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Abstract

Experimental data indicate that stochastic effects exerted at the level of translation contrib-

ute substantially to the variation in abundance of proteins expressed at moderate to high lev-

els. This study analyzes the theoretical consequences of fluctuations in residue-specific

elongation rates during translation. A simple analytical framework shows that rate variation

during elongation gives rise to protein production rates that consist of sums of products of

random variables. Simulations show that because the contribution to total variation of prod-

ucts of random variables greatly exceeds that of sums of random variables, the overall distri-

bution exhibits approximately log-normal behavior. Empirical fits of the data can be satisfied

by either sums of log-normal distributions, or sums of log-normal and log-logistic distribu-

tions. Elongation rate stochastic variation offers an accounting for a major component of bio-

logical variation. The analysis provided here highlights a probability distribution that is a

natural extension of the Poisson and has broad applicability to many types of multiplicative

noise processes.

Introduction

Regulation of the abundance of proteins expressed in living cells is mediated by multiple types

of control, exerted over the rates of transcription, post-transcriptional mRNA processing,

mRNA decay, translation, and protein degradation. Regulatory variation can give rise to fluc-

tuations in protein concentration in an otherwise homogeneous cell population at steady state

[1]. Stochastic fluctuations in protein distribution can result in heterogeneous phenotypes in

clonal populations that can be beneficial for the survival of a population of organisms in a

changing environment [2]. Task-sharing decisions assisted by stochastic differentiation in a

clonal population may have formed the basis for multi-cellular development [2, 3]. In mam-

malian cells, manifestations of stochastic gene expression resulting in phenotypic diversity has

been observed in the processes of cellular differentiation [2] and apoptosis [4].

The correlation between mRNA and protein abundances (or lack thereof) can be used as a

guide to the extent by which fluctuations in mRNA copy number produce fluctuations in pro-

tein concentration [5]. Previous studies have found that the correlation between mRNA and

protein levels is poor across all organisms [6, 7]. These studies have broadly indicated that

PLOS ONE | https://doi.org/10.1371/journal.pone.0191152 January 19, 2018 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Datta S, Seed B (2018) Influence of

multiplicative stochastic variation on translational

elongation rates. PLoS ONE 13(1): e0191152.

https://doi.org/10.1371/journal.pone.0191152

Editor: Ramon Grima, University of Edinburgh,

UNITED KINGDOM

Received: February 16, 2017

Accepted: December 30, 2017

Published: January 19, 2018

Copyright: © 2018 Datta, Seed. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Code for this

manuscript can be found at https://github.com/

sdatta91/PD-code.git and https://github.com/

bs5975/Datta-Seed-Appendix-A.

Funding: This work was not supported by any

external grant or funding source.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0191152
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191152&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191152&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191152&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191152&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191152&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191152&domain=pdf&date_stamp=2018-01-19
https://doi.org/10.1371/journal.pone.0191152
http://creativecommons.org/licenses/by/4.0/
https://github.com/sdatta91/PD-code.git
https://github.com/sdatta91/PD-code.git
https://github.com/bs5975/Datta-Seed-Appendix-A
https://github.com/bs5975/Datta-Seed-Appendix-A


post-transcriptional effects determine steady state protein abundance [8]. For example the

simultaneous measurement of mRNA and protein abundance for 5000 genes in mouse fibro-

blasts revealed that about 55% of the correlation between mRNA and protein level can be

explained by variation in translation rate [7]. These findings are consistent with conclusions

reached in earlier studies that among post-transcriptional steps, variation in translational rate

is a consequential stochastic factor for determining variation in protein abundance in the cell

as a whole [1, 9]. Cells expend more energy in translation compared to transcription (in an

approximately 9:1 ratio), which may explain the dominance of translational control.

The contribution of elongation to translation rate has been reviewed recently [10]. Initia-

tion can be rate limiting for translation under some circumstances, but for the majority of

moderately to highly expressed proteins, elongation is rate limiting for protein synthesis [11].

Among many cases that exemplify the rate limiting role of elongation [10], one of the the more

compelling is the widespread applicability of codon optimization to improve protein produc-

tion. Codon optimization methods systematically replace naturally occurring codons with syn-

onymous codons corresponding to the most prevalent tRNAs for each amino acid to increase

the production of proteins by increasing the rate of elongation [12, 13]. In both prokaryotic

[14] and eukaryotic [15] contexts it is well known that high level expression of gene products

requires codon optimization, and codon optimization is routinely applied in nearly all indus-

trial gene expression systems. Appendix C provides a simple heuristic exposition on codon

optimization and translational rate limitation.

