observed at 0.75 V, which was related to
the conversion of Fe3O4 to Fe and LixSn to Sn, replaced the sharp peak at 0.35 V, indicating
the formation of a stable and uniform SEI film on the surface of the material. In addition,
the observable decrease in the intensity of the reduction peak suggested the loss of capacity
during the charge process. In the subsequent scan, the current peaks shifted to higher
potentials due to the facile polarization on account of the good reversibility. Moreover,
the shift of the oxidation peak to a high potential as the scan proceeds depends on the
unique structure and high specific surface area of the composite materials, and is due to the
reversible conversion reaction between Li+ and Fe3O4 simultaneously. The good overlap
of the pattern in the subsequent scan verified the good reversibility of the composite.

Sn + xLi+ + xe− ↔ LixSn(0 < x < 4.4) (1)

Fe3O4 + 8Li+ + 8e− ↔ 4Li2O + 3Fe (2)

Figure 5c illustrates the corresponding discharge specific capacity of CNFs, Sn@CNFs,
Fe3O4, Fe3O4@CNFs, and Fe3O4-Sn@CNFs at current densities of 100, 200, 400, 1600, and
100 mA·g−1. This test included fifty discharge and charge cycles and changed the current
density every ten cycles. In the first forty cycles, the specific capacity constantly decayed
with increasing current density because of the polarization phenomenon during the elec-
trochemical reaction process. At the beginning of the 41st cycle, the applied current density
was dropped back to 100 mA·g−1 to study the percent recovery of specific capacity by
comparison to the initial ten cycles. Compared to the steady discharge capacity at various
current densities and excellent percent recovery of the specific capacity of Fe3O4-Sn@CNFs,
the Fe3O4 powder anode capacity quickly decayed from 720 to 410 mAh·g−1 at a high
current density (1600 mA·g−1). After transforming the current density to 100 mA·g−1, the
recovery ratio of the capacity of Fe3O4 powder reached 95%. The strongly stable discharge
specific capacities of the Fe3O4-Sn@CNFs were 1120, 1030, 970, 785, and 1120 mAh·g−1 at
current densities of 100, 200, 400, 1600, and 100 mA·g−1, respectively. The recovery ratio
of the specific capacity was maintained at 99% during the last ten cycles, indicating the
remarkable electrochemical stability of the materials which was closely related to the rate
performance and electrochemical performance of the cell. The reason for the rate perfor-
mance improvement was similar to that of the cycle performance, namely, the excellent
cushioning effect and electrical conductivity of CNFs and the advantages of nanoscale
Fe3O4 particles.

The cycle performance and coulombic efficiency of CNFs, Sn@CNFs, Fe3O4,
Fe3O4@CNFs, and Fe3O4-Sn@CNFs at a current density of 100 mA·g−1 in the voltage
range of 0.01–3 V are shown in Figure 5d. The initial discharge specific capacity of the
prepared CNFs electrode was 464 mAh·g−1 and tended to be stable until the specific
capacity fell to 208 mAh·g−1, with a coulombic efficiency of 99.4%, indicating that CNFs
have excellent capacity retention properties and cycle performance despite the low ca-
pacity. Compered to pure CNFs, Sn@CNFs have a specific capacity with initial discharge
specific capacity of 845 mAh·g−1 and are maintained at approximately 400 mAh·g−1 with
a coulombic efficiency up to 99.5%, indicating that the loaded Sn effectively improved the
electrochemical performance and specific capacity of the carbon fibers. Furthermore, the
favorable cycling stability, remarkable specific capacity, and coulombic efficiency indicate
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that the CNFs commendably restrained the volume change of Sn during the intercalation
and deintercalation process to a certain extent. The Fe3O4 powder electrode showed a
high capacity of 1046.3 mAh·g−1 in the first discharge process, but the discharge/charge
capacity decayed constantly until 582.5 mAh·g−1 at the 50th cycle of discharge capacity
due to a large volume change in the cycle process. Compared to the initial discharge ca-
pacity of the Fe3O4@CNFs composites (1400 mAh·g−1), Fe3O4-Sn@CNFs have an amazing
initial discharge capacity of 1600 mAh·g−1, and subsequently level off at approximately
1120 mAh·g−1 with little capacity fading and the coulombic efficiency stabilizes at approxi-
mately 98.5% simultaneously. These results suggest that Fe3O4-Sn@CNFs have excellent
specific capacity and cycling stability. The electrochemical stability improvement of the
Fe3O4-Sn@CNFs electrode was based on the following two primary factors: the doping of
Sn (Sn@CNFs have excellent electrical conductivity) and the presence of Fe3O4 nanopar-
ticles (nanoscale particles have higher electrochemical activity). Sn loading on CNFs
effectively improved the electrochemical performance of the composite because of not
only the high electrical conductivity of the materials but also the unique one-dimensional
structure of the Sn@CNFs. Compared to carbon particles, one-dimensional fibers provide
a 1D electron path which decreases the resistance during electron transfer and therefore
expedites the lithiation and delithiation process. Fe3O4 nanoparticles grown on the surface
of Sn@CNFs were separated from each other with high density, which means that more
electrochemical reaction sites, larger specific surface area, and better electrolyte contact
further improve the Li storage capacity. In addition, the active materials inevitably gener-
ate deformation during the lithiation process, especially Sn and Fe3O4 particles. With the
lithium ion inserted into the composites, the nanofibers (with Sn and Fe3O4 integrated in
the interior and exposed to the surface) expand and compress. At this point, CNFs play a
crucial role to cushioning the mechanical stress caused by Fe3O4 and Sn because of their
good elastic properties. Inhibiting the volume expansion of Fe3O4 and Sn can effectively
restrain capacity fading.

