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Abstract

The mouse has dichromatic color vision based on two different types of opsins: short (S)-

and middle (M)-wavelength-sensitive opsins with peak sensitivity to ultraviolet (UV; 360 nm)

and green light (508 nm), respectively. In the mouse retina, cone photoreceptors that pre-

dominantly express the S-opsin are more sensitive to contrasts and denser towards the ven-

tral retina, preferentially sampling the upper part of the visual field. In contrast, the

expression of the M-opsin gradually increases towards the dorsal retina that encodes the

lower visual field. Such a distinctive retinal organization is assumed to arise from a selective

pressure in evolution to efficiently encode the natural scenes. However, natural image sta-

tistics of UV light remain largely unexplored. Here we developed a multi-spectral camera to

acquire high-quality UV and green images of the same natural scenes, and examined the

optimality of the mouse retina to the image statistics. We found that the local contrast and

the spatial correlation were both higher in UV than in green for images above the horizon,

but lower in UV than in green for those below the horizon. This suggests that the dorsoven-

tral functional division of the mouse retina is not optimal for maximizing the bandwidth of

information transmission. Factors besides the coding efficiency, such as visual behavioral

requirements, will thus need to be considered to fully explain the characteristic organization

of the mouse retina.

Introduction

Sensory systems have been considered to be adapted to the statistical properties of the environ-

ment through evolution [1]. Animals encounter different types of sensory signals depending

on their natural habitats and lifestyles, and this can serve as an evolutionary driving force for

each species to optimize its sensory systems for processing those signals that appear more fre-

quently and are relevant for survival [2]. The optimality of the sensory processing has been

broadly supported from an information theoretic viewpoint of coding efficiency [3,4]. In par-

ticular, various physiological properties of sensory neurons can be successfully derived from

learning efficient codes of natural images or natural sounds, such as separation of retinal out-

puts into ON and OFF channels [5], Gabor-like receptive fields of visual cortical neurons [6],

and cochlear filter banks [7]. Such computational theories and statistical models are, however,

often limited to generic features of the sensory processing, and fail to account for species-spe-

cific fine details partly due to a lack of proper data sets of natural sensory signals.
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In the past decade, the mouse has become a dominant model for studying the visual system

mainly because of the wide availability of experimental tools [8]. Compared to other mamma-

lian model animals such as cats and primates, however, the mouse vision has certain distinctive

properties. For example, mice are dichromats as many other mammals are, but their retina

expresses ultraviolet (UV)-sensitive short (S)-wavelength sensitive opsins and green-sensitive

middle (M)-wavelength sensitive opsins [9–11]. While UV vision is common in amphibians,

birds and insects, it has not been identified in mammals except for a few species including

rodents [12–14]. Moreover, the mouse retina has no fovea but a prominent dorsoventral gradi-

ent in the expression pattern of the two opsins [10,15–17]. A vast majority of the mouse cone

photoreceptors (*95%) co-express the two opsins but with a dominant expression of S- and

M-opsins in the ventral and dorsal parts of the retina, respectively [9,10,18,19]. This makes the

upper visual field more sensitive to UV than green, and vice versa for the lower visual field

[20]. It is natural to assume that this functional segregation of the mouse vision has evolved

due to an adaptation to the natural light distribution as the sunlight is the major source of UV

radiation. It remains unclear, though, how optimal the mouse visual system is to natural scene

statistics per se.
While natural image statistics have been extensively studied thus far [1,21], those outside

the spectral domain of human vision remain to be fully explored [2,18,22–24]. Here we thus

developed a multi-spectral camera system to sample high-quality images that spectrally match

the mouse photopic vision, and analyzed the statistics of the UV and green image data sets to

test the optimality of the sampling bias in the mouse retina along the dorsoventral axis

[9,10,18,19]. We identified distinct statistical properties in the UV and green channels between

the upper and lower visual field images; however, these image statistics were not necessarily

consistent with what the efficient coding hypothesis would predict from the functional organi-

zation of the mouse retina.

Materials and methods

All data and codes are available on Zenodo (10.5281/zenodo.5204507).

Multi-spectral camera

Design. We built a multi-spectral camera system based on a beam-splitting strategy

[25,26] to acquire images of the same scenes with ultraviolet (UV)- and green-transmitting

channels that match the spectral sensitivity of the mouse photopic vision (Fig 1A) [9–11]. The

light coming from a commercial camera lens (Nikon, AF Nikkor 50 mm f/1.8D) was colli-

mated with a near-UV achromatic lens (effective focal length, 50 mm; Edmund Optics, 65–

976) and split with a dichroic filter (409 nm; Edmund Optics, 34–725). The reflected light, on

the one hand, passed through a UV-selective filter set (HOYA U-340 and short-pass filter at

550 nm; Edmund Optics, 84–708) and formed the UV images focused on the first global-shut-

ter camera (Imaging Source, DMK23UX174) with a near-UV achromatic lens (effective focal

length, 50 mm; Edmund Optics, 65–976). The transmitted light, on the other hand, passed

through a band-pass filter (500±40 nm; Edmund Optics, 65–743) and a lens (Edmund Optics,

65–976), and formed the green images sampled by the second camera (Imaging Source,

