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A B S T R A C T

Anxiety, a mental state in healthy individuals, is characterized by apprehension of potential future threats. 
Though the neurobiological basis of anxiety has been investigated widely in the clinical populations, the underly 
mechanism of neuroanatomical correlates with anxiety level in healthy young adults is still unclear. In this study, 
1080 young adults were enrolled from the Human Connectome Project Young Adult dataset, and machine 
learning-based elastic net regression models with cross validation, together with linear mix effects (LME) models 
were adopted to investigate whether the neuroanatomical profiles of structural magnetic resonance imaging 
indicators associated with anxiety level in healthy young adults. We found multi-region neuroanatomical profiles 
predicted anxiety problems level and it was still robust in an out-of-sample. The neuroanatomical profiles had 
widespread brain nodes, including the dorsal lateral prefrontal cortex, supramarginal gyrus, and entorhinal 
cortex, which implicated in the default mode network and frontoparietal network. This finding was further 
supported by LME models, which showed significant univariate associations between brain nodes with anxiety. 
In sum, it’s a large sample size study with multivariate analysis methodology to provide evidence that individual 
anxiety problems level can be predicted by machine learning-based models in healthy young adults. The 
neuroanatomical signature including hub nodes involved theoretically relevant brain networks robustly predicts 
anxiety, which could aid the assessment of potential high-risk of anxiety individuals.

1. Introduction

Anxiety, a mental state in healthy individuals, is characterized by 
apprehension of future threats, together with worrying, difficulty to 
relax, and increased vigilance and passive avoidance (Barlow, 2000). 
Anxiety has valuable adaptive benefits, such as adapting behaviours to 
resolve potential dangers, while excessive and unmotivated, it can 
become dysfunctional, increasing the risk of developing anxiety disor-
ders (Saviola et al., 2020). In essence, excessive anxiety has been 
implicated in not only mental disorders, but also several medical and 
neurological conditions (Robinson et al., 2019). Furthermore, anxiety 
disorder is recognised as one of the most common mental disorders, with 
~14% prevalence (Penninx et al., 2021). They have been found to occur 

more frequently among women than men, and both cognitive behavioral 
therapy and drugs were needed for the treat, accompanying by a high 
financial cost (Penninx et al., 2021). Consequently, there is a clear need 
to identify neurobiological signature signaling anxiety problems level in 
healthy adults which could aid the assessment of potential high-risk 
individuals.

Functional magnetic resonance imaging (MRI) has been widely used 
to investigate the underlying mechanism of anxiety. It has been sug-
gested that the children with generalized anxiety disorder showed 
abnormal amygdala functional connectivity with insula as well as 
ventrolateral prefrontal cortex (PFC) (Monk et al., 2008). Though the 
direction of the effect varies by the type of task presented, altered 
activation in both ventral PFC and dorsomedial PFC have been observed 
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in childhood anxiety disorders (Bakker et al., 2011). Similarly, youth 
with anxiety exhibited heightened amygdala and ventral PFC activation 
during a cognitive reappraisal task, and amygdala functional connec-
tivity with ventral PFC during emotion regulation differentially related 
to anxiety (Padgaonkar et al., 2021). Furthermore, anterior cingulate 
cortex and medial PFC activation was impacted by trait anxiety during 
decision-making tasks (Paulus et al., 2004). It has found that during a 
Stroop task, high-anxious individuals exhibited abnormal activation of 
the above regions, which suggested that attentional control impairment 
might lead to altered neural processing efficiency in individuals with 
anxiety (Basten et al., 2011). However, only functional MRI was adopted 
in these studies with small sample sizes, which has limited the sensitivity 
for true effects and increased risk for false positives (Button et al., 2013). 
Additionally, these studies mainly focused on the clinical populations, 
and the underly mechanism of neuroanatomical correlates with anxiety 
level in healthy adults is still unclear.