The analysis described here is directed at exploring the stochastic consequences of variation

in individual rates of elongation by ribosomes transiting an mRNA. The general mathematical

framework has been explored in considerable detail, but with a different objective, by Gilchrist

and Wagner, who have studied the consequences of premature termination and of ribosome

recycling [16]. Among the more directly relevant conclusions of their work is that translation

can be treated as a stochastic progression through a heterogeneous medium, a premise that

plays a central role in the model and conclusions presented here.

Another highly studied model is the non-equilibrium totally asymmetric exclusion process

(TASEP) [17–19], which shares some features with the model presented here. Common to

both treatments is the assumption that initiation is not rate-limiting, a prerequisite for ribo-

somes to undergo interaction. The focus of the present work, however, is an accounting for

log-normality in biological systems. The TASEP model has been used to study many aspects of

translation including the effect of ribosome recycling [17] and also to highlight the role of slow

codons in creating clustered bottlenecks [18].

The approximately log-normal character of protein abundance distributions is often dem-

onstrated by quantitative flow cytometry, in which the fluorescence intensity of fluorophore

labeled proteins are determined on a cell-by-cell basis. As conventionally displayed in logarith-

mic coordinates, the number of fluorophores per cell typically exhibits a more or less normal

density profile. These observations have been corroborated by results from quantitative mass

spectrometry of protein fragments, which also show an approximately log-normal probability

density [20]. Various other methods for protein quantitation have led to similar conclusions

[20–22]. Nearly all microarray analyses use statistical tests based on the logarithm of raw tran-

script abundance data [23], consistent with single cell gene expression measurements indicat-

ing that mRNA abundance distributions are log-normally distributed in cell populations [24,

25]. In the case of low-abundance proteins the protein abundances have been shown to be rea-

sonably well fit to the gamma distribution but one cautionary note is that extreme outliers are

often seen in published data sets, consistent with the influence of unrecognized multiplicative

noise [26–28].

Log-normal-like distributions from variation in elongation rates
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The exposition here is divided in sections as follows. Section II discusses the noise charac-

teristics at various levels of protein abundances. Section III shows that the elongation phase

of translation proceeds at a variable rate for any particular mRNA in a population of cells. Sec-

tion IV describes the stochastic model used for modeling translation. The simulation results

describing the distribution of proteins in the steady state are discussed in Section V. Section V

gives the distribution of the number of polypeptides per transcript. Section VI describes the

dynamics the transient state, and Section VII presents concluding remarks. Appendix A gives

the detailed derivations of the analytical results presented in Sections III and IV. Appendix B

presents a note on the numerical simulations, and Appendix C is a table of symbols.

Characterizing noise in translation

Elowitz et. al. have distinguished intrinsic and extrinsic sources of stochastic noise in biological

systems [29]. For intrinsic sources the resulting noise (normalized by the squared mean abun-

dance) is inversely proportional to the mean protein abundance [30], and deviations from this

relation help to identify the relative proportion of extrinsic noise. Xie and coworkers have car-

ried out single molecule measurements in E. coli cells under conditions in which expression is

highly repressed, so that intrinsic noise due to random formation and degradation of RNA

molecules is the dominant noise source [26, 27]. They found that, below ten proteins per cell

the noise is inversely proportional to protein abundance [28]. They also showed that the distri-

bution of such low copy number proteins can be fit to a gamma distribution, the two parame-

ters of which have direct physical interpretation as the protein burst rate and burst size [28,

31]. This direct physical interpretation of parameters is lost, however, above ten proteins per

cell when the noise reaches a plateau indicating the dominance of extrinsic noise [28, 31]

(Reported numbers of proteins per bacterial cell can range from approximately 50,000 to

nearly zero [32, 33]).

Detailed experimental measurements carried out in S. cerevisiae have shown that the contri-

bution of extrinsic noise to protein abundance increases with level of expression [1, 34]. Fac-

tors such as ribosome number fluctuations and variations in kinetic parameters like

elongation rates, have been categorized as extrinsic noise [1, 9].