DMK23UX174). To maximize the dynamic range of the two camera sensors (used with the

same settings), we attenuated the light intensity of the green channel using an absorptive neu-

tral density (ND) filter (optical density: 1.0, 1.3, 1.5, 1.8, or 2.0) on a filter wheel (Thorlabs,

LTFW6) because the sunlight has much higher power in green than in UV (Fig 1B). The opti-

cal components are all mounted with standard light-tight optomechanical components (Thor-

labs, 1-inch diameter lens tubes).
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A recent study employed a similar design but with a fisheye lens to study the “mouse-view”

images [22]. Our design has the following advantages over a panoramic camera design [22–24]

to sample high quality image patches suitable for image statistics analysis. First, we chose a

small field of view (11.3 degrees horizontally and 7.3 degrees vertically; 0.006 degrees/pixel) to

minimize image distortion, and a large field of depth (the smallest aperture size on the Nikon
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Fig 1. Multi-spectral camera system for the mouse vision. (A) Schematic diagram of the camera optics. Incoming light was split

into UV and Green channels by a dichroic mirror and further filtered to match the spectral sensitivity of the mouse visual system

(see panel B). A neutral density filter with the optical density value from 1.0 to 2.0 was used for the Green channel to maximize the

dynamic range of the camera sensor to be used with the same parameter settings as the UV channel. The inset shows the pixel

intensity values as a function of the exposure time (mean ± standard deviation; N = 2,304,000 pixels), supporting the linearity of the

camera sensor (Sony, IMX174 CMOS). (B) Relative spectral sensitivity of the camera system (UV channel, violet area; Green

channel, green area). For comparison, the spectral sensitivity of the mouse rod and S- and M-cone photoreceptors [31] corrected

with the transmission spectrum of the mouse eye optics [30] was shown in black, violet and green lines, respectively, as well as

typical sunlight spectrum in gray.

https://doi.org/10.1371/journal.pone.0262763.g001
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lens, f/22) to maximize areas in focus. This also allowed us to adjust camera settings (exposure

length) to fully capture the dynamic range of individual scenes. Second, we chose a high-per-

formance camera sensor (Sony, IMX174 complementary metal-oxide-semiconductor; CMOS)

that has high quantum efficiency (~30% at 365 nm; ~75% at 510 nm), high dynamic range (73

dB; 12 bit depth), high pixel resolution (1920-by-1200 pixels), and linear response dynamics

(Fig 1A, inset) [27–29].

Spectral analysis. The spectral sensitivity of the multi-spectral camera system (Fig 1B)

was calculated by convolving the relative transmission spectra of the optics for each channel

with the spectral sensitivity of the camera sensor (Sony, IMX174 CMOS) [29]. The relative

transmission spectra were measured with a spectrometer (Thorlabs, CCS200/M; 200–1000 nm

range) by taking the ratio of the spectra of a clear sunny sky (indirect sunlight) with and with-

out passing through the camera optics.

For a comparison, we modelled the spectral sensitivity of the mouse visual system by

convolving the transmission spectra of the mouse eye [30] with the absorption spectra of the

mouse cone photoreceptors (Fig 1B). We used a visual pigment template [31] with the center

frequency at 360 nm and 508 nm to simulate the short (S)- and middle (M)-wavelength-sensi-

tive opsins in the mouse retina, respectively [9–11].

Image acquisition

In total, we collected 232 images of natural scenes without any artificial object in the suburbs

of Lazio/Abruzzo regions in Italy from July 2020 to May 2021. All the images were acquired

using a custom-code in Matlab (Image Acquisition Toolbox) without any image correction,

such as gain, contrast, or gamma adjustment. The two cameras were set with the same parame-

ter values adjusted to each scene, such as the exposure length, and a proper ND filter was cho-

sen for the green channel so that virtually all the pixels were within the dynamic range of the

camera sensors (see examples in S2 Fig). Thus, our image data sets have no underexposed pix-

els and only a negligible number of overexposed pixels (0.0011% of pixels in 2 UV images and

0.0007% of pixels in 6 Green images). This is critical because the presence of under- or over-

exposed pixels will skew the image statistics.

When acquiring images, the camera system was placed on the ground to follow the view-

point of mice. The following meta-data were also recorded upon image acquisition: date, time,

optical density of ND filter in the green channel, weather condition (sunny; cloudy), distance

to target object (short, within a few meters; medium, within tens of meters; or long), presence/

absence of specific objects (animals; plants; water), and camera elevation angle (looking up;

horizontal; looking down). We also took a uniform image of a clear sunny sky (indirect sun-

light) as a reference image for vignetting correction (see below Eq (1)).