However, structural MRI (sMRI) has also been used to examine the 
neuroanatomical profiles of anxiety. Previous research has found that 
trait anxiety is associated with abnormal gray matter volume (GMV) in 
amygdala, and para-hippocampal gyrus (Hu et al., 2017), and altered 
cortical thickness (CT) in amygdala and cingulate regions (Potvin et al., 
2015). Furthermore, there have also been reports finding that adoles-
cents with generalized anxiety disorder exhibited lower GMV in orbi-
tofrontal cortex, inferior frontal gyrus, and dorsolateral PFC (Hilbert 
et al., 2014; Strawn et al., 2013, 2015). Similarly, lower GMV within 
middle frontal gyrus and dorsolateral PFC has been found in adults with 
generalized anxiety disorder (Molent et al., 2018; Moon et al., 2017). 
However, these studies mainly investigated single neuroanatomical 
indictor, such as GMV or CT. It has been found that cortical GMV can be 
decomposed into CT and cortical surface area (CSA), with distinct 
morphological features and distinct developmental trajectories 
(Tadayon et al., 2020; Storsve et al., 2014). This implies that CSA and CT 
should be considered together to investigate their associations with 
anxiety.

Recently, predictive models have been conducted to investigate the 
neural correlates of anxiety. One previous study (N = 76) conducted 
connectome-based predictive modeling (CPM), and found that individ-
ual anxiety can be predicted successfully based on whole-brain resting 
state function connectivity, especially function connectivity between 
limbic areas and prefrontal cortex (Wang et al., 2021). Another study (N 
= 148) performed CPM using whole-brain structural connectivity and 
found that networks predictive of trait anxiety differed across age groups 
(Yoo et al., 2022). However, in these studies, CPM is based on linear 
relationships typically with a slope and an intercept, which may not be 
optimal for exploring complex, non-linear correlations between brain 
and behavior (Shen et al., 2017). However, the machine learning 
approach together with cross-validation (CV) can reduce the overfitting 
risk and result in more generalizable findings. One study (N = 116) has 
used resting-state fMRI indictors to train machine learning models with 
CV, and found that the orbitofrontal cortex and degree centrality 
contributed mostly to the prediction of social anxiety level (Kim et al., 
2022), while another study (N = 557) failed to predict anxiety within 
the holdout sample using both brain functional and structural features 
(Boeke et al., 2020). These inconsistent findings may be due to the small 
sample size and machine learning-based models with limitations. 
However, machine learning-based elastic net regression (ENR) model, 
has been proposed to be ideal for prediction using inter-correlated 
predictors (Zou et al., 2005). Furthermore, ENR with CV exhibited 
better performance than other machine learning models at different 
range of effect sizes (Jollans et al., 2019).

To address these limitations, this study adopted machine learning- 
based ENR models with CV to predict anxiety problems level from 
various sMRI indictors including CSA, CT, and GMV. Then, linear mixed 
effects (LME) model was conducted to confirm the relationships be-
tween anxiety problems level and the neuroanatomical profiles which 
contributed to ENR models. Adopting machine learning-based models, 

this study aimed to explore whether anxiety problems level can be 
effectively predicted in an out-of-sample and to identify specific brain 
critical to the prediction of anxiety in healthy young adults.

2. Methods

2.1. Participants

This study used the data from the Human Connectome Project (HCP) 
Young Adult dataset. All participants from HCP were recruited between 
August 2012 and October 2015 (Van Essen et al., 2012). More details of 
inclusion and exclusion criteria are provided in previous research (Van 
Essen et al., 2012, 2013). Due to demographic or anxiety problems level 
data missing, and failing MRI quality control, some participants were 
excluded. Therefore, this study enrolled 1080 participants for the final 
analysis. More details about participants were listed in Table 1 and the 
supplementary materials. All procedures of this study were approved by 
the local institutional review board and in accordance with the Helsinki 
Declaration. Written informed consent were provided by all 
participants.

2.2. Anxiety problems level

In HCP, the anxiety problems level was assessed by the Anxiety 
Problems subscale of Diagnostic and Statistical Manual of Mental Dis-
orders, Fourth Edition, based on the Achenbach Adult Self-Report for 
ages 18–59, and all 7 items in the subscale were listed in Table S1
(Achenbach et al., 2005). All Items are rated on a 3-point Likert scale 
(from 0 = “not true” to 2 = “very true or often true”), and the total score 
ranges from 0 to 14. It has been proved to exhibit excellent test-retest 
reliability and internal consistency (Achenbach et al., 2003).

