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Reconfigurable Stochastic neurons based on tin
oxide/MoS, hetero-memristors for simulated
annealing and the Boltzmann machine
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Neuromorphic hardware implementation of Boltzmann Machine using a network of sto-
chastic neurons can allow non-deterministic polynomial-time (NP) hard combinatorial opti-
mization problems to be efficiently solved. Efficient implementation of such Boltzmann
Machine with simulated annealing desires the statistical parameters of the stochastic neu-
rons to be dynamically tunable, however, there has been limited research on stochastic
semiconductor devices with controllable statistical distributions. Here, we demonstrate a
reconfigurable tin oxide (SnO,)/molybdenum disulfide (MoS,) heterogeneous memristive
device that can realize tunable stochastic dynamics in its output sampling characteristics. The
device can sample exponential-class sigmoidal distributions analogous to the Fermi-Dirac
distribution of physical systems with quantitatively defined tunable “temperature” effect. A
BM composed of these tunable stochastic neuron devices, which can enable simulated
annealing with designed “cooling” strategies, is conducted to solve the MAX-SAT, a repre-
sentative in NP-hard combinatorial optimization problems. Quantitative insights into the
effect of different “cooling” strategies on improving the BM optimization process efficiency
are also provided.
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tochastic neuron devices are essential for the neural net-

work implementation of key emerging non-von-Neumann

computing concepts such as the Boltzmann machines,
which are recurrent artificial neural networks with stochastic
features analogous to the thermodynamics of real-world physical
systems. BM can be used to solve a broad range of combinatorial
optimization problems'? with applications in classification?,
pattern recognition?, feature learning, and other emerging com-
puting systems. Deriving its name from the Boltzmann dis-
tribution of statistical mechanics, BM possesses an artificial
notion of “temperature”, and the controlled evolution of this
“temperature” parameter during the optimization process>?, i.e.,
the “cooling” strategy, can impact the convergence efficiency of
the BM and its chance of reaching a better cost-energy mini-
mization (or maximization depending on problem definition). To
realize the hardware implementation of the BM that can also
allow the “temperature” control and hence the precise execution
of desired “cooling” strategy, it is essential to have electronic
devices that can generate exponential-class stochastic sampling
with dynamically tunable distribution parameters.

The property of memristor in its deterministic form has been
commonly used in applications such as multiply-and-accumulate
matrix calculation’ and resistor-logic demultiplexers®-10. Its sto-
chastic property is often intentionally suppressed!!-13 in such
applications for the purpose of achieving accurate and reproducible
computational results!»1>. On the other hand, rich stochastic
property of memristors, which relies on ensembles of random
movements of atoms and ions, offers opportunities in energy-
efficient computing applications!®-20, With the stochastic property,
one can generate random number?! to encrypt information,
implement physical unclonable functions??, and realize artificial
neurons?3 with integrate-and-fire activations. Furthermore, emer-
ging computing schemes can use stochastic memristive device as a
building block to emulate biological neural network?42°, whose

a b

functions—such as decision-making—can leverage the stochastic
dynamics of neurons and synapses. However, a common challenge
with previous stochastic memristors is the lack of means to precisely
control and modulate the probability distribution that is associated
with its randomness. Realizing such devices has been difficult
because many device-generated random features in stochastic
memristors or oscillators lack stable probability distribution, which
limits the chance of controlling it experimentally!®26-27, Addition-
ally, with only two terminals in a common memristor, where the
probability distribution can only be influenced through the two-
terminal bias, the probability distribution of the device output
cannot be tuned flexibly and precisely.

In this work, we overcome such challenge with a three-terminal
stochastic hetero-memristor based on tin oxide/MoS, hetero-
structure, which demonstrates tunable statistical distributions
enabled by the gate modulation. The inherent exponential-class
stochastic characteristics of the device arising from the intrinsic
randomness and energy distribution in its ionic motions are
explored to realize sampling of exponential-class sigmoidal dis-
tributions that resembles the Fermi-Dirac distribution in physical
systems. The device incorporates gate modulation that allows the
efficient control of the stochastic features in the device output
characteristics. The device enables the realization of reconfigur-
able stochastic neuron and the implementation of Boltzmann
machine in which the reconfigurable statistic of the device allows
different “cooling” strategies to be implemented during the
optimization process. The effect of different “cooling” strategies
on improving the optimization process efficiency of the BM is
demonstrated experimentally.