All the images were taken under ample natural light during the day. Although we did not

measure the exact illuminance F of the environment, we expect that the lighting condition

was on the order of 103~105 lux (i.e., F = 107~109 photons/μm2/s). Assuming the mouse pupil

diameter dpupil = 0.5 mm, the eye diameter deye = 4 mm, the transmittance of the eye optics

T = 0.5, and the light collection area of a photoreceptor Aphotoreceptor = 0.5 μm2, the photon

flux on individual photoreceptors can then be estimated as F�Apupil/Aretina�T�Aphotoreceptor =

104~106 photons/photoreceptor/s, where Apupil = π(dpupil/2)2 is the pupil area and Aretina = 4π
(deye/2)2/2 is the total area of the retina internally covering a half of the eye. Here we cannot

then exclude a possible activation of rods in the mouse retina because they have similar

absorption spectra to the M-opsin expressing cones (peak sensitivity at 498 and 508 nm,

respectively) [9,32] and may escape from saturation even at 107 R�/rod/s [33]. However, the

rod system is likely optimized to work in the scotopic condition, and thus less affected by the
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natural image statistics in the photopic condition. In the mouse retina, rods are indeed distrib-

uted more densely (~97% of all photoreceptors) and rather uniformly [34].

Given the average cone density ρcone = 12,400 cells/mm2 [34], the sampling resolution (or the

“pixel size”) of the mouse visual system is on the order of 0.25 degrees (¼ 180=ð
ffiffiffiffiffiffiffiffiffi
rcone
p

� pdeye=2Þ

for photopic vision), and can go as high as 0.05 degrees if rod photoreceptors are also involved

(average density, 437,000 cells/mm2 [34]; or average diameter of 1.4 μm [35]). The spatial resolu-

tion of the acquired images (0.006 degrees/pixel) is thus good enough to cover the pixel size of the

mouse vision.

Image registration

The raw images from the two cameras (12 bit depth saved in the 16 bit grayscale Portable Net-

work Graphic format, 1920-by-1200 pixels each) were pre-processed to form a registered

image in Matlab (Image Processing Toolbox). First, we corrected the optical vignetting by nor-

malizing the pixel intensity of the raw image Iraw(x, y) for each channel by the ratio of the pixel

and the maximum intensities of the reference image Iref(x, y):

Icorrected x; yð Þ ¼ Iraw x; yð Þ �
max½Irefðx; yÞ�

Irefðx; yÞ
: ð1Þ

We next applied a two-dimensional median filter (3-by-3 pixel size) to remove salt-and-pepper

noise from the corrected images for each channel. Then we applied a projective transformation

based on manually selected control points to register the UV image to the green image. Finally,

we manually cropped the two images to select only those areas in focus. The cropped images

resulted in the pixel size ranging from 341 to 1766 pixels (2.0–10.6 degrees) in the horizontal

axis and from 341 to 1120 pixels (2.0–6.7 degrees) in the vertical axes (see examples in Fig 2).

We never changed the image resolution.

Image analysis

We analyzed the first- and second-order image statistics of the obtained natural scenes in UV

and green channels because the retina is not sensitive to higher-order statistics [36,37] (but see

S4 Fig for higher-order statistics). Here we excluded a small set of the horizontal images

(N = 15) from the analysis, and focused on the following two major image groups: 1) looking-

up images taken with a positive camera elevation angle (N = 100), presumably falling in the

ventral retina and thus perceived in the upper part of an animal’s visual field; and 2) looking-

down images with a negative camera elevation angle (N = 117) perceived in the lower visual

field (i.e., the dorsal retina). To ensure the separation between the image categories, we calcu-

lated the relative light intensity along the horizontal and vertical axes of each image category

(S1 Fig). Specifically, we first corrected the pixel values of each image with the exposure length

and the ND filter attenuation, and then normalized them by the mean pixel intensity value of

all images. For the population analysis, the images were then aligned to the center in horizontal

axes for all images, while to the top edge, center, or bottom edge in vertical axes for the lower,

horizontal, upper visual field image categories, respectively. For each image data set, we used a

sign-test to compare the image statistics parameter values between the UV and green channels

(Figs 3–6; significance level, 0.05). All image analysis was done in Matlab (Mathworks).

Light intensity normalization. The visual system adapts its sensitivity to the range of

light intensities in each environment [38,39]. We thus first normalized the pixel intensity of

each UV and green image to have the intensity value ranging from zero to one (by subtracting

the minimum value of the image, followed by the division by the maximum value), and then
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calculated the histogram (bin size, 0.01) to compare the normalized intensity distributions of

the UV and green images for the upper and lower visual fields (Fig 3A and 3B).

Local contrast. To calculate the local statistical structure of the normalized intensity

images (Figs 3C, 3D and S3), we used the second-derivative (Laplacian) of a two-dimensional

Gaussian filter:

LoG x; yð Þ ¼
1

ps4
1 �

x2 þ y2

2s2

� �

exp �
x2 þ y2

2s2

� �

; ð2Þ

with the standard deviation σ = 5, 10, 20, 40 pixels for the spatial range x, y2[−3σ, 3σ]. Here we

chose a rather arbitrary size of the filter width (0.18–1.44 degrees) because natural image statis-

tics are scale invariant (S3 Fig) [1,21]. The local contrast distribution was then fitted to the

two-parameter Weibull distribution:

wðxÞ ¼ bgjxjg� 1exp½� bjxjg�; ð3Þ

where x is the local contrast value, β>0 is the scale parameter (width) of the distribution, and

Fig 2. Representative images of the natural scenes in UV and green channels. See S2 Fig for the UV-Green pixel intensity distribution of these example

images. (A) Upper visual field images taken with positive camera elevation angles (UV, Green, and pseudo-color merged images from left to right). These

images typically contain trees and branches with sky backgrounds. (B) Lower visual field images taken with negative camera elevation angles, often containing

a closer look of grasses and flowers.

https://doi.org/10.1371/journal.pone.0262763.g002

PLOS ONE Natural image statistics for mouse vision

PLOS ONE | https://doi.org/10.1371/journal.pone.0262763 January 20, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0262763.g002
https://doi.org/10.1371/journal.pone.0262763


γ>0 is the shape parameter (peakedness). In particular, larger β and smaller γ values indicate

wider and more heavy-tailed distributions, respectively, hence higher contrast in the images.