2.3. MRI acquisition and preprocessing

For HCP dataset, a 3 T Siemens Skyra scanner from one single center 
at Washington University in St. Louis was used to collect T1-weighted 
structural images with scanning parameters listed in the supplemen-
tary materials. A modified version of the FreeSurfer pipeline was 
adopted to reconstruct and preprocess all sMRI data (Fischl et al., 2004; 
Fischl, 2012). More details of preprocessing of sMRI data and sMRI data 
quality were provided in previous studies (Van Essen et al., 2012; 
Glasser et al., 2013; Marcus et al., 2013). Finally, the Desikan atlas was 

Table 1 
Demographic characteristics of sample (N = 1080).

Metric M(SD) or percent

Age 28.82 (3.68)
Sex

Female 53.98%
Male 46.02%

Total family income
<$10,000 7.13%
10K-19,999 7.96%
20K-29,999 12.50%
30K-39,999 12.13%
40K-49,999 10.28%
50K-74,999 20.93%
75K-99,999 13.43%
≥100,000 15.65%

Education level
≤11 years 3.52%
12 years 13.89%
13 years 6.30%
14 years 12.50%
15 years 5.93%
16 years 42.31%
≥17 years 15.56%

Note. M: mean; SD: standard deviation.

H. Xu et al.                                                                                                                                                                                                                                       Neurobiology of Stress 34 (2025) 100705 

2 



used to define the cortical regions and mean value of CSA and CT for 
these cortical brain regions were derived (Desikan et al., 2006), and 
ASEG parcellation was adopted to define the subcortical regions, and 
mean value of GMV for these subcortical regions plus the intracranial 
volume (ICV) were derived (Fischl, 2012).

2.4. Data analyses

The Brain Predictability toolbox, a Python based machine learning 
library, was adopted to conduct ENR model analysis together with 
Scikit-Learn (Pedregosa et al., 2011; Hahn et al., 2021). LME model 
analysis was performed with the R-based lme 4 package. The schematic 
workflow of data analysis procedures was shown in Fig. 1.

2.4.1. ENR model analysis
In this study, 3 ENR models were constructed with anxiety score as 

the target. In Model 1, all regional sMRI indictors (Fig. 1A) were used as 
predictors (including CT and CSA per cortical ROI, GMV per subcortical 
ROI and total intracranial volume. This model was built to investigate 
whether pure neurobiological profiles could predict individual anxiety 
problems level in young adults. Model 2 with only demographic in-
dictors (which were listed in Table 1) was conducted and aimed to check 
whether individual anxiety problems level could be predicted by only 
demographic variables. In Model 3, all sMRI and demographic indictors 
were included as predictors, and it aimed to ensure that pure neurobi-
ological profiles of individual anxiety problems level from Model 1 were 
not affected entirely by the demographic indictors. In all models, pre-
diction performance was evaluated by a modified coefficient of 

determination (R2). Furthermore, ten times repetitions for each ENR 
model analysis were conducted to ensure finding stability across sample 
splits, and the results of the ENR models were averaged across 10 rep-
etitions. Details about how to conduct machine learning-based ENR 
model are provided in the Supplemental Materials and previous research 
(Xu et al., 2023a, 2023b).

2.4.2. LME model analysis
To support the interpretation of findings from ENR models, a sec-

ondary analysis was conducted to use LME models to test the relation-
ships between anxiety score with each sMRI indictors. In each LME 
model (Fig. 1C), each MRI variable and potentially confounding vari-
ables (including sex, age, education level, total family income, and 
intracranial volume) were included as fixed effects, with family ID 
(which indicted subjects who share at least one parent or were from a 
single family) included as a random effect, and anxiety score as a 
dependent variable. Significant correlations were indicted by P < 0.05 
after Bonferroni correction. The sMRI predictors from machine learning- 
based ENR model were only regarded as neurobiological profiles of in-
dividual anxiety problems level if their relationships were further 
confirmed in this secondary LME model analysis. More details about 
LME model analysis were listed in the supplementary materials and 
previous research (Xu et al., 2023a, 2023b).