Results
Figure la shows the schematic of this reconfigurable hetero-
memristor, where tin oxide serves as filament-switching layer and
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Fig. 1 Device structure and electrical characteristics. a Schematic of the heteromemristive device. b The HR-STEM image of the fabricated device cross
section. The scale bar is 5nm. ¢ EDX scan indicates the elemental composition. d Raman spectra for the SnSe sample before and after oxidation. The
missing-signature modes after oxidation indicate the full oxidation and amorphization of the SnSe sample. e Unipolar electrical switching characteristics of
the device at V=0 V. The set and reset voltages in positive scan are 3.2V and 2.8 V, and in negative scan are —3.4V and —3 V. f Modulation of the set
voltage by the gate bias. When V, decreases from 30V to —20V, the set voltage increases.
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is sandwiched between a MoS, layer and Cr/Au top electrodes
(TE). The Si substrate serves as a modulating gate bias (V) that
can influence the filament-formation dynamics in the tin oxide
layer. The high-resolution scanning transmission electron
microscopy (HR-STEM) image in Fig. 1b shows the cross section
of the fabricated device and reveals that the tin oxide layer is
amorphous. An energy-dispersive X-ray spectroscopy (EDX) scan
in Fig. 1c indicates the elemental composition. Figure 1d plots the
Raman spectra for the SnSe sample before and after oxidation,
which leads to the formation of the SnOy layer. All signature
modes of SnSe, including the shear mode A!, the in-the-plane
modes A, and B, and the out-of-plane mode A,> that are
observed before oxidation, and are not detected after oxidation,
indicating the full oxidation and amorphization of the SnSe
sample?8, The tin oxide film can also be synthesized using
atomic-layer deposition (ALD)?-31, which produces films of
similar quality as the direct oxidation method.

Unipolar electrical switching characteristics of the device at
Vg =0V are shown in Fig. le. It sets and resets at around 3.2V
and 2.8V respectively in the positive bias, and at —3.4V and
—3V, respectively, in the negative bias>2. Both the Joule heating
and the electric-field driven effect can be playing roles in the
device operation. The filament-formation operation can be due to
a breakdown-like process with random creation of voltage-stress-
induced vacancy or defect sites, which is electric-field driven. The
Joule heating can be the main effect in filament rupturing. The
insertion of the MoS; layer in the device made it possible to adjust
the electron energy level in MoS, by externally modulating the
gate bias V,, which can modulate both the contact-energy barrier
between the MoS, and SnO,, and the conductivity of the MoS,
sheet itself (see supplementary information section 4). Hence, as
shown in Fig. 1f, as the gate bias decreases from 30V to —20V,
the electrostatic doping in MoS, and the associated energy level
decreases, leading to the reduction in the series conductivity and
hence the gradual increase in the set voltage.

The filament-formation process is stochastic due to the
inherent random motion of oxygen ions. To extract this sto-
chastic property quantitatively, a statistical study is carried out on
the set process. As shown in Fig. 2, the device is initially reset to
the high-resistance state and a bias Vg is applied to the device for
up to 2s. During each set process, it takes a certain amount of
time ¢ (£ < 2s) after the bias voltage is applied for the device to be
set. This required bias time until set is stochastic in each trial.
Furthermore, there is certain chance that the device may still
remain in the high-resistance state after 2 s. Figure 2a plots the
device current characteristics as a function of time when this reset
and set process was repeated for 30 times at Vg =6V, 5V, 4V,
and 3V, respectively, with V; fixed at 0V. At Viy =6V, the
device is successfully set within the first 2 s for all the 30 trials. At
Vrg=5V, 4V, and 3V, the device failed to set within the first 2's
in certain cases. Figure 2b shows the histogram probability dis-
tribution extracted from 30 trials of the time required, until the
device becomes set. If we consider ¢ as a random variable, the
probability that the set will occur within an infinitesimal interval
At at time t can be described by an exponential-class
distribution®® function P = £!. ¢* with the wait time ¢ follow-
ing a Poisson distribution (see supplementary information sec-
tion 6) and it fits the experimental data well (red lines, Fig. 2b).
This experimental observation resembling Poisson random wait
time underlying the filament-formation process in the tin oxide
memristive device is indicative of its exponential-class stochastic
nature.

