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An intelligent cardiovascular disease (CVD) diagnosis systemusing hemodynamic parameters (HDPs) derived from sphygmogram
(SPG) signal is presented to support the emerging patient-centric healthcare models. To replicate clinical approach of diagnosis
through a staged decision process, the Bayesian inference nets (BIN) are adapted. New approaches to construct a hierarchical
multistage BIN using defined function formulas and a method employing fuzzy logic (FL) technology to quantify inference nodes
with dynamic values of statistical parameters are proposed. The suggested methodology is validated by constructing hierarchical
Bayesian fuzzy inference nets (HBFIN) to diagnose various heart pathologies from the deduced HDPs.The preliminary diagnostic
results show that the proposed methodology has salient validity and effectiveness in the diagnosis of cardiovascular disease.

1. Introduction

Cardiovascular diseases (CVD) are known as the silent
killers and often they may develop over time without being
noticed until a critical stage is reached. Early diagnosis,
care, and continuous monitoring are crucial in preventing
heart failures. Thus, exploiting the benefit of multiple tech-
nological advancements, research over the past decade has
focused on the development of various intelligent tools, to
support healthcare professionals and promote CVD self-
monitoring. In the same vein, our research team has also
been devoted to the research and development (R&D) of
e-home healthcare system for CVD self-monitoring [1–5].
One of our key developments is the hemodynamic analysis
of sphygmogram (SPG) signal [3], which derives 32 critical
vital signs/hemodynamic parameters (HDPs). These HDPs
such as cardiac output (CO), stroke volume (SV), systematic
arterial compliance (SAC), total peripheral resistance (TPR),
and so forth can serve as indices to monitor the health status
of cardiovascular system [3, 6, 7].

Though the benefits of SPG and hemodynamic anal-
ysis have been well documented [8–11], we believe that
an intelligent CVD diagnosis system based on the derived
HDPs would benefit e-home healthcare. In this paper, we

propose to apply artificial intelligence (AI) technology to
develop such an intelligent CVD diagnosis system. Literature
review shows that among various AI technologies, expert
system (ES), in particular Bayesian inference nets (BIN), has
emerged as one of the most successful intelligent tools in
various applications [12–14]. Especially, BIN with its ability
to execute staged decision process and provide reasoned
conclusions has established a long track record in medical
informatics [15–19], leading to the development of various
clinical decision support systems (CDSS) [20–24]. To support
a doctor’s approach of diagnosis with staged decision process,
a BIN is adopted in this paper in order to design an intelligent
CVD diagnosis system based on HDPs.

However, difficulty arises in constructing the BIN and
quantifying the inference nodes to compute the inference
through the nets and solve uncertainties. Many renowned
researchers including Pearl [25], Chickering [26],Heckerman
[27], Friedman andKoller [28], and so forth have contributed
towards addressing such bottleneck problem. Some of the key
contributions in this regard are worth mentioning.

In constructing a BIN, researchers first developed algo-
rithms that learn the parameters from a large data set to
optimally construct the graphical model. These were gen-
erally referred to as the learning models and were further
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distinguished into search and score based methods [26, 29]
and conditional dependence analysis methods [30]. In such
methods, although both the graphical topology and the joint
probability distribution could be learnt and defined from the
data set, there weremany shortcomings as implementation of
such approach required large amount of qualified data.

The alternative to the data-driven approach was the man-
ual construction of BIN through knowledge acquisition from
domain experts using various knowledge elicitation tech-
niques [31]. Though, initially, it was the preferred approach
for developing CDSS, it also suffered subsequently from
various challenges. It became challenging to systematically
analyze the acquired knowledge to construct a hierarchical
multistage BIN. Moreover, parameter estimation by dif-
ferent experts faced cognitive biases, often leading to ad
hoc estimation of a large number of statistical parameters
(e.g., prior probabilities, likelihoods, etc.). Moreover, manual
construction required the prior specification of graphical
structure between domain variables.