Fig. 1. Schematic workflow of data analyses procedures in this study. (1) All sMRI variables were included as predictors including cortical surface area, cortical 
thickness, and subcortical gray matter volume. (B) Machine learning elastic net regression models with CV were constructed to investigate how MRI features can 
predict anxiety problems level in a large sample of young adults. (C) A traditional univariate approach (linear mixed effects models) was conducted to confirm the 
univariate relationship between anxiety problems level and MRI features contributing to the elastic net regression models. CV, cross validation; MRI, magnetic 
resonance imaging; sMRI, structural MRI; ICV, intracranial volume.
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3. Results

3.1. ENR model results

In Model 1, the mean R2 within the 5-fold CV was 1.41% with the R2 

= 1.87% in an out-of-sample (Fig. 2 and Table S2). The neuroanatomical 
profiles identified as contributing to predict anxiety included wide-
spread brain regions, including lateral orbitofrontal cortex, superior 
frontal gyrus, and anterior cingulate cortex (Fig. 3A and Table S3).

In Model 2, the mean R2 within the 5-fold CV was 1.74% with the R2 

= 1.76% in an out-of-sample (Fig. 2, Table S2 and Table S4).
In Model 3, we found that the mean R2 within the 5-fold cross- 

validation was 3.16% with the R2 = 3.79% in an out-of-sample 
(Fig. 2, Table S2 and Table S5). Model 3 showed similar pattern of 
neuroanatomical profiles as that in Model 1 (Fig. 3B).

3.2. LME model results

The LME model results of significant associations were reported in 
Table 2. The LME model analysis found that there were significant re-
lationships between anxiety problems level and widespread brain re-
gions including CSA of superior frontal cortex and entorhinal cortex, and 
CT of lateral orbitofrontal cortex, rostral middle frontal cortex, caudal 
middle frontal cortex, and pars orbitalis (p < 0.05, FDR corrected, 
Table 2). Additionally, the overlapped brain cortical regions observed in 
both ENR models 1 and 3, and LME models are shown in Fig. 4.

4. Discussion

This study aimed to use machine-learning models to explore neuro-
anatomical profiles of individual anxiety problems level in healthy 
young adults. Our finding revealed multi-region neuroanatomical pro-
files predicted anxiety problems level, including the dorsal lateral pre-
frontal cortex (DLPFC), supramarginal gyrus (SMG), and entorhinal 
cortex (EC). These widespread brain regions are hubs of brain classical 
functional networks including the default mode network (DMN) and 
frontoparietal network (FPN). Furthermore, the relationships of the 
neurobiological profiles with anxiety problems level were further sup-
ported by traditional univariate LME models. These findings suggested 
individual anxiety problems level can be predicted by multi-region- 
related neuroanatomical profiles involved in different brain functional 
networks in healthy young adults.

In this study, the DLPFC was identified as significant neuroanatom-
ical predictors of anxiety problems level in healthy adults. As acted as a 
vital role in emotion regulation and attention control, DLPFC has been 
found to be involved in the regulation for dispositional anxiety (Bishop, 
2009). It has been found the activation strength of DLPFC under anxiety 
induction condition was negatively associated with anxiety in healthy 
participants, which speculated weak DLPFC activation may be linked to 
less anxiety downregulation (Balderston et al., 2017a). While the acti-
vation of DLPFC aimed to bear task goals in mind, it would suppress 
emotional interference and alleviates anxiety, which furtherly suggested 
that the DLPFC is a hub node for emotion functioning (Vytal et al., 
2012). Additionally, individuals with psychiatric disorders featuring 
anxiety exhibited DLPFC hypoactivation during cognitive tasks 

Fig. 2. Prediction Accuracy (R2) for elastic net regression models to predict anxiety problems. In Model 1, regional sMRI variables (i.e., the CT and CSA of each 
cortical region, the GMV of each subcortical region and brain stem) were predictors. In Model 2, demographic variables (i.e., age, sex, total family income, and 
education level) were only used as predictors. In Model 3, both sMRI variables and demographic variables were used as predictors. “Mean” indicate the mean R2 of all 
models built in the training phase. “Held Out” indicates the all R2 of all models from the training phase being tested on the held-out test set. Error bars stand for 
standard error of mean. CSA, cortical surface area; CT, cortical thickness; GMV, gray matter volume.