Sign-tests were used to compare these parameter values between UV and green images (Fig

3E–3H).

Achromatic and chromatic contrast. To analyze the achromatic contrast of our image

data sets (Fig 4), we calculated the root mean square (RMS) contrast C�RMSðx; yÞ for each chan-

nel of normalized intensity images [22]:

C�RMS x; yð Þ ¼
s�ðx; yÞ
m�ðx; yÞ

; ð4Þ

where μ�(x, y) and σ�(x, y) are the mean and standard deviation of a circular image patch

(radius, 30 pixels) centered at location (x, y), respectively (S4 Fig, together with skewness and

kurtosis as the third and fourth standardized moment, respectively, and entropy, −∑p log p,

where p is the probability distribution of the pixel intensity of the image patch); and the aster-

isk “�” is either “UV” or “Green” indicating the channel identity (Fig 4A and 4B). Chromatic

contrast C(x, y) was then defined as a difference of the RMS contrasts between the two chan-

nels (Fig 4C and 4D):

Cðx; yÞ ¼ CUV
RMSðx; yÞ � CGreen

RMS ðx; yÞ: ð5Þ
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Fig 3. Light intensity and local contrast distributions of the “mouse-view” natural images. (A,B) Normalized light intensity distributions of the

upper (A) and lower (B) visual field images for UV (violet) and Green (green) channels (median and interquartile range). (C,D) Local contrast

distributions computed with the Laplacian-of-Gaussian filter (σ = 10 in Eq (2); see S3 Fig for the distributions computed with different σ values). The

distribution of the UV channel is more strongly heavy-tailed than that of the Green channel for the upper visual field images (C), but the Green

channel’s distribution is wider than the UV channel’s for the lower visual field images (D). (E–H) Scale (β; E,F) and shape (γ; G,H) parameters from the

Weibull distribution fitted to each image (Eq (3); see Methods for details). For the upper field images (E,G), the UV channel has significantly smaller γ
(G) but comparable β (E) values than the Green channel. In contrast, for the lower field images (F,H), the Green channel has significantly larger β (F)

but comparable γ (H) values than the UV channel. P-values are obtained from sign-tests.

https://doi.org/10.1371/journal.pone.0262763.g003
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For quantification, we fitted the Weibull distribution (Eq (3)) to the left (C<0) and right

(C>0) sides of the chromatic contrast distributions separately (Fig 4E and 4F).

Power spectral density. The power spectral density of the normalized intensity image I(x,

y) was computed with the fast Fourier transform (FFT; Fig 5):

Fðox;oyÞ ¼ FFT½Iðx; yÞ�; ð6Þ

Sðox;oyÞ ¼ Fðox;oyÞF
�ðox;oyÞ; ð7Þ

where the superscript � denotes complex conjugate, and ωx and ωy represent the horizontal

and vertical spacial frequency (ranging from -0.5 to 0.5 cycles/pixel), respectively. As the aver-

age power spectrum of natural images generally falls with a form 1/fα over the spatial frequency

f with a slope α~2 [1,40,41], we fitted the power function b/ωα to S(ωx, 0) and S(0, ωy), where a
and b indicate the slope and Y-intercept in the log-log space. We used a sign-test to compare

these parameter values between UV and green channels (Fig 5I–5P).

Spatial autocorrelation. Following the Wiener–Khinchin theorem, the spatial autocorre-

lation R(x, y)was computed with the inverse FFT of S(ωx, ωy) in Eq (7):

Rðx; yÞ ¼ IFFT½Sðox;oyÞ�; ð8Þ

where x and y represent horizontal and vertical distances of the two pixel points in the target

image, respectively (Fig 6). Sign-tests were used to compare the R(dh, dv) values at representa-

tive data points: [dh, dv] = [0,50], [50, 0] (Fig 6I–6L).

Results

Multi-spectral camera for the mouse vision

The mouse retina expresses short (S)- and middle (M)-wavelength sensitive opsins that are

maximally sensitive to ultraviolet (UV; *360 nm) and green (*508 nm) wavelengths of light,

respectively [9–11]. Existing public databases of natural scenes contain a diverse set of images

including both natural and artificial objects in both gray and color scales visible to humans

[e.g., 42–45], but only a handful cover UV images [22–24]. To examine the natural image sta-

tistics of the mouse vision, especially for those of the upper and lower visual fields to test the

optimality of the dorsoventral functional division of the mouse retina [9,10,18–20], we set out

to build a multi-spectral camera system for acquiring images of the same scenes in both UV

and green spectral domains (Fig 1).