Moreover, Fig. 2c¢ plots Py s as a function of Vrg— Vg
under different gate voltages, which shows exponential-class
sigmoidal distribution function. Here, Pg,.,s is the probability

that the device will successfully set within 2 s and Vg is the 50%
probability bias-voltage point, ie., Pgsens (Vg = Vrgo) =0.5.
With the gate voltage fixed, the chance of the device being set
within t<2s becomes higher with increasing Vrg, following a
sigmoidal distribution. It shows that Vg can tune the stochastic
property of the set event in the device when Vj is fixed. Micro-
scopically, the Vg tunes the filament-formation process by
modulating the vacancy-hopping barrier height and thus the ion-
hopping rate. Thus, the device is understandably easier to set at
high Vg than low Vyg. Under different gate voltages, Py cns
shows a sharper 0-to-1 transition when V, is 30 V and a wider
spread in its 0-to-1 transition when the V, decreases. Here V,
tunes the Fermi level and charge density in the MoS, layer, which
modulates the potential distribution between MoS, and tin oxide
layer under Vg bias. Vg is more effective in modulating the
device when Vy is higher, i.e. the MoS, layer has a higher elec-
tron carrier density and higher conductivity, and thus leads to a
sharper 0-to-1 transition in the sigmoidal distribution curve.

The set process is achieved by the filament formation through
stochastic vacancy generation and hopping-transport processes.
Applying a voltage can reduce the generation and hopping-barrier
height and exponentially enhance the generation and hopping rates.
Analytically, the set probability, Py, can be derived as
Pyroas=1— e P rhere o and B are parameters related to
the material and device structure (see supplementary information
section 7). After further approximation, Py, ., can be simplified to a
distribution function that resembles the Fermi-Dirac distribution
(see supplementary information section 8):

1

s, 1<2s ~ _
1 + exp (_ L/TET :TEO) (1)

where T is an effective “temperature” term that can be tuned by
the gate bias. This expression fits very well with the experimental
data in Fig. 2c. The above analytical description is also in agreement
with kinetic Monte Carlo simulations, which describes microscopic
stochastic process of vacancy generation, hopping, and recombina-
tion in filament formation3*. T corresponding to various gate
voltages is extracted from the fitting and Fig. 2d plots T versus gate
voltage V. A behavioral model is developed to understand the
dependence of the T.; on the gate-bias voltage. The device is
modeled as a memristor in serial combination with a MoS, layer
whose resistance (both the sheet resistance and its contact property
with the memristive filament) can be modulated by the gate electric
field As a result, T. can be  expressed as

T (Vg> = Ty, [1 + (ngivT)} , where T, and Z are constants, Vr

P

is the threshold voltage (see supplementary information section 9).
As shown in Fig. 2d, this model fits well with the experimental data
and describes the modulation effect of Tes by V.. We would like to
note that the value of T.¢ has the unit of volt. However, to avoid
confusion with the actual electrical bias voltages applied on the
device, the unit of T will be omitted in the subsequent discussions.
The above discussed stochastic process of the filament formation
together with the gate voltage-dependent “temperature” effect can be
used to construct exponential-class distribution sampling that has
broad applications in statistical modeling and computing, with the
Boltzmann machine as a typical example.

To demonstrate the unique advantages of these tunable
exponential-class stochastic heteromemristors in computing
application, a version of Boltzmann machine that contains a
network of stochastic neurons is implemented. The stochastic
neurons may fire in response to the input signals and thus drive
the searching dynamics of the BM. The BM iterates all possible
solutions to search for the best solution by minimizing the
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Fig. 2 Sampling of exponential-class sigmoidal distribution. a The set process under different V1¢. The initial state is reset to high-resistance state and a
bias V¢ is applied to the device for 2 s. b The experimentally extracted probability distribution of the bias time until set occurrence for Vqg =3V, 4V, 5V,
and 6V, respectively. € Psst<2s as a function of the V¢ under different gate voltages, showing exponential-class sigmoidal distribution function.

Experimental results are shown as data symbols, and the analytical model fit is shown in lines. d Experimental results (dots) and model fit (line) showing

the relation between T and the gate bias V.

system-energy function. Hardware implementations3%37 of such
BM are challenging with conventional transistors and would
require a large number of devices and complex circuitry. Here we
build a BM where each of the stochastic neuron is based on a
single tin oxide/MoS, hetero-memristor as stochastic switching
and simple peripheral circuitry (more details in Methods: BM
construction). This implemented BM is used to solve a maximum
satisfiability problem (MAX-SAT), which is an NP-hard combi-
natorial optimization problem underlying a wide range of key
applications, including Max-Clique38, correlation clustering®’,

treewidth computation?), Bayesian network structure learning!,

and argumentation dynamics*2.