Elongation proceeds at a variable rate

Translation can be divided into four stages: initiation, elongation, termination and recycling.

The mechanisms for initiation and termination differ between prokaryotes and eukaryotes,

but the elongation mechanism is conserved [35]. In the elongation phase, a series of reactions

leads to the addition of amino acid residues to the polypeptide chain (or rejection of the aa-

tRNA), and each of these reactions can be characterized in terms of kinetic rate constants [36].

As a simplification, a net effective rate constant for a single residue addition in elongation can

be composed from the rate constants for individual steps that result in chain extension. The

effective kinetic rate constant is expected to fluctuate from cell to cell across a cell population,

depending on a variety of noise sources, the vast majority of which will arise from proteins

that compose the translational machinery and are expressed at a high level and hence are

expected to contribute extrinsic noise.

The rates at which elongation proceeds vary widely; for example in bacteria the elongation

rate varies between 4 and 22 amino acids per second [11]. The protein synthesis rate can be

affected by many factors, of which the most significant is considered to be the relative concen-

tration of various tRNAs [14, 37]. At each elongation step the ribosome must intercept the

aminoacyl-tRNA (aa-tRNA) complementary to the codon at the ribosome A site. The relative

local concentration of various aa-tRNAs near the site determines the waiting time. Codons

Log-normal-like distributions from variation in elongation rates
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corresponding to underrepresented tRNAs reduce the elongation rate [37, 38] and are them-

selves underrepresented [39], which is thought to represent a mechanism allowing organisms

to manipulate the expression level of proteins [40]. Elongation is also slowed by mRNA sec-

ondary structures called pseudoknots [41] or by the interaction of nascent peptide sequences

with the ribosome exit channel [42]. Sequencing of ribosome-protected mRNA fragments has

provided a detailed picture of the ribosome distribution on mRNA [43]. A substantial varia-

tion in the density of ribosome footprints can be found for mRNAs from both yeast and E.
coli. In mammalian cells, some mRNA locations have been found to have 25-fold greater den-

sity than the median density across the gene [43]. Similar translational pauses have been

reported in other studies [44, 45]. Additional factors affecting elongation rate included colli-

sions between individual ribosomes in polysomes [46], controlled ribosome stalling, and inter-

actions between the translating ribosome and RNA polymerase in prokaryotes [47].

A stochastic model for the translation process

A significant fraction of the elongation rate variability is codon-specific, resulting in the trans-

lation of different codons at different rates [36, 48]. Gromadski and Rodnina measured the

rate constants for different kinetic substeps for the CUC codon [48]. For any particular mRNA

in a collection of cells, the rate constant at any arbitrary location along the mRNA is a stochas-

tic variable and therefore can be described most appropriately by a distribution. With this con-

sideration, the stochastic movements of a set (ensemble) of ribosomes along the mRNA during

elongation under the collective influence of various noise sources can be modeled as a unidi-

rectional random walk on a chain with circular boundary conditions (see Fig 1), with each

incorporation of a residue taken to follow first order kinetics, with rate constant �i for the ith
residue.

The circular boundary condition is applied as a general analysis of elongation rates should

take into account the propensity for eukaryotic ribosomes to undergo reinitiation following

completion of translation, a phenomenon that is physically visualized under conditions of

high protein synthesis as a circular template structure [49, 50]. Ribosome recycling is now

established as an integral stage of the translation process [16, 51, 52]. In general translation on

a linear template that persists for a period of time sufficient to allow a ribosome to transit the

entire reading frame can be modeled with no loss of generality as a circular lattice, by the sim-

ple device of adding a new codon “0” representing the free ribosome pool. That is, a ribosome

transits from the termination codon to codon 0 to the initiation codon (Appendix C).

An individual mRNA is represented by a discrete lattice, the nodes of which represent

codons. At any arbitrary node i in a discrete fixed period of time, the probability of a codon

being translated or not is given by pi and 1 − pi respectively. The probability density of pi at the

ith node is given by an unknown ρ(pi). �i;j represents the scaled rate constant (drawn from

probability distribution ρ(pi)) for jth mRNA at the ith site. Because the distribution of tRNAs

in the environment of each mRNA is likely to be slightly different from one transcript to the

next, a conservative assumption is that rates at a given position vary from template to template.