To overcome the critical challenges, some unique benefits
from data-driven and knowledge elicitation techniques are
availed in this paper and a new approach to construct
hierarchical multistage BIN and quantify the inference nodes
is proposed. Function formulas in first order predicate logic
form are derived to guide in constructing the hierarchical
multistage BIN. Further, the FL technology is used to quan-
tify dynamic statistical parameters to inference nodes. The
proposed methodology is then applied to construct hierar-
chical multistage Bayesian fuzzy inference nets (HBFIN) to
diagnose various heart pathologies based on HDPs. HBFIN
is finally validated using site-measuredmedical data acquired
from two hospitals in China.

2. Hemodynamic Parameters

HDPs derived from hemodynamic analysis of SPG signal
can serve as powerful indices for prognosis of CVDs. There
are various approaches to hemodynamic analysis [32, 33].
In this paper, hemodynamic analysis is computed based on
elastic cavity theory [3], in which the point and area based
morphological features of SPG signal as shown in Figure 1
are used to deduce 32 HDPs. The following will show the
derivation of some of the important HDPs.

Blood flow continuous equation is

𝑄in = 𝑄out +
𝑑𝑉

𝑑𝑡
1

, (1)

𝑄out +
𝑑𝑉

𝑑𝑡
2

= 0, (2)

where 𝑄in is the volume of blood flowing into the artery and
𝑄out is the volume of blood flowing into the vein. 𝑡

1
and 𝑡
2
are

the systolic and diastolic time period, respectively.
Relation between pressure and blood flow is

𝑄out =
𝑝 − 𝑝V

𝑅
, (3)

where 𝑝 is the arterial pressure, 𝑝V is the venous pressure, and
𝑅 is the peripheral resistance of cardiovascular system.
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Figure 1: Point and area based morphological features of a typical
SPG signal.

Arterial pressure-volume equation is

AC =
𝑑𝑉

𝑑𝑝
, (4)

where AC is the arterial compliance.
Now, with (1)∼(4), the analytic equation of elastic cavity

can be computed as follows:

𝑄in = AC
𝑑𝑝

𝑑𝑡
1

+
𝑝 − 𝑝V

𝑅
, (5)

AC
𝑑𝑝

𝑑𝑡
2

+
𝑝 − 𝑝V

𝑅
= 0. (6)

Computing the integral of (5) and (6),

SV = AC (𝑃
∗

𝑠
− 𝑃
𝑑
) +

𝐴
𝑠

𝑅
,

AC (𝑃
𝑑
− 𝑃
∗

𝑠
) +

𝐴
𝑑

𝑅
= 0,

(7)

where SV is the stroke volume and the parameters 𝐴
𝑠
,

𝐴
𝑑
, 𝑃∗
𝑠
, and 𝑃

𝑑
are the morphological features obtained from

SPG as in Figure 1. Thus, the HDPs-SV, AC, 𝑅, and so forth
can be computed with following equations.

Auxiliary blood pressure index is

𝑘 =
∫
𝑇

0
𝑃𝑑𝑡

𝑇 (𝑃
𝑠
− 𝑃
𝑑
)
=

𝑃 − 𝑃
𝑑

𝑃
𝑠
− 𝑃
𝑑

. (8)

Stroke volume is

SV =
0.28

𝑘2
𝑇 (𝑃
𝑠
− 𝑃
𝑑
) . (9)

Auxiliary sphygmogram index is

𝜂 =
𝐴
𝑠
+ 𝐴
𝑑

𝐴
𝑑

= 1 +
𝐴
𝑑

𝐴
𝑑

. (10)
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Arterial compliance is

AC =
SV

𝜂 (𝑃
𝑠
− 𝑃
𝑑
)
. (11)

Peripheral resistance is

𝑅 =
𝑃 − 𝑃V

SV
⋅ 𝑇 ≈

𝑃

SV
⋅ 𝑇. (12)

Similarly, with morphological features and deduced
HDPs, various other HDPs can be generated.