Given a set of Boolean clauses, where each clause is a dis-
junction of Boolean variables and their negations, the MAX-SAT
problem*? aims to maximize the number of clauses that can be
true when truth values are assigned to the Boolean variables.
Without the loss of generality, the set of Boolean clauses to be
solved in this work are selected to be {Cili = 1,2, ... ,5}, where
the clause Cl is (xVvyvz); C2 is (¥ Vvyvz); C3 is
(X vy vz); C4is (x vy vZ) and C5is (x' VyVZ) (shown
in Fig. 3a, the Boolean variable x" is the negation of the Boolean
variable x). The optimization task here is to find a state vector
X = (xl, e ,x6) =(x,y,2,x',y',2') that can maximize the
number of clauses to be true. A MAX-SAT can be converted
equivalently to a problem that is solvable for the BM4445. Six
stochastic units are used in the BM to realize the activation for
each Boolean variable in the state vector X = (x,,---,xs). Then
we build a weight matrix W. The weight w;; that is between every

two Boolean variables is assigned based on the MAX-SAT pro-
blem. Solving the MAX-SAT is equivalent to minimizing the total
energy E = X'WX of the BM, where X" is the transverse of X.

The constructed BM utilizing the tin oxide/MoS, hetero-
memristors is shown in Fig. 3b and the schematic of the circuit
blocks with six stochastic neurons is shown in Fig. 3c. In each
iteration step, if the hetero-memristor sets, the Boolean value of x;
would be flipped. If the heteromemristor does not set, the sto-
chastic neuron would not fire and x; remains the same. The
stochastic neurons are sequentially updated until the BM reaches
the optimal solution. In Fig. 3d, we experimentally demonstrated
the evolution of the state vector and total energy when the BM
started from three different initial states and found the same
optimal solution, which is X = (x,y,z,x',y,2') = (0,1,1,1,0,0).

As previously shown in Fig. 2d, V, can tune the tin oxide/MoS,
heteromemristor to have different T, during the BM optimiza-
tion process. Teg of the BM describes the average behaviors of all
the stochastic units, in close analogy to the temperature para-
meter in the Boltzmann distribution that describes the average
behavior of particles under different thermal equilibrium states in
physical systems. Thus, by controlling T.g in the optimization
process that can be achieved via tuning the V,, it is possible to
avoid premature convergence issues and facilitate the con-
vergence efficiency associated with the BM. Figure 3e shows the
effect of different V, bias on the BM optimization process. During
these three different runs of the BM, all the tin oxide/MoS, sto-
chastic hetero-memristors are biased at Vy=—20 V, 0V, and
20V, respectively. The energy evolved differently during these
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Fig. 3 Boltzmann machine implementation using tin oxide/MoS, heteromemristor. a Flow chart showing the steps in mapping a MAX-SAT problem to
an equivalent form solvable using the Boltzmann machine. b The PCB evaluation board of BM-integrated system, including the packaged tin oxide/MoS,
memristive units and CMQOS peripheral circuits. ¢ Schematic of the BM circuit blocks with six tin oxide/MoS, heteromemristors as the artificial neurons.
d The experimentally obtained evolution of state vector and total energy when the BM was started from three different initial states, resulting in the same
optimal solution. e Experimentally obtained energy evolution in the BM optimization process with V,=—20V, 0V, and 20V, respectively. f The success

rate of the BM optimization process under different V.

runs each time. The BM is at Tog=7 when V;=20V and con-
verges easily for this particular problem. On the other hand, the
BM is at Ter=50 when V,=-20V and is less efficient in
reaching convergence. For V, =0V, the BM is at Teg= 10 and
converges at an intermediate rate among the three cases. By
counting how many times the BM can reach the global optimal
solution out of 50 trial runs, the success rate as a function of V,
and T is statistically obtained as shown in Fig. 3f. It indicates
that the V, and hence the T can substantially affect the per-
formance of the BM.

