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Semantic compositionality—the way that meanings of complex entities obtain
from meanings of constituent entities and their structural relations—is
supposed to explain certain concomitant cognitive capacities, such as systema-
ticity. Yet, cognitive scientists are divided onmechanisms for compositionality:
e.g. a language of thought on one side versus a geometry of thought on the
other. Category theory is a field of (meta)mathematics invented to bridge
formal divides. We focus on sheaving—a construction at the nexus of algebra
and geometry/topology, alluding to an integrative view, to sketch out a cat-
egory theory perspective on the semantics of compositionality. Sheaving is a
universal construction for making inferences from local knowledge, where
meaning is grounded by the underlying topological space. Three examples
illustrate how topology conveys meaning, in terms of the inclusion relations
between the open sets that constitute the space, though the topology is not
regarded as the only source of semantic information. In this sense, category
(sheaf) theory provides a general framework for semantic compositionality.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Introduction
The way that representations and their meanings for complex entities obtain
from the representations and meanings for the constituent entities and their
structural relations is called semantic compositionality. Some form of composition-
ality is supposed to explain concomitant cognitive capacities, such as the
systematicity of language [1] and thought [2], i.e. where possessing certain cogni-
tive capacities implies possessing certain other (structurally related) cognitive
capacities—an equivalence relation on cognitive abilities [3]—such as under-
standing the meaning of John loves Mary and Mary loves John. Classical
compositionality, for example, supposedly explains systematicity by appealing
to a combinatorial syntax and semantics, i.e. semantic relations between constituent
entities are captured by syntactic relations between corresponding symbols, and
cognitive processes that are sensitive to those syntactic/semantic relations [4].
So, to illustrate, the meaning of John loves Mary is captured by a symbol, JOHN,
for the person John, a symbol, MARY, for the person Mary, and a symbol,
LOVES, for the relation loves that are combined ( juxtaposed) in a way that
expresses the fact that John is the lover and Mary is the one loved, e.g. LOVES
(JOHN, MARY). Classical compositionality can account for systematicity by
assuming that structurally related capacities involve the same combinatorial syn-
tactic process [4], e.g. lover is determined by the first argument position.
Analogous accounts are supposed for other (non-classical) forms of composition-
ality, e.g. as used in connectionist (neural network) models, where symbols are
replaced with vectors of neural activity and juxtapositioning with operations
such as tensor product [5]. Though the claim that these forms are non-classical
has been extensively debated [6], they generally suppose that semantic relations
are captured by relations between corresponding representations.

Despite the efficacy of supposing a compositionality principle, cognitive
scientists are generally divided on symbolic [4] versus non-symbolic [5]
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mechanisms—a language of thought [2] on one side versus a
geometry of thought [7] on the other—and their explanatory
import [6]. The challenge is not just to explain how some
form of compositionality accounts for properties such as
systematicity, but why cognition is compositional in the first
place [8].

Explaining the why versus how of systematicity was posed
as a challenging problem for connectionist theories [4], and
later shown to be also problematic for classical theory [6].
Problematically, while there are instances of compositionality
that support a requisite systematicity property, there are also
instances that do not support the same property. So, systema-
ticity does not necessarily follow from core principles and
assumptions of classical or connectionist theories. Auxiliary
assumptions added to pick out just those instances of compo-
sitionality that support systematicity are ad hoc when they are
unconnected to the theory’s core principles and assumptions,
cannot be confirmed independently of confirming the theory,
and are motivated only by the need to fit the data, in which
case, the theory fails to fully explain systematicity [6]. One
recourse is to claim that the supposed counterexamples are
not the ‘canonical’ forms of compositionality that classical
theory takes as a core assumption [3]. Yet, its unclear what
characterizes canonicity, or why cognition is canonically
compositional [9].

A category theory [10] approach to compositionality was
introduced to address the why of systematicity [11]. Category
theory is a field of (meta)mathematics invented to formally
compare mathematical structures [12]. The core explanatory
concept is universal construction, formalized as universal
morphism, which is a way of comparing cognitive capacities
modelled as compositions of maps—such constructions are
characterized by a universal mapping property [13]: in regard
to a collection of systematically related cognitive capacities,
each map modelling a member capacity is composed of the
map shared by all members and a map that is unique to that
capacity. Hence, a universal morphism identifies an equival-
ence class of systematically related cognitive capacities. Such
constructions are the ‘best’ one can do within a certain (categ-
orical) context—every construction in that context ‘leads to’ a
universal construction, so necessarily obtains via a recursive
process [9].