H. Xu et al.                                                                                                                                                                                                                                       Neurobiology of Stress 34 (2025) 100705 

4 



including emotion regulation anxiety induction procedures (Balderston 
et al., 2017b; McTeague et al., 2017). An altered functional network 
including DLPFC has also been found in adults with generalized anxiety 
disorder (Etkin et al., 2009). Moreover, individuals with high trait 
anxiety exhibited lower DLPFC activation under a low cognitive load 
condition (Bishop, 2009). Taken together, these studies implied that as a 
key node of FPN, the observed deficit involvement of DLPFC may 
represent a regulation style that makes these individuals vulnerable to 
anxiety, perhaps through difficulties disengaging from irrelevant stim-
uli. Consistent with these studies, the morphometry of the DLPFC 
observed in this study was suggested to be a vital indicator of anxiety 
problems level, which might suggest the important role of DLPFC in 
anxiety regulation in healthy young adults.

In addition, SMG was identified as a neuroanatomical predictor of 
individual anxiety problems level in young adults. As a portion of the 
posterior parietal lobe, the SMG has been identified as a hub for bodily 
self-consciousness (Limanowski et al., 2015) and associated with 

monitoring peripersonal space (di Pellegrino et al., 2015), which is 
believed to be the “margin of safety” around the body especially when 
stressful or threatful events happened (Bogdanova et al., 2021; Serino, 
2019). Previous research has found that the SMG is engaged in the 
processing of threatening, painful, and stressful stimuli in the peri-
personal space network (de Borst et al., 2020; Grivaz et al., 2017). 
Furthermore, a meta-analysis of neuroimaging studies has identified the 
SMG as a key node activated during physiological stress (Kogler et al., 
2015). Hence, our finding suggested the observed deficit involvement of 
SMG might make young adults experienced more stress, which in turn 
make them perceive high anxiety problems level when dealing with 
stressful events.

Previous research of a functional model has proposed the EC as a hub 
node of DMN (Andrews-Hanna et al., 2014). The EC was identified to be 
essential for potential future experiences imagination and construction 
(Andrews-Hanna et al., 2014; Schacter et al., 2012). This further proved 
that the relationship of anatomical nodes of DMN with anxiety problems 

Fig. 3. Similar neuroanatomical patterns derived from elastic net regression models predicted anxiety problems for (A) Model 1, and (B) Model 3. The color bar of 
brain regions represented regression coefficients. L, left; R, right; DLPFC, dorsal lateral prefrontal cortex; SMG, supramarginal gyrus; EC, entorhinal cortex. Brain 
mapping was conducted by ENIGMA toolbox.

Table 2 
Significant sMRI correlates of anxiety problems level in linear mixed effect analyses.

Hemisphere Region B SE t p R2

CT
Left Pars orbitalis 2.2451 0.5435 4.1311 0.0000 0.0572
Left Lateral orbitofrontal cortex 1.7973 0.6759 2.6593 0.0080 0.0482
Right Pars orbitalis 1.1881 0.5397 2.2015 0.0279 0.0464
Left Rostral middle frontal cortex 1.5412 0.7283 2.1161 0.0346 0.0460
Left Caudal middle frontal cortex 1.4290 0.6863 2.0823 0.0376 0.0460
Left Pars triangularis 1.3435 0.6595 2.0372 0.0419 0.0457

CSA
Right Supramarginal gyrus − 0.0004 0.0002 − 2.5577 0.0107 0.0482
Right Superior frontal cortex − 0.0003 0.0001 − 2.3494 0.0190 0.0474
Left Cuneus − 0.0010 0.0004 − 2.2536 0.0244 0.0471
Left Entorhinal cortex − 0.0022 0.0011 − 2.0665 0.0390 0.0462

Note. sMRI: structural magnetic resonance imaging; B: unstandardized regression coefficient; SE: standard error; CT: cortical thickness; CSA: cortical surface area.
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level emphasised its importance in the processing of anxiety. Further-
more, previous research supported the role of the EC proposed by the 
above theoretical model, and it revealed that significant hyperactivation 
of the EC was observed in youth with anxiety disorders (Ashworth et al., 
2021). Moreover, EC functional connections with widespread cortical 
regions has been involved in emotion and reward processing (Navarro 
Schröder et al., 2015). Furthermore, it has been suggested that higher CT 
of EC may predispose to encoding enhancement of emotionally-salient 
memories, together with higher levels of irritability in youth at risk 
for bipolar disorder (Bertocci et al., 2019). Together with these findings, 
it is reasonable to argue that the morphometry of the EC observed in our 
study may also act a vital contributor to anxiety problems level in 
healthy young adults.