Simulated annealing*®*’ can be implemented with our BM
where the T can gradually change during the optimization
process to emulate different “cooling” strategy. It is an important
approach for efficiently reaching better optimization solutions
and for avoiding the premature convergence. Using the gate-
tunable tin oxide/MoS, device, such “cooling” procedures can be
quantitatively implemented during the simulated annealing by
translating the designated sequential evolution of T.y into the
corresponding series of gate voltage bias conditions following the
relation in Fig. 2d. To study the effect of different “cooling”
strategies on the efficiency of the BM, four different T variation
strategies were experimentally applied on the BM. Strategy 1: high
T in the first three iteration steps followed by low T for the
remaining iterations in one optimization process (HT to LT),
Strategy 2: low T in the first three iterations followed by high
T for the remaining iterations (LT to HT), Strategy 3:

maintaining a low T in the entire optimization process (LT),
and Strategy 4: maintaining a high T in the entire optimization
process (HT). Figure 4a shows the qualitative schematic about
how system energy (color dots) would evolve in the process of
searching optimal solutions among multiple possible energy
minimums (gray line). To analyze the effect of these “cooling”
strategies, typical evolutions of the energy (cost function) during
the BM optimization process for the four different strategies were
experimentally obtained. As shown in Fig. 4b, using the HT
strategy (T.g=50), the BM is highly active but loses the selec-
tivity for reaching proper convergence. Using the LT strategy
(Tegr=5), the BM is significantly less active but possesses higher
selectivity that facilitates its convergence to a premature state.
Finally, simulated annealing using a “cooling” strategy (HT to
LT) enables active initial searches at HT (T.s=50) and then
steady convergence to the minimum energy state at LT (Tg=15)
as shown in the experimental results. Furthermore, Figs. 4c and
4d show the experimentally obtained statistics of success rate in
finding the global optimal solution when the different “cooling”
strategies are used. Different initial values for the state vectors are
used in Figs. 4c and 4d to show the effect from the different initial
conditions. Both figures indicate that the HT to LT strategy has
the highest success rate for reaching the global optimal solution
for this particular problem, while the HT strategy has the lowest
success rate. The results are consistent with the simulated per-
formance of the BM (see supplementary information section 10).
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To quantitatively understand why T.g can make such a sig-
nificant difference in the BM optimization process, we analyze the
Russel-Rao (RR) similarity*® between all the clauses for this
particular MAX-SAT problem. It is because, as illustrated in
Fig. 5a, all the five clauses C1-C5 bear inherent similarity to each
other due to the following two constraints: the variable constraint
and the clause constraint. On the variable side, a Boolean variable
and its negation (two variables connected by red lines) are always
logically opposite. For example, x and x” will always have opposite
values. On the clause side, the chance of two clauses both being
true is lower if they contain more complementary Boolean vari-
ables in each clause. By assigning true values to the variables x,
y'and z'(yellow circle), the number of complementary variables
(blue circle) between clauses could be easily observed. Counting
the number of complementary variables can directly reflect the
inner connection and constraint of the clauses. In Fig. 5a, for
example, if the clause C4: (x V' v 2) is true, then the prob-
ability that the clause C2: (x' vy V z) also being true is much
smaller than the other three clauses since C4 and C2 contain
three pairs of complementary variables.

With the BM set to different T.g the RR similarity matrix
among the five clauses based on the experimental data is con-
structed in Figs. 5b, 5¢ and 5d. The color and number in each cell
quantify the similarity between each pair of clauses indexed by
the row and column. It represents the probability when both
clauses are true among all cases. For example, a RR similarity of
0.84 between C1 and C2 in Fig. 5b means that by repeatedly
running the BM 50 times at T;= 50, we had C1 and C2, both
being true by the end of 42 (out of 50) runs.

The effect of Teg can be explained as follows. We view the RR
similarity as the distance measurement of the statistical rela-
tionship between each of the two clauses (distance=1 — RR

coefficient) in solution space?’. In other words, clauses with RR
similarity close to 1 are seen as closely clustered, while the clauses
with RR similarity close to 0 are furthermost separated. When T
is tuned to 50 (Fig. 5b), all the clauses have similar distances in
the solution space, since they show close RR similarity between all
pairs. As a consequence, BM tends to search widely in the solu-
tion space with a high robustness, high stochasticity, and low
selectivity, since choosing any solution would look the same to
the BM. When T is 20 (Fig. 5¢), clauses with small distances are
closely clustered, giving high RR similarity close to unity for pairs
of clauses that can be easily satisfied simultaneously, such as C1
and C2, and a low RR similarity for pairs of clauses that can
hardly be satisfied at the same time, such as C1 and C4. At this
Tegr = 20, the BM gains more selectivity in solution space. When
the Teg is 5 (Fig. 5d), all the clauses are either strongly clustered
or separated in distance, with distinct either 1 or 0 RR similarity.
BM behaves more like a deterministic “machine”. This tends to
cause premature convergence as the BM is significantly less
active.