An explanation for semantic compositionality must
ultimately connect to the physical (neural) system that sup-
ports cognition. Classical theory assumes that symbols are
supported by a neural system that implements the equivalent
of memory registers, i.e. the physical symbol system hypothesis
[14]. Connectionist theory makes this link more directly as the
representations that supposedly support semantic composi-
tionality are instantiated as neural activity for a network of
(abstract) neurons. A categorical approach must also make
this kind of connection. To this end, the current work focuses
on another universal morphism, called sheaving [15] or sheafi-
fication [16], to sketch out a category theory perspective on
the semantics of compositionality. Sheaving is a construction
at the nexus of algebra and geometry/topology, which alludes
to an integrative view. This view starts with a (pre)sheaf to
model cognitive representations as data attached to a topologi-
cal space [17]. As we shall see, the underlying topological
space gives meaning to the data in terms of the relations
between the open sets that constitute the topology.

The presentation of this work is primarily informal to facili-
tate an intuitive understanding of the approach. Connections to
formal details appear elsewhere [17], and deeper introductions
to categories and sheaves appear in many textbooks on these
topics [10,16,18,19].We proceedwith an example of a universal
morphism that serves to illustrate the basic category theory
concepts (§2) underlying the examples of sheaving given in
the context of cognition (§3). This approach is discussed by
comparison and contrast with classical notions of composition-
ality and possible neural mechanisms (§4). For convenience
and to help ground concepts, some formal details appear in
the appendix.
2. Categories and (universal) compositionality
We use playing cards as a running example of compositionality
to bootstrap the needed category theory from the more familiar
concepts of sets and functions. Each card has a rank (i.e. two,
three,… , ten, jack, queen, king, ace) and a suit (i.e. spade, club, dia-
mond, heart). For example, queen and heart constitute the queen of
hearts. The ranks can be represented by the set of symbols
Rank ¼ {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}, the suits by the
set of symbols Suit ¼ {;, ’, V, ~} and the cards by the
Cartesian product of those sets: Card ¼ Rank � Suit ¼ {(2, ;),
(2, ’), . . . }. For instance, the pair of symbols (Q, ~) represents
the queen of hearts. This product also comes with two functions
that retrieve the rank and suit of each card: e.g. rk : (Q, ~) 7! Q
and st : (Q, ~) 7! ~. Accordingly, sets and functions provide a
basic set-theoretic model of playing cards.

Category theory starts with the formal concept of a category
(definitionA.1), which consists of a collection of entities, called
objects, a collection of relations between objects, called
morphisms, and an operation that takes two morphisms and
returns a morphism, called composition. The archetypal cat-
egory is Set (example A.2), the category of sets (objects) and
functions (morphisms), with function composition as the com-
position operation (remark A.3). Hence, sets Rank, Suit and
Card are objects and functions rk and st are morphisms in
Set, constituting a categorical product (definition A.6), which
is the Cartesian product for this category (example A.7).
A deck of cards is modelled as a mapping of each face, signify-
ing a playing card, to the corresponding symbol, e.g. a function
card : Face ! Card; Q~ 7! (Q, ~). The mappings from faces to
ranks and from faces to suits are given by compositions
faceRank ¼ rk � card and faceSuit ¼ st � card, respectively: e.g.
faceRank :Q~ 7! Q, which says that the rank of the card signi-
fied by the face Q~ is Q (remark A.8). Thus, we have a
category-theoretic model of the same playing cards concept.