We first modelled the spectral sensitivity of the mouse dichromatic vision to determine the

center wavelengths of the two channels. Because the lens and cornea absorb shorter wave-

length light (e.g., UV rays) more than longer wavelength light, we corrected the absorption

spectra of the mouse cone photoreceptors [31] with the transmission spectra of the whole eye

optics [30]. This resulted in a slight shift of the center wavelengths to a longer wavelength by

several nanometers: from *360 nm to *365 nm for the S-cone and from *508 nm to *512

nm for the M-cone (Fig 1B). Thus, the ocular transmittance had only minor effects on the

spectral sensitivity of the mouse vision, reassuring its sensitivity to near-UV light [20,46].

We then designed a multi-spectral camera system accordingly using a beam-splitting strat-

egy (Fig 1A; see Methods for specifications) [25,26]. By convolving the measured transmission

of the chromatic contrast distribution of each image. The box plot shows the median ± interquartile range. The upper

field images contain fewer pixels that have higher contrast in Green than in UV (rank-sum test: Three stars “???”

indicating p<0.001; ??, p<0.01; and ?, p<0.05).

https://doi.org/10.1371/journal.pone.0262763.g004
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spectrum of the camera optics with the sensitivity spectrum of the camera sensors [29], we

identified that our imaging device had the sensitivities to ~368±10 nm and ~500±30 nm (cen-

ter wavelength ± half-width at half maximum; HWHM) for the UV and green channels,
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Fig 5. Power spectrum of the “mouse-view” natural images. (A–D) The average power spectra of the upper (A,B) and lower (C,D) visual field images

for the UV (A,C) and Green (B,D) channels. (E–H) The power spectra in the vertical (E,G) and horizontal (F,H) directions (median and interquartile

range) for the upper (E,F) and lower (G,H) visual field images. (I–M) The slope (a; I–L) and Y-intercept (b; M–P) parameters of the power function b/ωa

in the log-log space fitted to the power spectra of each image in the vertical (I,K,M,O) and horizontal (J,L,N,P) directions. For the upper visual field images

(I,J,M,N), the UV channel has significantly larger b (M,N) but comparable a (I,J) values than the Green channel. For the lower field images (K,L,O,P), in

contrast, the Green channel has significantly larger b (O,P) and smaller a (K,L) values than the UV channel. P-values are obtained from sign-tests.

https://doi.org/10.1371/journal.pone.0262763.g005
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Fig 6. Spatial autocorrelation of the “mouse-view” natural images. (A–D) The average spatial autocorrelation of the upper (A,B) and lower

(C,D) visual field images for the UV (A,C) and Green (B,D) channels, respectively. (E–H) The spatial autocorrelation in the vertical (E,G) and

horizontal (F,H) directions (median and interquartile range). The UV channel has a higher and wider spatial correlation for the upper visual

PLOS ONE Natural image statistics for mouse vision

PLOS ONE | https://doi.org/10.1371/journal.pone.0262763 January 20, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0262763


respectively (Fig 1B). This confirms that the UV and green channels of our device were spec-

trally well isolated, and that the two channels largely matched to the spectral sensitivity of the

mouse vision [9–11].

Ultraviolet and green image collection

To collect images that mice would encounter in their natural habitats, we went out to natural

fields and wild forests in the countryside and mountain area of Lazio/Abruzzo regions in Italy

across different seasons. We placed the multi-spectral camera on the ground at about a height

of the mouse eye, and acquired images of natural objects alone at various distances (e.g.,

clouds, trees, flowers, and animals), excluding any artificial objects. These images were taken

with different camera angles in the presence of ample natural light (S1 Fig). The images were

preprocessed to correct optical vignetting and remove salt-and-pepper noise, and cropped to

exclude areas out of focus on the edges (see Methods for details). This led to a set of 232 pairs

of UV and green images of various “mouse-view” natural scenes.

Besides well-known facts that UV light is reflected well by open water and some plants

[13,14], we noticed several distinct features between the UV and green images (see examples

in Fig 2). First, clouds often appeared dark and faint in the UV images than in the green ones.

In some cases, even negative contrast was formed for the clouds in UV while positive contrast

in green. Second, fine textures were more visible in the green images than in the UV ones. In

particular, objects in the upper field UV images were often dark in a nearly uniform manner

due to back-light, whereas fine details of the objects were nevertheless visible in the corre-

sponding green images despite a high contrast against the sky. For the lower field images, in

contrast, distinct brighter spots stood out in UV due to reflections of shiny leaves and cortices,

while more shades and shadows were visible in green. These qualitative observations already

suggest that the UV and green images have distinct statistical properties.

Normalized intensity and contrast distributions of UV and green images

To analyze the image statistics more formally, we first calculated the normalized intensity dis-

tribution of the UV and green channels for the upper and lower visual field images (Fig 3A

and 3B). Because the visual system adapts its sensitivity to the range of light intensities in each

environment [38,39], we normalized the pixel intensity of each UV and green image to be

within the range from zero to unity. We then found that, for the upper visual field images, the

probability distributions of both UV and green intensity values were bimodal (Fig 3A). The

two peaks of the UV intensity distribution, however, were higher and more separated than

those of the green intensity distribution, suggesting that luminance contrast is higher in UV

than in green when animals look up. In contrast, the normalized intensity distributions of the

lower field images were unimodal and skewed to the right for both color channels. The distri-

bution was more strongly heavy-tailed for the green than for the UV images (Fig 3B), indicat-

ing higher contrast in green than in UV when animals look down.