Next, a simulated annealing process in the BM with linear
cooling is simulated in Fig. 5e. The evolution of the RR similarity
matrix indicates that the BM would evolve through all the cases
that are discussed above from being fully stochastic toward nearly
deterministic as Ty decreases linearly. Thus, the simulated
annealing process of a BM could be understood as such: at high
Tetr, the BM searches solution space globally with high robustness
and low selectivity, for the sake of large gradient descent; as the
BM cools down, it gains selectivity toward some solutions and can
possibly jump out of local minima since T still provides enough
perturbation; as the BM cools down to the limit, the BM exhibits
a stronger selectivity than robustness, preventing itself from
jumping out of the optimal zone. Hence, more efficient
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Fig. 5 Russel-Rao similarity matrix underlying the clauses employing different “cooling” strategy in a MAX-SAT problem. a Schematic shows that the
five clauses in MAX-SAT problem are correlated with each other, which is imposed by variable constraint and clause constraint. For illustration, the yellow-
circled variables are assigned true values, thus making the blue-circled variables false. b ¢ d Russel-Rao similarity matrix between the five clauses when BM
runs the optimization process under T =50, 20, and 5, respectively. @ The evolution of the Russel-Rao similarity matrix in a BM optimization process

when T is decreased linearly with each iteration step.

performance in the BM can be achieved with an appropriate
“cooling” strategy.

In summary, tunable stochastic behavior is demonstrated in
the tin oxide/MoS, heteromemristor, showing inherent
exponential-class statistical characteristics. The device can sample
exponential-class  sigmoidal ~ distributions resembling the
Fermi-Dirac distribution in physical systems with tunable dis-
tribution parameters to emulate the “temperature” effects.
Simulated annealing with control of the “cooling” strategies is
demonstrated in the implemented Boltzmann machine for sol-
ving combinatorial optimization with respect to a MAX-SAT
problem. These stochastic neurons based on tin oxide/MoS,
heteromemristors with reconfigurable statistical behavior pave
the way for implementing selected “cooling” strategies in BM to
reach optimal convergence efficiency and can find broad appli-
cations in energy-efficient computing for learning, clustering, and
classification.

Methods

Device fabrication. A thin MoS, layer is first deposited on a Si wafer with a 285-
nm thermally grown SiO, layer on top. The sample is then treated in an Ar/H,-
mixed gas environment at 350 °C to clean the MoS, surface. Subsequently, a thin
tin oxide layer oxidized from SnSe is deposited on MoS, and serves as filament-
switching layer. Electron beam lithography is then used to transfer the patterns
followed by the evaporation of a 10-nm/40-nm Cr/Au metal stack, which forms the
top electrode.

STEM and EDX. A FEI Titan Themis G2 system was used to prepare the HRSTEM
images with four detectors and spherical aberration. To observe the cross-section
image, the sample was pretreated by depositing chromium and carbon-capping
layers, then thinned by a focused-ion beam (FIB, FEI Helios 450 S) with an
acceleration voltage of 30 kV. The HRSTEM image was acquired with an accel-
eration voltage of 200 kV. EDX signals were collected to identify the elemental
component in the cross section, which was integrated within the STEM system.

Raman spectroscopy. A Renishaw inVia Qontor system was used to measure the
Raman spectra, which was installed with a x100 objective lens, a grating (1800
grooves mm~!), and a charge-coupled device camera. The wavelength of the

excitation laser was 532 nm (from a solid laser). The Raman spectra resolution is
1.2cm~! per pixel.

BM construction. The implemented BM prototype contains 24 5-bit digital-to-
analog converters (DAC). The digital pattern generation interface (DPGI) and
training data acquisition interface (TDAI) are controlled by a Xilinx ML605 FPGA
board that carries out information storage and computations. It formed a feedback
loop to adjust both input and output patterns at each BM iteration. Depending on
different input signals, the BM system adjusts the corresponding output training
data accordingly. The BM prototype has six stochastic units, with each unit con-
taining a tin oxide/MoS, heteromemristor that has approximately sigmoidal
switching probability upon applied voltages and peripheral circuitry. The periph-
eral circuitry is consisting of 4 DACs (digital-to-analog converter) to read digital
voltage values and apply to heteromemristor, a dynamic comparator for generating
discrete-state readout and output-level shifters.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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