Having introduced categories, we can now look at basic
constructions and their relations. A functor (definition A.12)
is a way of constructing, indexing, or identifying objects
and morphisms. For example, the product functor (example
A.14) constructs the set of cards from the sets of ranks and
suits, i.e. P : (Rank, Suit) 7! Rank � Suit, and a constant
functor identifies the set of cards (i.e. the functor that sends
every set and function, in Set, to the set of cards, Card, and
its identity function, 1Card). Two functors are related by a
natural transformation (definition A.15), and the optimal (or
most efficient) transformation pertains to a universal morphism
(definition A.17). For example, the transformation from the
set of cards to their ranks and suits is the universal morphism
(Card, rs), where rs ¼ {rk, st}. The transformation is efficient in
that there are no more and no fewer mappings than needed to
retrieve the rank and suit of every card.
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Note that universal morphisms are unique up to unique
isomorphism (remark A.19). So, constituents need not be
‘tokened’ in the classical sense. A characteristic of classical
compositionality is that the symbols representing constitu-
ents are tokened (inscribed, or written out) whenever the
representation of their complex host is tokened [4]. The
symbol pair representation of cards is an example of token-
ing: for instance, the symbols for queen, Q, and heart, ~, are
tokened whenever the symbol for queen of hearts, (Q, ~), is
tokened. In category theory, the product of two sets is
conventionally given as the Cartesian product, but other
products exist. For example, the cards can be represented as
numbers, say from 1 to 52, provided the accompanying func-
tions retrieve the requisite components. Being an isomorphic
set is not sufficient, because one still needs the appropriate
functions to recover the constituents—such isomorphisms
are generally not unique (remark A.19).
.Soc.B
375:20190303
3. Sheaving: bridging gaps in knowledge
Our categorical approach to semantic compositionality
involves presheaves/sheaves (functors) and sheaving (natural
transformation). A presheaf/sheaf (definitions A.20/A.21)
models data attached to a topological space (definition A.4).
A sheaf is a presheaf where the attached data are globally
coherent, i.e. agree on overlapping regions. Pullbacks (defi-
nition A.9) express global coherency conditions (remark
A.22). For Set, a pullback of f and g (example A.10) is a con-
strained product (remark A.11), which consists of only those
pairs, (a, b), whose components map to a common value
(property): f (a) = g(b). Hence, pullbacks pertain to non-local
(global) properties. Sheaving is a universal morphism that
constructs the ‘nearest’ sheaf from a given presheaf (remark
A.23). This construction is likened to the natural join operation
(example A.24) that extracts information from data stored
locally in different tables of a relational database—say, the
addresses of all people prescribed a particular medication,
where contact and medical data are stored in separate
tables. In this way, sheaving is a kind of relational inference:
a way of bridging gaps in knowledge via meaning grounded
in the underlying topological space.

We give three examples of sheaving that pertain to cogni-
tion. The first example continues the introduction to category
(sheaf) theory constructions via the familiar concept of
playing cards. The second example involves visual feature
binding [17] extended for triple conjunction search [20]. The
third example involves a simple version of depth perception.
Each example illustrates the different ways that meaning
is conveyed by the relations between the open sets that
constitute the topology.

(a) Playing cards
The playing cards example, introduced earlier, can be considered
as a presheaf or sheaf on a topological space constituted by
elements identifying the (feature) dimensions of rank and
suit. For example, suppose the rank and suit dimensions are
labelled as R and S, respectively. The set of dimension labels
D = {R, S} together with the topology {;, {R}, {S}, {R, S}} consti-
tute a discrete topological space, which consists of all subsets of
labels and their inclusion relations (example A.5). And, the
values of each card constitute the data attached to that space.
For example, the queen of hearts and two of spades are represented
by the presheaf, FQ2 :Dop ! Set. In database terms, this pre-
sheaf can be regarded as a collection of tables whose
attributes (headings) correspond to the open sets and rows
correspond to the attached data, e.g. there is a two-column
table whose attributes correspond to the open set {R, S} that
has two rows: one row for the queen of hearts and one row for
the two of spades (example A.26). In sheaf theory terms, FQ2

sends each open set to the set of functions on that set—each
function maps the elements of the open set to the attached
data—e.g. FQ2 : {R, S} 7! {cQH, c2S}, where cQH : R 7! Q, S 7! ~
and c2S : R 7! 2, S 7! ;. The inclusions given by the topology
are preserved as restrictions on functions, e.g. {R}⊆ {R, S}
maps to the restriction f jR : cQH 7! cQ, c2S 7! c2. Restriction cor-
responds to (database) projection of a table along the specified
attribute(s).

Sheaving affords the systematic capacity to represent all
cards (example A.27), but this capacity depends on the top-
ology. To illustrate, suppose one knows the ranks and suits,
i.e. there is a one-column table of 13 rows for ranks and a
one-column table of four rows for suits. In this situation,
sheaving simply constructs all pairwise combinations of
ranks and suits, which is the sheaf Fþ

card. Thus, we have a sys-
tematic capacity to represent all 52 cards. One can think of
sheaving as a kind of completion, or limit process—adding
just enough rows to make a sheaf.

A contrasting scenario is where one knows some of the
cards without knowing about constituents rank and suit:
cards are understood as non-compositional entities. This situ-
ation is captured by the indiscrete topology (example A.5), i.e.
{;, D}. Sheaving, in this case, does not add any rows to the
table containing just the known (non-compositional) cards.
Hence, one does not necessarily have a systematic capacity
to represent all cards. Completion is trivial—the presheaf is
a sheaf—because the topology does not consist of any other
(non-empty) open sets.