To better examine the contrast in the two different spectral domains, we calculated the local

image contrast using the second derivative (Laplacian) of a two-dimensional Gaussian filter

(Eq (2) in Methods). This filter follows the antagonistic center-surround receptive fields of

early visual neurons (e.g., retinal ganglion cells [47,48]) that are sensitive to local contrast, and

is commonly used for edge detection in computer vision [49–51]. Consistent with what was

field images (E,F), while the Green channel has a higher and wider spatial correlation for the lower visual field images (G,H). (I–L)

Representative spatial correlation values of the pixels horizontally (I,K) or vertically (J,L) separated by 50 pixels for the upper (I,J) and lower

(K,L) visual field images. P-values were obtained from sign-tests.

https://doi.org/10.1371/journal.pone.0262763.g006
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implicated by the intensity distributions (Fig 3A and 3B), we found that 1) the probability dis-

tribution of local contrast was generally wider for the upper visual field images than for the

lower visual field images; and 2) the local contrast distribution was wider for the upper visual

field UV images than for the corresponding green images (Figs 3C, S3A, S3C and S3E), but

narrower for the lower visual field UV images than for the green counterparts (Figs 3D, S3B,

S3D and S3F). To quantify these differences, we fitted a two-parameter Weibull function (Eq

(3) in Methods) to the local contrast distribution of each image in each channel [52,53], where

the first scale parameter (β) describes the width of the distribution, hence a larger value indi-

cating higher contrast; and the second shape parameter (γ) relates to the peakedness, with a

smaller value indicating a heavier tail and thus higher contrast in the image. For the images

above the horizon, the UV channel had significantly smaller shape parameter values than the

green channel (Fig 3G) with comparable scale parameter values (Fig 3E). In contrast, for the

images below the horizon, the green channel had significantly larger scale parameter values

than the UV channel (Fig 3F), with no difference in the shape parameter values (Fig 3H).

Thus, the image statistics showed distinct characteristics between the upper and lower visual

field image data sets, with higher contrast in UV than in green for the upper visual field

images, and vice versa for the lower visual field images.

Importantly, such differences in the local contrast distributions do not agree well with what

the efficient coding hypothesis implies from the physiological and anatomical properties of the

mouse retina [3,4]. Solely from an information theoretic viewpoint, a narrower contrast distri-

bution is better encoded with a more sensitive cone type to maximize its bandwidth [54]. In

the mouse retina, the functional S-cones are more sensitive to contrast than the functional M-

cones [17–20,46]; and the functional S-cones are denser towards the ventral part of the retina,

preferentially sampling the upper part of the visual field, while the functional M-cones towards

the dorsal retina, sampling the lower visual field [15,16,18]. Therefore, this particular retinal

organization is optimal if the upper visual field images had lower contrast in UV than in green,

and the lower visual field images had higher contrast in UV than in green. Our image analysis,

however, showed the opposite trend in the “mouse-view” visual scenes (Fig 3).

Achromatic and chromatic contrast of “mouse-view” images

To examine achromatic and chromatic contrast of our image data sets, we next measured the

root mean square (RMS) contrast (Eqs (4) and (5) in Methods) that is commonly used in psy-

chophysical studies [22]. We found that the achromatic RMS contrast (Eq (4)) was higher in

UV than in green channels, especially for the upper visual field images (Fig 4A and 4B). The

upper visual field images then had an asymmetric chromatic contrast distribution (Eq (5); Fig

4C), where pixels with higher contrast in UV than in green were more abundant than those

with higher contrast in green than in UV (Fig 4E and 4F). In contrast, the chromatic contrast

distribution was rather symmetric for the lower visual field images (Fig 4D), and it was overall

wider than that for the upper visual field images (Fig 4E and 4F).

This indicates that UV-green chromatic information exists across the visual field, even

though the exact shape of the chromatic contrast distribution may depend on the image con-

tents [22]. We indeed identified UV-green chromatic objects in both lower and upper visual

field images (see examples in Figs 2 and S2) and thus cannot explain why the mouse retina has

chromatic circuitry preferentially on the ventral side (upper visual field) [55–57]. In principle,

mice could retrieve UV-green chromatic information across the visual field, given that 1) gen-

uine S-cones and rods are distributed rather uniformly across the mouse retina [34]; 2) rods

have similar absorption spectra to M-cones (peak sensitivity at 498 and 508 nm, respectively;

Fig 1B) [9,32]; and 3) rods can escape from saturation even under photopic conditions [33].
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Larger image datasets sampled under more diverse conditions are required to assess the opti-

mality of the chromatic circuitry in the mouse retina, especially because the rod system plays a

role not only in the color vision but also in the scotopic vision.

Power spectrum and autocorrelation of UV and green images

We next analyzed the second-order statistics of the acquired images. Specifically, we computed

the power spectrum (Fig 5) and spatial autocorrelation that describes the relationship of the

two pixel intensity values as a function of their relative locations in the images (Fig 6; see Meth-

ods for details). As expected [1,21], the power spectra generally followed 1/ωa on the spatial

frequency ω for both UV and green channels irrespective of the camera angles (in log-log axes;

Fig 5A–5H); and were higher for the vertical direction than for the horizontal direction (Fig

5A–5H)—i.e., the spatial autocorrelation was elongated in the vertical direction (Fig 6A–6D).