3. Define Function Formulas and
Statistical Parameters

3.1. Medical Data Acquisition. The site-measured medical
data consists of medical records of different samples, includ-
ing each patient’s physiological attributes, original SPGwave-
forms, HDPs, and doctor’s clinical diagnostic results. Here,
the medical symptom space is denoted by MSS ∈ 𝑅

𝑁, where
𝑁 = 38, including 6 physiological attributes and 32 HDPs.
Totally, 2267 medical records of 165 patients were acquired
from two hospitals in China and 850 healthy records were
randomly collected. Patient’s SPGwaveforms andHDPs were
measured 12 to 15 times at different time interval within 5
weeks, and their physiological attributes such as age, gender,
height, weight, and so forth were also recorded.

Moreover, a medical knowledge base was developed
by acquiring information from various medical sources to
analyze the relation between the derived HDPs and various
pathological conditions of heart. Such medical knowledge
basewas then verified by doctors from twohospitals inChina.

3.2. Define Function Formula in First Order Predicate Logic
Form. Thekey step in constructing inference nets is to define
the function formulas in first order predicate logic formusing
the developed medical knowledge base.

Following equation shows an example of such defined
function formula:

∀𝑝 ⋅ (SP
𝑎
(𝑝) ∧MDP

𝑎
(𝑝) ∧MAP

𝑎
(𝑝) ∧ DP

𝑎
(𝑝)

󳨀→ HT (𝑝)) ,
(13)

where 𝑝 represents patient. SP, MDP, MAP, and DP are the
symptoms and HT is the diagnosed hypothesis. Expansion
of acronym/abbreviation of the HDPs and CVDs used in
function formulas are presented in Figure 3. The suffix “𝑎”
represents the value of individual specific condition. The
condition values of symptoms for indicating different patho-
logical condition of heart are presented in Table 1.

Deriving from themedical knowledge base, the first order
predicate logic formulas for diagnosing various other heart
pathologies can be defined as follows:

∀𝑝 ⋅ (BV
𝑎
(𝑝) 󳨀→ Low BV (𝑝)) ,

∀𝑝 ⋅ (MAP
𝑏
(𝑝) ∧ SP

𝑏
(𝑝) ∧ Low BV (𝑝) 󳨀→ HPT (𝑝)) ,

∀𝑝 ⋅ (PR
𝑎
(𝑝) 󳨀→ TC (𝑝)) ,

∀𝑝 ⋅ (PR
𝑏
(𝑝) 󳨀→ BC (𝑝)) ,

∀𝑝 ⋅ (SV
𝑎
(𝑝) ∧ SI

𝑎
(𝑝) 󳨀→ Low BE (𝑝)) ,

∀𝑝 ⋅ (SV
𝑏
(𝑝) ∧ SI

𝑏
(𝑝) 󳨀→ High BE (𝑝)) ,

∀𝑝 ⋅ (VPE
𝑎
(𝑝) ∧ CI

𝑎
(𝑝) 󳨀→ Low CPP (𝑝)) ,

∀𝑝 ⋅ (VPE
𝑏
(𝑝) 󳨀→ High CPP (𝑝)) ,

∀𝑝 ⋅ (𝑌
𝑎
(𝑝) ∧ Yr

𝑎
(𝑝) 󳨀→ HV (𝑝)) ,

∀𝑝 ⋅ (𝑌
𝑏
(𝑝) ∧ Yr

𝑏
(𝑝) 󳨀→ HPV (𝑝)) ,

∀𝑝 ⋅ (AC
𝑎
(𝑝) ∧ FEK

𝑎
(𝑝) ∧Wt

𝑎
(𝑝) ∧ BLK

𝑎
(𝑝)

∧SV
𝑏
(𝑝) ∧HV (𝑝) 󳨀→ Dyn HV (𝑝)) .

(14)

The defined function formulas can then be used to guide
in constructing the hierarchical multistage inference nets to
diagnose various CVDs.

3.3. Quantification of Inference Nodes with Dynamic Statistical
Parameters. Based on the data distribution, various types of
function such as Gaussian, triangle, high-order polynomial,
𝑆-type, and so forth can be employed to define the FL
membership functions (MF). In the proposed approach,
based on the histogram obtained from the frequency plot of
observed medical records, high-order polynomial, 𝑆-type, or
quasi-Gaussian functions are adapted to define the individual
MF.