This difference between sheaving with respect to a discrete
versus indiscrete topological spacewas used tomodel the differ-
ence betweengeneralization and lackof generalization observed
with participants trained on cue-target maps [17]. The partici-
pants who failed to generalize were regarded as having
learned the mappings from cues to targets—pairs of letters
to coloured shapes—asmappings of non-compositional entities.
(b) Visual feature binding
Visual feature binding concerns the capacity to identify, say, a
red square and a blue triangle, as opposed to a red triangle
and a blue square based on globally coherent spatial infor-
mation (location). This process is modelled as the sheaving
of colour and shape location maps to obtain a colour-shape
conjunction map that corresponds to objects observed in the
visual field as needed to perform visual search [17]. Here,
we show how this example of sheaving extends straight-
forwardly to triple conjunction search [20], i.e. where the
target of search is identifiable by a triple of features, such
as colour, orientation and (spatial) frequency.

In this example, we start with the set of dimension labels
D = {C, O, F, L} representing colour, orientation, frequency
and location. The feature-location maps are data attached to
the corresponding open sets of the topology: {;, {L}, {C, L},
{O, L}, {F, L}, {C, O, L}, {C, F, L}, {O, F, L}, {C, O, F, L}}. For
instance, suppose there are four locations, i.e. L = {1, 2, 3, 4},
two colours C ¼ {red, blue}, two orientations O ¼ {hor, ver}
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and two frequencies F ¼ {low, high}. In database terms, the
identification of the four objects, indexed by location,
(red, hor, low)1, (red, hor, high)2, (blue, hor, low)3, (red, ver, low)4
obtains from the natural join of the corresponding feature-
location tables: e.g. the join of the colour-location table with
rows (red)1, (red)2, (blue)3, (red)4 and the orientation-location
table with rows (hor)1, (hor)2, (hor)3, (ver)4 obtains the colour-
orientation table with rows (red, hor)1, (red, hor)2, (blue, hor)3,
(red, ver)4; and the join of colour-orientation with frequency-
location (low)1, (high)2, (low)3, (low)4 obtains the four objects.

In terms of universal morphisms, sheaving involves
pullbacks (remark A.22). For instance, the colour-orientation
map obtains from the pullback of the projections of the
colour-location (CL) and orientation (OL) maps onto location:
p2 :CL ! L and p2 :OL ! L to obtain the colour-orientation
map, denoted C ×L O, and its projections. Thus, triple
conjunction obtains from two pullbacks: (C ×L O) ×L F.

The topology in this example conveys a different (rela-
tional) meaning from the meanings conveyed by the
discrete and indiscrete topologies. Each topology induces a
corresponding order over the elements of the underlying
space, called the specialization (pre)order (remark A.28): C≤ L,
O≤ L, F≤ L for the current example, which says that colour,
orientation and frequency specialize location; conversely,
location is a general (global) property of the data (object fea-
tures) attached to the topological space. By contrast, the
discrete topology in the cards example has the corresponding
order R≤R, S≤ S, which says that neither dimension is a
specialization of the other. In other words, the dimensions
are independent; sheaving is effectively a Cartesian product
of the sets of values on those dimensions (example A.27).
The preorder corresponding to the indiscete topology
in the cards example has R ≤ S and S ≤ R, which says that
the dimensions are specializations of each other, i.e. effec-
tively the same dimension (remark A.28). Thus, topology
plays a significant role in our approach to semantic
compositionality.
(c) Depth perception
Binocular vision can be used to infer (triangulate) location of a
target object using lines of sight and relative eye positions. This
computation can be achieved as an instance of sheaving, using
simple geometry. Suppose the position of the target object is
(x, y)∈ P and the angles of the eyes (lines of sight) to the
target are λ and ρ for the left and right eyes, respectively.
Left and right lines of sight specify position as functions of dis-
tance from the eyes, l∈ L and r∈R, parameterized by angle:

— leftl : l 7! l(cos l, sin l), and
— rightr : r 7! r(cos r, sin r).