There are, however, several distinct properties between the UV and green channels for the

upper and lower visual field images. First, the slope of the power spectra a was larger for the

lower visual field images than for the upper visual field images (Fig 5I–5L); equivalently, the

spatial autocorrelation was narrower for the lower visual field images (Fig 6E–6H), indicating

the presence of more fine textures in those images. Second, for the upper visual field images,

the UV power spectra were higher than the green ones in both vertical and horizontal direc-

tions (e.g., the Y-intercept b, indicating the log-power at the spatial frequency of 1 cycle/pixel;

Fig 5M and 5N). In contrast, for the lower visual field images, the UV power spectra were

lower with a larger slope than the green counterparts (Fig 5K, 5L, 5O and 5P). Equivalently,

the spatial autocorrelation was wider in UV than in green for the upper visual field images,

and vice versa for the lower visual field images (Fig 6E–6H).

Under an efficient coding hypothesis, a higher spatial autocorrelation implies that less

cones are needed to faithfully encode the scenes [3,4,54]. One would then expect from the

“mouse-view” image statistics that the functional S- and M-cones should be denser on the dor-

sal and ventral parts of the mouse retina, respectively, to achieve an optimal sampling. How-

ever, the opposite is the case with the mouse retina [15,16,18], suggesting that the cone

distribution bias in the mouse retina cannot be simply explained by the optimality principle

from an information theoretic viewpoint.

Discussion

To study the natural image statistics for the mouse vision, here we collected a set of 232

“mouse-view” two-color images of various natural scenes across different seasons using a cus-

tom-made multi-spectral camera (Figs 1 and 2). We identified distinct image statistics proper-

ties for the two channels between the images above and below the horizon (Figs 3–6 and S4).

Specifically, both the local contrast and the spatial autocorrelation were higher in UV than in

green for the upper visual field images, while they were both lower in UV than in green for the

lower visual field images. This disagrees with what the efficient coding hypothesis implies [3,4]

from the functional division of the mouse retina along the dorsoventral axis [15,16,18]. We

thus suggest that the given retinal organization in mice should have evolved not only to effi-

ciently encode natural scenes from an information theoretic perspective, but likely to meet

some other ethological demands in their specific visual environments [22].

How faithful are our images to what mice actually see in their natural habitats? This is a crit-

ical question because image statistics depend on the quality and contents of the images. Our

camera system was designed to collect high-quality UV-green images (Figs 1 and 2) compara-

ble to the existing natural image datasets for human vision [42–45]. However, caveats include

that 1) the effects of the mouse eye optics were not considered in the image acquisition or
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analysis; 2) no motion dynamics were considered; 3) images were taken under ample light dur-

ing the day, while mice are nocturnal; and 4) our image datasets were still relatively small and

did not cover the entire visual field for the mouse vision. It is a future challenge to address

these questions, for example, by measuring the properties of the mouse eye optics, simulating

images projected onto the mouse retina, and analyzing the statistics of these images.

“Mouse-view” natural image database

We employed a beam-splitting strategy to simultaneously acquire UV and green images of the

same scenes (Fig 1) because it has certain advantages over other hyper- or multi-spectral imag-

ing techniques [25,26]. First, a previous study used a hyperspectral scanning technique where

a full spectrum of each point in space was measured by a spectrometer [18]. While the photo-

receptor response could be better estimated by using its absorption spectra, the scanned

images through a pinhole aperture inevitably had lower spatial and temporal resolutions than

the snapshot images acquired with our device. Second, a camera array can be used for multi-

spectral imaging with each camera equipped with appropriate filters and lenses [58]. This is

easy to implement and will perform well for distant objects; however, because angular disparity

becomes larger for objects at a shorter distance, one would have a difficulty in taking close-up

images that small animals such as mice would normally encounter in their everyday lives.

Finally, our single-lens-two-camera design is simple and cost-effective compared to other

snapshot spectral imaging methods [26]. In particular, commercially available devices are

often expensive and inflexible, hence not suitable for our application to collect images that

spectrally match the mouse vision.

There are several conceivable directions to expand the “mouse-view” natural image data-

base. First, we could take high dynamic range images using a series of different exposure

times. This works only for static objects, but can be useful to collect images at night during

which nocturnal animals such as mice are most active. Second, we could take a movie to ana-

lyze the space-time statistics of natural scenes [22]. It would be interesting to miniaturize the

device and mount it on an animal’s head to collect time-lapse images with more natural self-

motion dynamics [59,60]. Expanding our “mouse-view” natural image datasets will be critical

to better understand the visual environment of mice and develop a theoretical explanation on

species-specific and non-specific properties of the mouse visual system.