Thegeneral formula of 𝑖thMF𝑓
𝑖
(𝑠
(0)

𝑗
) versus 𝑗th symptom

in 0th stage 𝑠
(0)

𝑗
expressed in high-order polynomial, 𝑆-type,

or quasi-Gaussian functions are sequentially listed below:

𝑓
𝑖
(𝑠
(0)

𝑗
) = 𝜆
0
+ 𝜆
1
𝑠
(0)

𝑗
+ 𝜆
2
(𝑠
(0)

𝑗
)
2

+ ⋅ ⋅ ⋅ + 𝜆
𝑡
(𝑠
(0)

𝑗
)
𝑡

, (15)

where 𝑡 is the order of polynomial,𝜆
0
is randomerror or noise

component, and 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑡
are coefficients. Consider

𝑓
𝑖
(𝑠
(0)

𝑗
) =

1

1 + 𝑒
−𝑎(𝑠
(0)

𝑗
−𝑏)

, (16)

where 𝑏 is the turning point of curve and 𝑎 is the slope of
function. Consider

𝑓
𝑖
(𝑠
(0)

𝑗
) = 𝑒
−((𝑠
(0)

𝑗
−𝑎𝑖(𝑠
(0)

𝑗
))/2𝑑𝑖(𝑠

(0)

𝑗
))
2

, (17)

where 𝑎
𝑖
(𝑠
(0)

𝑗
) is the maximum membership grade and

2𝑑
𝑖
(𝑠
(0)

𝑗
) is the bandwidth of that function. Here, the word
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Table 1: Condition values of symptoms (HDPs) for indicating pathological condition of heart.

Symptoms (units) Conditions
𝑎 𝑏 𝑐

SP (mmHg) ≥160 <90 =110∼130
DP (mmHg) ≥95 =80∼90
MAP (mmHg) >115 <65 =70∼100
MDP (mmHg) >105 =66∼96
BV (L) ≤{0.75 ∗Wt ∗ 0.075} ={0.75 ∗Wt ∗ 0.075}∼{1.25 ∗Wt ∗ 0.075}
PR (mmHg) ≥104 <50 =60∼100
Wt (kg) >20 =50∼80
SV (mL/stroke) ≤{0.8 ∗ (1 + 𝑄) ∗ 20 ∗ Q} ≥{1.3 ∗ 1.2 ∗ (1 + 𝑄) ∗ 20 ∗𝑄} ≈{(1 +𝑄) ∗ 20 ∗𝑄}

SI (mL/stroke/m2) ≤0.8 ∗ (1 + 𝑄) ∗ 20 ≥{1.3 ∗ 1.2 ∗ (1 + 𝑄) ∗ 20} ≈(1 + 𝑄) ∗ 20
VPE (kg/stroke) ≤{0.8 ∗ 2 ∗ (Wt + 45) ∗ 0.0112} ≥{1.2 ∗ 2 ∗ (Wt + 45) ∗ 0.0112} ≈(2 ∗Wt + 45) ∗ 0.0112
CI (mL/stroke/m2) ≥2.2 ={(1 + 𝑄) ∗ 1.2}∼{(1 + 𝑄) ∗ 2}
Y (mpa⋅s) ≥{1.1 ∗ 4} ≤{0.85 ∗ 3} =3∼4
Yr (mpa⋅s) ≥{1.1 ∗ 4} ≤{0.85 ∗ 3} =3∼4
AC (𝜇m/mmHg) ≥1.2 ≥1.2
FEK ≥{0.9 ∗ 0.25} =0.35∼0.55
BLK <{0.85 ∗ 0.22} =0.22∼0.26
∗Wt: patient’s weight in kg.
∗
𝑄: 0.0061 ∗ 𝐿 (cm) + 0.0128 ∗Wt (kg) − 0.1592.

“quasi” is expressed to indicate that theMF plot would appear
asGaussian distribution shape, butwill not cover to the extent
of positive and negative infinity.