The position of the target is the intersection of the two lines of
sight, which is the pullback of leftl and rightr. This pullback is
equivalent to the pullback of projections p2 : LP ! P and
p2 :RP ! P, where LP is the relation {(l, leftl(l))jl [ L} and
RP is the relation {(r, rightr(r))jr [ R}. Suppose the set of dis-
tance and position labels {L, R, P} is given the topology
{;, {P}, {L, P}, {R, P}, {L, R, P}}. This topology is analogous to
the previous (binding) example, so it conveys similarmeaning.
Sheaving on this space computes the pullback of the projec-
tions (remark A.22). Hence, the location of the target object
is obtained as an instance of sheaving.
4. Discussion
Semantic compositionality concerns the way that represen-
tations and the entities they stand in for correspond in
some systematic, structurally consistent manner. Our sheaf
theory approach regards this correspondence as data attached
to a topological space (presheaf/sheaf), where the shape
(topology) of the underlying space conveys meaning to the
representations. Shape is determined by the open sets and
its structure is preserved by restrictions of the data, either
locally (presheaf), or in a systematic, globally coherent
manner (sheaf). Systematicity is afforded by a universal con-
struction (sheaving). Sheaving infers non-local information
from locally sourced knowledge to construct the nearest
sheaf by gluing together data that agree on the overlapping
regions (global coherency). Three examples were given:
(1) inferring the ranks and suits of every card, given ranks
and suits of some cards, (2) inferring the binding of features
to objects given the binding of features to locations and (3)
inferring object location given binocular line of sight. In
each case, local knowledge is extended (composed) to infer
non-local information, and this form of compositionality
depends on the topology.

Note that there are two senses in which sheaving spans a
formal divide. There is a ‘vertical’ sense in that presheaves
aremaps that preserve spatial relations (inclusions) as algebraic
relations (restrictions). We limited ourselves to the simplest
case where attached datawere sets. In general, other categories
can be used, such as categories of partially ordered sets, or
groups. And there is a ‘horizontal’ sense in that data attached
to open sets are glued together to construct data attached to
a larger open set. These two senses arise because functors are
maps between categories, whereas natural transformations
(sheavings) are maps between functors.

This sheaf theory approach can be compared/contrasted
with classical approaches to compositionality. Classical compo-
sitionality, in comparison, says that representations of complex
entities are given by representations of their constituent entities
so that the semantic relations between constituents are pre-
served by syntactic relations between corresponding symbolic
representations. Functors preserve structure. So, classical and
categorical approaches are similar to the extent that classical
structures are category-like. Classical theory assumes symbolic
representations are instantiated on some physical system,
e.g. memory registers (or, slots), hence classical systems are
sometimes called physical symbol systems [14]. Given a set of
registers, one can impose the discrete topological space, in
which the instantiated symbols are data attached to that space,
thus realizing a presheaf. In this way, classical compositionality
can be seen as an instance of categorical compositionality. By
contrast, however, functoriality is only one part of the categori-
cal approach to compositionality presented here. Presheaves
and sheaves are functors, but only presheaves that are sheaves
satisfy the global coherency conditions.

As noted elsewhere [17], pullbacks are reminiscent of sym-
bolic connectionistmodels, LISA [21] andDORA [22]. The idea
is that (relational) entities are represented via connections to
corresponding neurons representing the constituent entities
(fillers) and their roles in the relation based on shared semantic
information represented by a common pool of neurons. Neur-
ons representing related entities that have shared semantic
features tend to bind together. Similarly, the pullback of
morphisms f : A→C and g : B→C is a generalized intersection
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ofA andB constrained byC. In terms of thosemodels, objectsA
andBpertain to roles and fillers,C to semantic features, and the
pullback object to relational binding. This correspondence is
suggestive of a way to connect sheaving to neural network
models. Neurons are topologically organized and their
activities are the attached data.

The nature of sheaves depends on the nature of the data
and the underlying topology. The examples of sheaves
presented here are relatively simple. Sheaf theory has appli-
cations in other areas that may be adaptable to cognition.
For example, a sheaf theory approach to sensor fusion [23]
suggests applications to the psychology of perception.
Human probability judgments that violate classical prob-
ability laws motivate quantum probability theory for
cognition [24]. The close connection between sheaf theory
and contextuality effects in quantum physics [25] suggests
that our sheaving approach to semantic compositionality
may also be applicable to quantum-like compositionality
effects [17]. In these applications, the data are measurements,
or probabilities [23,25].

One important direction for further work is modelling
the development of the underlying topological space. Our
examples illustrate how different topologies ground relational
information differently. However, we have not considered
how these topological spaces are obtained. Sheaf theory
methods in applied topology [26] may be useful here, where
the underlying topological space is inferred from data.