This study has some noteworthy strengths. It is a large sample size 
study to adopt machine learning-based models for the prediction of 
anxiety problems level using multiple sMRI indictors. The most vital 
brain regions observed by the ENR models were aided by traditional 
LME models. In addition, the findings of our study were consistent with 
previous research on neuroanatomical associations with anxiety, 
providing reliable evidence for the generalizability of our findings. 
However, there were still several limitations in this study. First, the 
causality of the observed relationships in this study can’t be made due to 
its cross-sectional design. Future research should be conducted using 
longitudinal design. Second, only sMRI data was used in this study. 
Functional MRI data can be adopted in the future to further test the 
validity of the machine learning-based models with CV. Third, only 
machine learning-based ENR model analysis was conducted in this 

study. Future research can try to explore additional models, such as 
support vector machines and Gaussian process regression model.

5. Conclusions

To sum up, adopting machine learning-based ENR models with CV, 
neuroanatomical profiles of anxiety problems level were observed. The 
profiles including hub brain cortical regions enrolled in FPN and DMN. 
These findings shed light on understanding the neuroanatomical profiles 
of anxiety with machine learning approaches. These findings illuminate 
the structural neural correlates of anxiety problems level which were 
involved in anxiety circuit.

CRediT authorship contribution statement

Hui Xu: Writing – review & editing, Writing – original draft, Vali-
dation, Supervision, Software, Resources, Methodology, Funding 
acquisition, Formal analysis, Data curation, Conceptualization. Jing Xu: 
Writing – review & editing, Writing – original draft, Methodology, 
Investigation, Funding acquisition, Formal analysis. Dandong Li: 
Writing – review & editing, Writing – original draft, Visualization, 
Validation, Supervision, Software, Project administration, Methodology, 
Investigation, Funding acquisition, Formal analysis, Data curation, 
Conceptualization.

Fig. 4. Brain map for brain regions identified in both elastic net regression Model 1 and Model 3 (A), were also significantly associated with anxiety problems in 
linear mixed effects models (B). Red indicates cortical surface area (CSA) of cortical region, blue indicates cortical thickness (CT) of cortical region, and yellow 
indicates both CSA and CT of cortical region.

H. Xu et al.                                                                                                                                                                                                                                       Neurobiology of Stress 34 (2025) 100705 

6 



Ethics approval and consent to participate

This study was approved and consented by the Ethics Committee of 
the Second Affiliated Hospital and Yuying Children’s Hospital of 
Wenzhou Medical University. All participants provided written 
informed consent. All procedures were in accordance with the ethical 
standards of the responsible committee on human experimentation and 
with the Helsinki Declaration.

Consent for publication

Not applicable.

Data and code availability statement

All data were provided by the Human Connectome Project, WU-Minn 
Consortium (Principal Investigators: David Van Essen and Kamil Ugur-
bil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that 
support the NIH Blueprint for Neuroscience Research; and by the 
McDonnell Center for Systems Neuroscience at Washington University 
in St. Louis. The authors are grateful to the Human Connectome Project 
for open access to its data. The code that supports the analyses of this 
study is available on request from the corresponding authors.

Funding

This study was funded by the Natural Science Foundation of Zhejiang 
Province (No. QN25H090010, and No. LTGY23H180011), Medical 
Health Science and Technology Project of Zhejiang Provincial Health 
Commission (No. 2023KY91), and the Special Foundation for Young 
Scientists of Wenzhou Medical University (Grant No. QTJ23027).

Declaration of competing interest

The authors report no biomedical financial interests or potential 
conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ynstr.2024.100705.

References

Achenbach, T.M., Rescorla, L., 2003. Manual for the ASEBA Adult Forms & Profiles. 
Burlington, VT: University of Vermont, Research Center for Children, Youth ….

Achenbach, T.M., Bernstein, A., Dumenci, L., 2005. DSM-oriented scales and statistically 
based syndromes for ages 18 to 59: linking taxonomic paradigms to facilitate 
multitaxonomic approaches. J. Pers. Assess. 84 (1), 49–63.

Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N., 2014. The default network and self- 
generated thought: component processes, dynamic control, and clinical relevance. 
Ann. N. Y. Acad. Sci. 1316, 29–52.
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