Based on statistical analysis of site-measured records,
the MF for each plot of pair (symptom (HDP) versus
membership grade of having specific CVD) is predefined.
This therefore fixes all the parameters of (15), (16), or (17)
for that particular MF. With an example, Figure 2 illustrates
how the MF can be defined from the statistical analysis of
site-measured records. Thus, by using such predefined MF,
whenever a new patient is tested in the constructed BIN,
the statistical parameters can be automatically computed and
assigned to relevant symptom node in the inference nets
using (15), (16), or (17). It is noteworthy that in this paper
a hold-out validation was adopted, whereby for each CVD
condition 75% of the acquired data set is used for defining
the MF, and the remaining samples are used for validating
the constructed BIN.

Now, in HBFIN, when testing data 𝑠(0)
𝑗

is recorded, it will
be substituted in (15), (16), or (17) to compute the relevant
𝑓
𝑖
(𝑠
(0)

𝑗
).Thismembership grade dynamically varies according

to the value of each symptom, and it approximately reflects
the effect of that symptom in diagnosing the CVD. With
𝑓
𝑖
(𝑠
(0)

𝑗
), dynamic values of statistical parameters are then

defined by following rules 1∼2 and assigned to the symptom
node automatically.

Rule 1. IF 𝑓
𝑖
(𝑠
(0)

𝑗
) ≥ 0.2, then 𝑃

𝑖
(𝑠
(0)

𝑗
) = 𝑓
𝑖
(𝑠
(0)

𝑗
) and LS

𝑖
(𝑠
(0)

𝑗
) =

𝛼 ∗ 𝑓
𝑖
(𝑠
(0)

𝑗
).

Rule 2. IF 𝑓
𝑖
(𝑠
(0)

𝑗
) < 0.2, then 𝑃

𝑖
(𝑠
(0)

𝑗
) = 𝑓
𝑖
(𝑠
(0)

𝑗
) and LN

𝑖
(𝑠
(0)

𝑗
) =

𝛽 ∗ 𝑓
𝑖
(𝑠
(0)

𝑗
).

The coefficients 𝛼 and 𝛽, in rules 1∼2, can be experimen-
tally assigned as zero or positive integer values.While a bigger
𝛼 would increase the probability of the hypothesis to be true
in presence of the evidence, a smaller 𝛽 would increase the
probability of the hypothesis to be false in absence of the
evidence. In this paper, the values 𝛼 = 100 and 𝛽 = 10

are experimentally chosen. Also, in order to avoid outliers, a
threshold of 0.2 is chosen.Then, the statistical parameters for
the intermediate hypothesis nodes are defined and assigned
using the principle of indifference (PoI) [34], which states
that “each member of a set of propositions could be assigned
the same probability of truth in the absence of any reason to
assign them different probabilities.”

4. Hierarchical Bayesian Fuzzy Inference Nets
to Diagnose Cardiovascular Diseases

4.1. Construction of Hierarchical Bayesian Fuzzy Inference
Nets. With the function formulas defined in (13)–(14), the
symptoms and intermediate and final hypotheses nodes
can be identified. Subsequently, the inference nodes can be
generated step-by-step and appropriately linked to construct
hierarchical multistage inference nets. Figure 3 shows the
partially constructed HBFIN to diagnose heart pathologies
based on HDPs. In order to clearly illustrate the construction
of BIN, the inference nets for healthy condition have not been
presented in Figure 3.

It is worth emphasizing here that the partially constructed
HBFIN in Figure 3 can be further developed for diagnosing
various CVDs.

4.2. Quantifying Inference Nodes of HBFIN with Statistical
Parameters. Generally, the inference nodes are quantified
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Figure 2: Generation of high-order polynomial or quasi-Gaussian membership function for symptom Age versus certain CVD.

by static values of statistical parameters using subjective
(experts’ estimation) approach. However, since confliction
exists among experts’ opinions, defining appropriate static
values of statistical parameters to inference nodes has always
been a challenge. But, with the proposed methodology using
FL technology, dynamic values of statistical parameters can
be defined and assigned to inference nodes automatically.