The importance of the underlying topology is another way
that the sheaving approach goes beyond classical and artificial
neural network approaches to compositionality. In this paper,
we focused on the universal morphism aspect of sheaves and
sheaving, because universal morphisms were argued to play a
crucial role in explaining systematicity [9,11], which is a cogni-
tive property motivating compositionality principles [8]. Yet,
the topological aspect of sheaving is also crucial. Any set of
registers or neurons can be given a topology. The deeper
question is why one topology arises over another. Discrete
and indiscrete topologies were asserted for an application of
sheaving [17] because they are two extremes obtained from
universal morphisms. So, their determination accords with
the general universal construction principle [9,11]. Determi-
nation of other topologies will depend on other constraints.
For instance, the physical (geometrical) relations between
sensors ground triangulation of object location. This view of
semantics differs from the classical view, which regards the
computational (psychological) level as supported by, but
independent of the specific physical (implementational)
level—just as a programming language is supported by, but
independent of a specific computer.

Topology captures order, and order is implicit even in the
productive (recursive) aspects of cognition, e.g. level within a
tree hierarchy. We have not dealt with productivity, as it pur-
portedly implies recursion in language [27]. Category theory
also provides general constructions for recursion [28], and
these methods have been applied to some aspects of cognition
[9]. Topology is not regarded as the only source of semantic
information. So, in this sense, category (sheaf) theory provides
a general framework for semantic compositionality.
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Appendix A. Basic theory
Conceptual introductions to the formal concepts provided in
this appendix can be found in [23,29,30], see also in [17].
Deeper introductions to the category theory concepts can be
found in [13,16,19] and sheaf theory concepts in [16,18].
Specific results are referenced where they appear in the
appendix.

Definition A.1 (Category). A category C consists of a col-
lection of objects, O(C) ¼ {A, B, . . . }, a collection of
morphisms, M(C) ¼ {f , g, . . . }—a morphism written in full
as f : A→ B indicates object A as the domain and object B as
the codomain of f—including for each object A [ O(C) the
identity morphism 1A : A→A, and a composition operation, ◦,
that sends each pair of compatible morphisms f : A→ B and
g : B→C (i.e. the codomain of f is the domain of g) to the com-
positemorphism g ◦ f : A→C, that together satisfy the laws of:

— identity: f ◦ 1A = f = 1B ◦ f for every f [ M(C), and
— associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f for every triple of com-

patible morphisms f , g, h [ M(C).

Example A.2 (Set). The collection of sets (objects) and the
collection of functions between sets (morphisms) form a cat-
egory, denoted Set. The composition operation is function
composition and the identity morphisms are the identity
functions.

Remark A.3. Morphisms may be transformations, or
relations between objects that may have there own internal
structure, in which case morphisms typically preserve that
structure. A category may have zero or more morphisms
from an object A to an object B. In Set, the number of func-
tions A→ B is nm, where m (n) is the size of A (B).
Composition need not return a ‘new’ morphism: e.g. f ◦ 1A =
f (composition with an identity); f ◦ f = f (self-composition of
an idempotent function).

Definition A.4 (Topological Space). A topological space (X,
T ) consists of a set X and a collection T of subsets U of X,
called the open sets of T, such that the empty set (;) and X
are open sets, and arbitrary unions and finite intersections
of open sets are open sets. The set T is called the topology of X.

Example A.5 (Topological space). A topological space is a
category of open sets (objects) and inclusions (morphisms)—
there is just one morphism V→U if V⊆U. Composition is by
transitivity: V # U ^W # V ) W # U. The discrete top-
ology on X is the set of all subsets of X; the indiscrete
topology on X is {;, X}.

Definition A.6 (Product). A product of objects A and B, in
a category C, is an object P (also written A × B) together with
a pair of morphisms π1 : P→A and π2 : P→ B such that for
every object Z and morphisms f : Z→A and g : Z→ B there
exists a unique morphism u : Z→ P such that f = π1 ◦ u and
g = π2 ◦ u. Morphism u is also denoted 〈f, g〉, as it is uniquely
given by f and g.

Example A.7 (Product). A product of A and B, in Set, is
the Cartesian product: the set A × B = {(a, b)|a∈A, b∈ B}
and projections p1 : (a, b) 7! a and p2 : (a, b) 7! b.
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Remark A.8. The function u : Z→ P need not be a one-to-
one correspondence (bijection). For instance, the rules of a
game may stipulate that certain cards are duplicated or with-
held, so a deck may contain more or less than 52 cards, i.e. the
map from faces to cards, card : Face ! Card, is onto (surjec-
tion) or into (injection).