The long-term cycling capacity at a high current density of 1600 mAh·g−1 was also
measured to study the performance of the Fe3O4-Sn@CNFs anode in Figure 5e. The sample
delivered first and second discharge capacities of 951 and 660 mAh·g−1, respectively,
and retained the reversible capacity of 535 mAh·g−1 after 500 cycles, demonstrating its
excellent electronic conductivity, good structural stability and capacity retention at a high
discharge-charge current density.

To further determine the kinetics of the as-prepared electrode materials during the
charge-discharge process, electrochemical impedance spectroscopy (EIS) measurements
were performed on Fe3O4 and Fe3O4@CNFs and Fe3O4-Sn@CNFs-based half cells. Figure 6
shows the Nyquist plot of the EIS curves with sinusoidal excitation signals in a frequency
range of 100 kHz to 0.01 Hz. The EIS curves of anode materials for Li-ion batteries usually
have a similar shape, including a semicircle in the high-frequency region and a straight line
in the low frequency region. The intercept of the semicircle with real axis corresponds to
the inherent resistance (Rs), including the active material resistance, electrolyte resistance,
contact resistance between electrolyte and electrode, and contact resistance between elec-
trode material and collector. The diameter of the semicircle represents the charge transfer
resistance (RCT), which consists of a two-phase interface between the electrode and the
electrolyte, reflecting the electron transfer ability at that interface and the difficulty of
the electrochemical reaction. The curve of the oblique line in the low frequency region
represents the Warburg impedance (Zw), corresponding to the lithium-diffusion process.
The inherent resistances of Fe3O4, Fe3O4@CNFs, and Fe3O4-Sn@CNFs were almost the
same (approximately 1.8 Ω), showing a high conductivity. A low RCT is beneficial to
electron transfer and enhances the electrochemical reaction kinetics of the materials. In this
study, the RCT of Fe3O4, Fe3O4@CNFs, and Fe3O4-Sn@CNFs were 90 Ω, 70 Ω, and 60 Ω,
respectively. In comparison to the pure Fe3O4 powder, the Rcts of Fe3O4-Sn@CNFs was
obviously much smaller, which provided the following benefits: (a) Sn@CNFs enhanced
the conductivity of the active materials and the exchange of ions and electrons between
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particles via carbon fibers effectively promoting their transfer; (b) instead of large particles
flocking together, the Fe3O4 that grew on the surface of the nanofibers was 8 nm, which
observably reduced the internal resistance. Under the joint effect of the two above factors,
the specific surface area of the active material increases, which facilitates the permeation of
the electrolyte and charge transfer, decreases the charge transfer resistance, shortens the
ion insertion distance in the nanometer range, and finally improves the electrochemical
performance of the Fe3O4-Sn@CNFs anode.
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4. Conclusions

Novel nanoscale Fe3O4-Sn@CNFs were prepared by loading Fe3O4 and Sn nanoparti-
cles onto CNFs synthesized via electrostatic spinning and subsequent thermal treatment by
solvothermal reaction and used as the anode material for lithium-ion batteries. The Fe3O4
nanoparticles play an important role in the improvement of the specific capacity, cycle
stability, and rate performance of the electrode material. The initial discharge capacity of
the Fe3O4-Sn@CNFs anode is 1600 mAh·g−1, which is much higher than that of the pure
Fe3O4 powder (582 mAh·g−1), Fe3O4@CNF composites (900 mAh·g−1), and pure CNFs
(200 mAh·g−1), and then falls to 1120 mAh·g−1 and stabilizes after fifty discharge/charge
cycles without evident capacity decay. The rate performance of the Fe3O4-Sn@CNFs
composites reveals excellent percent recovery of specific capacity (99%), which is far be-
yond that of the Fe3O4 powder. The excellent cycle stability and rate performance of the
Fe3O4-Sn@CNFs anode benefit from the following factors: first, the low diameter and
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high density of nanoscale Fe3O4 particles at the surface of Sn@CNFs increase the electro-
chemical reaction sites and contact with the electrolyte, promote the transfer of lithium
ions, obtain a faster velocity of lithiation, and improve the electrochemical performance.
Second, Sn@CNFs have good electrical conductivity due to their unique one-dimensional
structure, providing a 1D pathway of electrons, reducing the resistance, and tremendously
facilitating the transfer of electrons during a lithiation and delithiation process. In addition,
CNFs have commendable elastic properties, and generate cushioning effects to restrain the
volume expansion, efficiently enhancing the rate performance and cycle capacity of the
Fe3O4-Sn@CNFs composite material.
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