Optimality of the mouse retina

What selective pressures have driven the mouse retina to favor UV sensitivity over blue and

evolve the dorsoventral gradient in the opsin expression? Our image analysis suggests that the

coding efficiency alone with respect to the natural image statistics cannot fully explain the dis-

tinctive organization of the mouse retina (Figs 3–6). For example, we argued from an informa-

tion theoretic viewpoint that, for equalizing the bandwidth within the system, high contrast

images in the upper visual field (Fig 3C) should be encoded with less sensitive photoreceptors

(M-cones), while low contrast images in the lower visual field (Fig 3D) with more sensitive

photoreceptors (S-cones) [18]. In contrast, one could also argue from an ethological viewpoint

that more sensitive S-cones are driven more strongly by high contrast images in the upper

visual field and thus better suited to process biologically relevant information, such as aerial

predators [2,22].

To understand in what sense the mouse retina’s organizations are optimal, one then needs

to clarify visual ethological demands that are directly relevant for survival and reproduction.

For example, fresh mouse urine reflects UV very well, and this has been suggested to serve as a

con-specific visual cue for their territories and trails besides an olfactory cue [61]. The UV
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sensitivity can also be advantageous for the hunting behavior of mice because many nocturnal

insects are attracted to UV light. Furthermore, increased UV sensitivity in the ventral retina

may improve the detection of tiny dark spots in the sky, such as aerial predators [62]. Indeed,

the S-opsin-dominant cones in mice have higher sensitivity to dark contrasts than the M-

opsin-dominant ones [18], and turning the anatomical M-cones into the functional S-cone by

co-expressing the S-opsin will dramatically increase the spatial resolution in the UV channel

because the mouse retina has only a small fraction of the uniformly distributed genuine S-

cones (*5%) compared to the co-expressing cones (*95%) [11,16,17,63].

These arguments, however, are difficult to generalize because each species has presumably

taken its own strategy to increase the fitness in its natural habitat, leading to convergent and

divergent evolution. On the one hand, UV sensitivity was identified in some mammals that

live in a different visual environment than mice, including diurnal small animals such as the

degu and gerbil [61,64,65] and even large animals such as the Arctic reindeer [66]. On the

other hand, some species showing a similar behavioral pattern as mice do not have the dorso-

ventral division of the retinal function [12–14]. For example, even within the genus Mus, some

species do not have the dorsoventral gradient of the S-opsin expression, and others completely

lack the S-cones [67]. It is even possible that the cone distribution bias may have nothing to do

with the perception of the color vision, but may arise just because of the developmental pro-

cesses. Indeed, the center of the human fovea is generally devoid of S-cones [68,69], and there

is a huge diversity in the ratio of M- and L-cones in the human retina across subjects with nor-

mal color vision [70,71]. Behavioral tests across species will then be critical for validating the

ethological arguments to better understand the structure and function of the visual system [2].

We expect that the “mouse-view” natural image datasets will contribute to designing such

studies.

Supporting information

S1 Fig. Relative pixel intensities along horizontal and vertical axes. Relative pixel intensities

(median ± interquartile range; UV and green channels in violet and green, respectively) were

computed along horizontal (A,C,E) and vertical (B,D,F) axes for three different image catego-

ries based on the camera angle: Lower (A,B; N = 117), horizontal (C,D; N = 15), and upper (E,

F; N = 100) visual field images. Pixel intensity did not change much horizontally but was gen-

erally lower in the lower field images (A,B) than in the upper field images (E,F). Discontinuity

between the top edge of the lower field images (B, x-axis value of 0) and the bottom edge of the

upper field images (F, x-axis value of 0) supports a good separation of the two image catego-

ries.

(PDF)

S2 Fig. UV-Green pixel intensity distributions of representative “mouse-view” images.

Each scatter plot shows the distribution of the UV-Green pixel values from the corresponding

image shown in Fig 2 (A, upper visual field images; B, lower visual field images). Virtually all

pixels were within the dynamic range of the camera sensor (Sony, IMX174 CMOS; 12-bit

depth saved in a 16-bit format).

(PDF)

S3 Fig. Local contrast distributions of the natural scenes are scale invariant. Local contrast

distributions computed with different Laplacian-of-Gaussian filter sizes (A,B, σ = 5; C,D, σ =

20; E,F, σ = 40; Eq (2)) are shown in the same format as Fig 3C and 3D (σ = 10). The upper

visual field images (A,C,D) generally showed higher contrast than the lower visual field images

(B,D,F), especially for the UV channel (violet). The filter size (0.18–1.44 degrees) used in this
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study is smaller than the receptive field size of mouse retinal ganglion cells (3–13 degrees)

[72,73]. Given the scale invariance [2,21], however, we expect that our analysis results should

hold for larger filters as well [22].

(PDF)

S4 Fig. Natural image statistics for “mouse-view” images have distinct spectral properties

between upper and lower visual fields across different order statistics. The first- to the

fourth-order image statistics (mean, A, B; standard deviation, C, D; skewness, E, F; kurtosis, G,

H) as well as entropy (I, J) were computed for local images patches (0.36 degrees; UV, violet;

Green, green). Joint (top) and marginal (bottom) probability distributions were then generated

for the upper (A, C, E, G, I) and lower (B, D, F, H, J) visual field images.

(PDF)
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63. Haverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ, Feng G, et al. The primordial, blue-cone

color system of the mouse retina. J Neurosci. 2005; 25:5438–5445. https://doi.org/10.1523/

JNEUROSCI.1117-05.2005 PMID: 15930394
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