Definition A.9 (Pullback). A pullback of morphisms
f : A→C and g : B→C, in a category C, is an object P (also
written A × CB) together with a pair of morphisms π1 : P→
A and π2 : P→ B such that for every object Z and morphisms
z1 : Z→A and z2 : Z→ B there exists a unique morphism
u : Z→ P such that diagram

A
f

Z
u

z1

z2

P C

B

g

p1

p2
0190303
commutes: paths (where one path has at least two arrows)
with the same start/end object are equal, e.g. f ◦ π1 = g ◦ π2.
The dashed arrow indicates uniqueness.

Example A.10 (Pullback). A pullback of functions f : A→
C and g : B→C, in Set, is the subset of pairs of elements
{(a, b)∈A × B|f (a) = g(b)} and functions π1, π2.

Remark A.11. A pullback is a (generalized) product con-
strained by f and g. A product of A and B is equivalently a
pullback of f : A→ 1 and g : B→ 1, where 1 is terminal: an
object such that for every object X, in C, there exists a
unique morphism from X to 1. In Set, a terminal is any sin-
gleton set, thence f (a) = g(b) for all a∈A and b∈ B. Thus, a
product is effectively an ‘unconstrained’ pullback.

Definition A.12 (Functor). A functor is a ‘structure-
preserving’ map from a category C to a category D, written
F : C→D, sending each object A and morphism f : A→ B in
C to the object F(A) and the morphism F( f ) : F(A)→ F(B) in
D (respectively) that satisfies the laws of:

— identity: F(1A) = 1F(A) for every object A [ O(C), and
— compositionality: F(g ◦ C f ) = F(g) ◦ D F( f ) for every pair of

compatible morphisms f , g [ M(C).

Remark A.13. A functor written F : Cop→D indicates that
the directions of the morphisms in C are reversed.

Example A.14 (Diagonal, product). The diagonal functor
D :A 7! (A, A), f 7! (f , f) sends each object and each
morphism to their pairs. The product functor
P : (A, B) 7! A� B, (f , g) 7! f � g sends pairs of objects/
morphisms to their products.

Definition A.15 (Natural transformation). Let F, G : C→
D be functors. A natural transformation h : F!: G is a family
of D-morphisms {hA : F(A) ! G(A)jA [ O(C)} such that
G( f ) ◦ ηA = ηB ◦ F( f ) for every morphism f : A→ B in C.
Example A.16 (Projection). Projection, π = {π1, π2}, is a
natural transformation.

Definition A.17 (Universal morphism). A universal
morphism from functor F : C→D to object Y in D is a pair
(B, ψ) consisting of an object B in C and a morphism
ψ : F(B)→Y in D such that for every object X in C and
every morphism g : F(X )→Y in D there exists a unique
morphism u : X→ B in C such that g = ψ ◦ F(u).

Example A.18 (Products, pullbacks). A product of A and
B is a universal morphism (A × B, π) from the diagonal func-
tor, Δ, to the pair of objects (A, B), where π = (π1, π2). A
pullback of morphisms f : A→C and g : B→C is a universal
morphism (A × CB, π) from the (generalized) diagonal functor
[10] to the pair of morphisms ( f, g).

Remark A.19. Universal morphisms (e.g. products/
pullbacks) are unique up to unique isomorphism: e.g. (B ×A,
π0), where π0 = (π2, π1) is also a product of A and B, but there
is just one isomorphism (A × B, π)≅ (B ×A, π0) making the
associated diagram commute. An isomorphism A × B≅ B ×A
is generally not unique. (f : X→Y is an isomorphism if it has
a left/right inverse, g : Y→X, i.e. f ◦ g = 1Y and g ◦ f = 1X.)