Here, with a specific example, by testing a patient’s medi-
cal record (partially shown in Table 2) in HBFIN to diagnose
CVD, we demonstrate how dynamic values of statistical
parameters can be defined/assigned automatically. When the
testing data is presented into the symptom nodes of HBFIN,
it will be automatically substituted in predefined (15), (16),
or (17) to calculate the relevant membership grade 𝑓

𝑖
(𝑠
(0)

𝑗
),

whichwill then be used in rules 1∼2 to define/assign statistical
parameters. Figure 3 shows the partially constructed HBFIN
with statistical parameters assigned for the sampled testing
data shown in Table 2. It is important to note that, with

this approach, the statistical parameters assigned to symptom
nodes would dynamically change according to the variation
of symptoms. The statistical parameters for the intermediate
hypothesis or conclusion nodes are defined and assigned
using the PoI. As a result, it can be noted that the intermediate
hypothesis nodes are assigned with a prior probability = 0.02,
LS = 200, and LN=0.01, respectively, inHBFIN. For inference
nodes executing conjunction and disjunction operations, the
statistical parameters would be later calculated from the
evidences contributing to these nodes according to Bayesian
theory.

5. Evaluation of Constructed Bayesian
Fuzzy Inference Nets

5.1. Mathematical Inference Model Using Bayesian Theory.
TheBayesian inference nets generally form a static knowledge
structure, in which the probability associated with each
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Figure 3: Partially constructed HBFIN for diagnosing heart pathologies with statistical parameters assigned for a sampled medical record.
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Table 2: A patient’s partial medical record.

Symptoms (units) Patient’s partial medical record
SP (mmHg) 168
DP (mmHg) 100
MAP (mmHg) 130.98
MDP (mmHg) 113.09
BV (L) 3.5212
PR (mmHg) 68
Wt (kg) 49
SV (mL/stroke) 63.81
SI (mL/stroke/m2) 45.54
VPE (kg/stroke) 2.18
CI (mL/stroke/m2) 2.7
Y (mpa⋅s) 3
Yr (mpa⋅s) 3.8
AC (𝜇m/mmHg) 0.66
FEK 0.11
BLK 0.197
∗The expansion of symptom acronym is provided in Figure 3.

inference node consequently changes when the evidence is
certain or uncertain.This change in probability is propagated
up stage by stage through the hierarchical Bayesian inference
nets to ultimately support or disprove the top-level hypothe-
sis/conclusion. In this paper, the following inference model
is used to compute the inference through the nets. In this
model, for addressing uncertainty in evidence, conditional
independence of the evidence is assumed. Therefore, for
partially knownor uncertain evidence, according to its degree
of belief, it is categorized as true or false and the inference
through the nets is computed accordingly.

(1) Prior odds of 𝑘th hypothesis on 𝑞th stage are

𝑂(ℎ
(𝑞)

𝑘
) =

𝑃 (ℎ
(𝑞)

𝑘
)

1 − 𝑃 (ℎ
(𝑞)

𝑘
)
. (18)

𝑃(ℎ
(𝑞)

𝑘
) = prior probability.

(2) Posterior odds of 𝑘th hypothesis on 𝑞th stage are

𝑂(ℎ
(𝑞)

𝑘
| 𝑥 (or) 𝑒) = [

𝑁

∏

𝑖=1

L
𝑖
]𝑂 (ℎ

(𝑞)

𝑘
) . (19)

𝑥: evidence is certain;
𝑒: evidence is uncertain;
L
𝑖
: LS
𝑖
{likelihood of sufficiency}

L
𝑖
: LN
𝑖
{likelihood of necessity}

L
𝑖
: 1 {evidence is unknown}.

(3) Posterior probability of 𝑘th hypothesis on 𝑞th stage
when the evidence is certain is

𝑃 (ℎ
(𝑞)

𝑘
| 𝑥) =

𝑂 (ℎ
(𝑞)

𝑘
| 𝑥)

1 + 𝑂 (ℎ
(𝑞)

𝑘
| 𝑥)

. (20)

Table 3: Diagnostic results of partially constructed HBFIN.

Person’s health status Number of samples Diagnostic
accuracy (%)

HT 53 78
HPT 17 82
Low BE 13 76
High BE 17 82
Low CPP 10 80
High CPP 18 83
HPV 8 87
HV 13 84
∗The expansion of symptom acronym is provided in Figure 3.