Definition A.20 (Presheaf). Let (X, T ) be a topological
space. A presheaf is a functor F :Top ! Set such that for
each open set U in T there is a set F (U) of elements, called
the sections over U, and for each inclusion V⊆U in T
there is a morphism, called a restriction morphism,
f jV :F (U) ! F (V) that satisfies:

— identity: for each open set U in T, the restriction morphism
f jU :F (U) ! F (U) is the identity morphism 1F (U), and

— compositionality: for each triple of open sets U, V, W in T, if
W ⊆V⊆U, then g|W ◦ f|V = (g ◦ f )|W.
Definition A.21 (Sheaf). A sheaf is a presheaf
F :Top ! Set that satisfies:

— gluing (existence): if {Ui}i∈I is an open cover of an open set
U∈ T, and if for each i∈ I a section si [ F (Ui) is given such
that for each pair (Ui,Uj) of covering sets sijUi>Uj

¼ sjjUi>Uj
,

i.e. si and sj agree on overlap, then there is a section
s [ F (U) such that sjUi

¼si for each i, and
— locality (uniqueness): if {Ui}i∈I is an open cover of an open

set U∈ T, and if s, t∈ F(U ) such that sjUi
¼ tjUi

for each Ui,
then s = t.
Remark A.22. The sheaf conditions are indicated by com-
mutative diagram

U ∪ V F (U ∪ V)

F (U ∩ V)U ∩ V

U

⊆

V

⊆

F (U) F (V)

⊆ ⊆ f |U∩V g|U∩V

p |U p |V
where the right diamond indicates the pullback of f jU>V and
gjU>V ; or equivalently, by the equalizer of pairs of morphisms
Q

i F (Ui)j
Q

i,j F (Ui >Uj), where the products iterate over
the open sets [16].



(a) (b) (c) (d) (e) ( f )

c2 a2 c1 c2 b2 a2 c1 b1

c1 a1 c1 c1 b1 a1 c1 b1 a1 c1 b1

C A C C B A C B A C B
*

Figure 1. Relational tables for a presheaf (a–e) and its nearest sheaf (a–d,f ).

Q Q

2 2

R R S S

(a) (b) (c) (d)

*

Figure 2. Relational tables for the presheaf F Q2.
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Remark A.23. Sheaving [18] constructs the ‘nearest’ (smal-
lest) sheaf Fþ from presheaf F , i.e. the universal morphism
(Fþ, u), where u :F ! Fþ.

Example A.24 (Natural join). A perspicuous illustration of
sheaving pertains to the natural join of relational tables [25],
which involves joining tables at their shared attribute
values. Attributes (headings) constitute open sets of the topo-
logical space and rows constitute the sections attached to the
open sets. Restrictions are just projections along the specified
attributes. Relational tables illustrate sheaving (figure 1)
where table headings correspond to the open sets of the
topology {;, {C}, {A, C}, {B, C}, {A, B, C}}. Tables (a–e) consti-
tute a presheaf, where (a) is the empty table. The natural
join of tables (c) and (d) constructs table (f ), which constitutes
the sheaf, i.e. tables (a–d, f ).

Remark A.25. For the empty set, F : ; 7! 1, i.e. the term-
inal for Set, written {*}, as the element’s name is
unimportant. Restriction F (U) ! 1, for inclusion ; # U, is
guaranteed to exist, since 1 is terminal. The attached data is
an empty function.

Example A.26 (Two cards). The queen of hearts and two of
spades are represented by the presheaf FQ2, which is
expressed as a collection of relational tables (figure 2).

Example A.27 (Deck of cards). Knowing each rank and
suit corresponds to a presheaf, F card, that sends the open
sets {R} and {S} to the sets of all ranks and all suits, respect-
ively. Sheaving computes the pullback of restrictions
F card({R}) ! 1 and Fcard({S}) ! 1, since {R}> {S} ¼ ;, which
is equivalent to the product F card({R})� F card({S}). Thus,
sheaving constructs the sheaf Fþ

card representing the deck of
all 52 cards.
Remark A.28. A topological space, (X, T ), induces a
specialization preorder on the elements of the underlying
set, X. Two elements x, y ∈X are comparable, x ≤ y, if x is
an element of the closure of y, i.e. the intersection of all
closed sets containing y—if U is an open set of T, then the
complement of U (i.e. the set of elements in X that are
not in U) is a closed set. In the cards example, the indiscrete
topology has closed sets ; and {R, S}. The closure of R and
the closure of S are the same set, {R, S}. Hence, the preorder
has R ≤ S and S ≤ R. Open sets specify closeness. Accord-
ingly, the open set {R, S} says that R and S are close to
each other, but not preferentially so, since there are no
other open sets. The open sets of a discrete topology are
also the closed sets. So, in the discrete case, R and S are
not comparable, since R is not in the closure of S, i.e. {S},
and S is not in the closure of R, i.e. {R}. Note that an
element is always comparable to itself, x ≤ x, because any
topology T on X must contain X as an open set of T (by
definition).
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