(4) Posterior probability of 𝑘th hypothesis on 𝑞th stage
when the evidence is uncertain is as follows:
If 0 ≤ 𝑃(𝑥 | 𝑒) < 𝑃(𝑥), then

𝑃 (ℎ
(𝑞)

𝑘
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= 𝑃 (ℎ
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𝑘
| 𝑥
󸀠
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𝑘
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𝑘
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󸀠
)

𝑃 (𝑥)
𝑃 (𝑥 | 𝑒) ;

(21)

If 𝑃(𝑥) ≤ 𝑃(𝑥 | 𝑒) ≤ 1, then
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(22)

For conjunction inference node, 𝑃(𝑥) = min[𝑃(𝑆(0)
1

), . . .,
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𝑛
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), . . . , 𝑃(ℎ

(𝑞−𝑡)

𝑑
), 𝑃(𝐹

(𝑞−𝑡)

𝑘
)].

For disjunction inference node, 𝑃(𝑥) = max[𝑃(𝑆(0)
1
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5.2. Testing Results. The function and validity of partially
constructed HBFIN are examined using the reserved testing
samples. The number of samples used for testing and the
obtained diagnostic accuracy are presented in Table 3.

It is noteworthy that the partially constructed HBFIN
in Figure 3 was further constructed using function formulas
to diagnose various CVDs, such as coronary heart disease
(CHD), arrhythmia (AR), pulmonary heart disease (PHD),
cerebral infarction (CIN), hyperlipemia (HL), and so forth.
Thus, in such inference nets, the hypothesis nodes Low BE,
High BE, Low CPP, High CPP, and so forth became the
intermediate hypothesis nodes, which were further linked
with other symptoms or hypothesis nodes to diagnose various
CVDs. The diagnostic accuracy of the complete HBFIN is
presented in Table 4.

Considering that the diagnosis results are derived only
from the HDPs and physiologic parameters in the pro-
posed noninvasive approach, the above diagnostic accuracy
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Table 4: Overall diagnostic accuracy of HBFIN in CVD detection.

Person’s health status Diagnostic accuracy (%)
Healthy 91
HT 78
CHD 68
AR 73
PHD 65
CIN 72
HL 73
Mixed CVD 58

Table 5: Diagnostic accuracy of intelligent CVD diagnosis systems
using adapted versions of AI technology.

CVD type Adapted version of AI technology
NN FNN HBFIN

CHD 78 65 68
HT 70 67 78
HL 64 77 73
Mixed CVD — 40 58

is highly acceptable and therefore is suitable for ehome
healthcare usage.

Furthermore, Table 5 shows the comparison results of
intelligent CVD diagnosis systems using adapted versions of
AI technologies, including neural networks (NN) [35], fuzzy
neural networks (FNN) [36], and the proposed HBFIN. For
performing a fair comparison, thesemethods were developed
and validated by our research team with the same medical
database used in this paper.

The diagnostic results in Table 5 demonstrate that the
proposed HBFIN provides comparable performance viz-a-
viz other intelligent CVD diagnostic systems. Moreover, it
is important to emphasize here that HBFIN could distinctly
trace back from the final hypothesis to its initial symptoms
and provide reasoned conclusion to the user. Whereas, in
using the systems based on NN that are black box in nature,
such a feedback cannot be provided.

6. Conclusion

An intelligent CVD diagnosis system based onHDPs derived
from SPG signal is presented in this paper. By availing
the benefit of some unique features of hybrid AI, BIN,
and FL technologies, an intelligent CVD diagnosis system
is proposed. A new approach for constructing hierarchical
multistage BIN guided by function formulas defined in first
order predicate logic form is proposed. A mathematical
inference model using Bayesian theory is presented, and a
method using FL technology to quantify dynamic values
of statistical parameters to inference nodes is suggested.
With the proposed methodology, HBFIN is constructed to
diagnose various CVDs based on HDPs. The site-measured
medical records from two hospitals of China have been
used to design and validate the proposed HBFIN. For such

a noninvasive diagnostic approach, the testing results with
acceptable diagnostic accuracy in diagnosing six important
CVDs prove the suitability of HBFIN for home healthcare
usage.
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