When the ribosome reaches the termination site d, a completed protein is released and the

ribosome returns to the initiation site (recycling step in eukaryotic cells) or the free ribosome

pool. In the eukaryotic model a reinitiation probability, λ, conveys the likelihood of reinitiation

once a ribosome has reached the end of the open reading frame of d codons.

To make the transition from a matrix of discrete probabilities to a stochastic process we fol-

low the usual prescription for the identification of an appropriate generator of the convolution

semi-group, e.g [53]. The time evolution can be described as a compound Poisson process, in

which the evolution of the ribosome motion for given initial conditions is determined by the

Log-normal-like distributions from variation in elongation rates
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Fig 1. Schematic diagram of the stochastic random walk model for the translation of mRNAs. Following initiation the translation proceeds via

elongation at different local rates on different mRNAs. The figure shows N copies of mRNA in a population of Nc cells undergoing elongation. Each

mRNA is represented by a linear discrete lattice with individual nodes representing codons at which ribosomes add residues to the nascent polypeptide

chain. At any given node i in an infinitesimal interval of time, the probability of a codon being translated or not is given by pi and 1 − pi respectively.

The distribution of pi at the ith node is given by ρ(pi). pi;j represents the scaled rate constant (drawn from probability distribution ρ(pi)) for jth mRNA at

the ith site. Once the ribosome reaches site n, the termination site, a completed protein is released and the ribosome moves back to the initiation site

(the recycling step, found in eukaryotic cells.)

https://doi.org/10.1371/journal.pone.0191152.g001

Log-normal-like distributions from variation in elongation rates
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exponentiation of the generator. The lapse of an interval of time, t, results in a change in the

probability state vector Vi(t) = Qij(t)Vj(0) for the leading ribosome position determined by the

initial conditions and

QðtÞ ¼ e� at
X1

k¼0

ðatÞk

k!
Uk ¼ eatðU� IÞ ð1Þ

where U is a stationary transition matrix of the length of the polypeptide, d, having generator

T = U − I where I is the unit matrix of length d. α is a scaling/normalization factor with dimen-

sion reciprocal time that converts the transition probabilities pi into rate constants �i, chosen

here so that α pi = �i. The transition matrix (see Fig 1) describing movement of codon along

the length of the mRNA which produces a polypeptide of length d, is given by

U ¼

1 � p1 0 � � � 0 l pd

p1 1 � p2 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 � pd� 1 0

0 0 � � � pd� 1 1 � pd

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð2Þ

For the circular boundary conditions characteristic of eukaryotic elongation, the i, j entry of

the exponentiation of this matrix for i< j yields (see Appendix A)

QðtÞi;j ¼
1

2pı

I etsl
Qj� 1

k¼iþ1
ðsþ �kÞ

Qd
m¼j �m

Qi� 1

m¼1
�m

Qd
k¼1
ðsþ �kÞ � l

Qd
mþ1

�m
ds ð3Þ

with ı ¼
ffiffiffiffiffiffiffi
� 1
p

. For i� j Eq (3) yields

QðtÞi;j ¼
1

2pı

I ets
Qj� 1

k¼1
ðsþ �kÞ

Qd
k¼iþ1
ðsþ �kÞ

Qi� 1

m¼j �m
Qd

k¼1
ðsþ �kÞ � l

Qd
mþ1

�m
ds ð4Þ

evaluated so that the contour encircles all the poles of the integrand, or, equivalently, encircles

the pole at infinity in the opposite sense. For large d the product
Qd

m¼1
�m is close to zero, and

hence the roots of the denominator polynomial are expected to lie in the vicinity of s = −�k.
This picture is simplified in the case of short lived mRNAs or in the prokaryotic context, in

which the contribution of ribosome recycling can be ignored. Setting λ = 0 in Eqs (3) and (4)

the elements of exponentiated matrix above reduce to

QðtÞi;j ¼

0 i < j

ð� 1Þ
iþjQi� 1

k¼j �k

Xi

m¼j

e� t�m

ð
Yi� m

p¼1
�m � �mþpÞð

Ym � 1

q¼j
�m � �qÞ

i � j

8
>>><

>>>:

ð5Þ

The essential element of formulas Eqs (3) to (5) from the standpoint of stochastic structure

is the presence of high order products of the random variables �m. When the �m are equal

Log-normal-like distributions from variation in elongation rates
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Eq (5) simplifies to the familiar Poisson:

QðtÞi;j ¼

0 i < j

e� t�
ðt�Þi� j

ði � jÞ!
i � j

8
>><

>>:

ð6Þ

Thus the discrete distribution Q(t)i,j represents a generalization of the Poisson that incorpo-

rates multiplicative stochastic variation and is appropriate for the characterization of processes

that involve discrete steps that are subject to inter-step variability. Both transcription and

translation are such processes, although the focus of this work is translation. Translational var-

iation is likely to be greater than transcriptional variation because of the greater variety of par-

ticipating substrates and the larger number of discrete steps that must occur to effect the

addition of a single residue to the elongating chain.

The structure of Q(t)i,j can be rendered in the language of divided differences (Appendix A)

as

ð7Þ

with f(�) = e−t�. Thus the entries of Q are most simply the product of a divided difference of an

exponential and a product of terms of the same order. Because a divided difference of order n
is the discrete difference counterpart of a derivative of order n, we see two major contributions

to stochastic instability: a product of random variables, and a high order difference function. It

is well known numerically that instability in computation increases with the order of the differ-

ence/derivative.

Steady state distribution of proteins

To explore the behavior of the distribution above, numerical simulations were performed for

the translation of mRNAs incorporating a ribosome recycling step using the circular boundary

condition on a transcript containing a ribosome at the origin, V(0) = {1, 0, 0 . . ., 0} at t = 0.

The distribution of proteins was obtained as the difference in fluxes between the termination

and re-initiation sites for increasing time (Fig 2(a)–2(c)), until such time as the steady state dis-

tribution of proteins has been reached (Fig 2(d)). The form of the protein distribution remains

unchanged with any further increase in time, consistent with the asymptotic nature of this

distribution.

The numerically obtained shape of the steady state distributions in Fig 2 resembles a log-

normal distribution, which can be explained from the stochastic model outlined in the previ-

ous section.

The matrix action V(t)i = Q(t)i,jV(0)j on a pure initiation state at t = 0, (i.e. V(0) = {1, 0,

0 . . ., 0}), results in elements of V(t)i determined entirely by Q(t)i,1, which is given by Eq (4)

for the circular mRNAs and Eq (5) for the short lived mRNAs. In both these cases Q(t)i,1 is a

sum of products of random variables. If the second moment of the logarithm of such vari-

ables is finite, the probability density of a product of random variables approaches a log-

normal density as the number of variables grows large, and in such limit the probability

density of Q(t)i,j represents a sum of log-normal densities. A general analytical form for the

density of a sum of products of random variables cannot be presented as the characteristic

function does not have a closed form [54]. But numerical and analytical studies, particularly

in the context of wireless communication and related fields, in which log-normal sums

Log-normal-like distributions from variation in elongation rates
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appear frequently, have shown that the sum of log-normal distributions has similar charac-

ter to a log-normal distribution [55–57]. Consistent with this, the predicted consequences

of translational rate variation give rise to approximately log-normal densities, as shown in

Fig 2. The insensitivity of the density to summation for relatively large numbers of sums

suggest that the densities of proteins in single cells when viewed as individual events con-

tributing to a composite distribution should also appear approximately log-normal in the

steady state.

The densities of sums of log-normally distributed variables are considered to be reasonably

well described by another log-normal except in the tails of the density [55]. Empirical fits of

simulation data to analytical distributions using the Mathematica FindDistribution function

show that the probablility densities produced by the simulations calculated here can be fit with

varying degrees of success to a sum of two log-normals or a sum of a log-logistic and a log-nor-

mal distribution.

Fig 2. Simulation results for the distribution of proteins across cell population as the system evolves from an initial transient state and finally

reaches the steady state. The plots give the distributions at times (a) t = 0.5T, (b) t = T, (c) t = 2T and (d) t = 3T, with T is an arbitrary unit of time. The

distribution narrows between time 0.5T and time T while the dynamics are in the transient phase. The narrowing continues as the dynamics near steady

state at time 2T. At time 3T a steady state distribution given by an approximate log-normal is reached, confirmed by the finding that for any further

increase in time the distribution remains invariant and log-normal. In the simulation ribosome recycling is incorporated via circular boundary

condition. The distribution of completed proteins is calculated by taking the difference of fluxes between the termination and initiation sites.

https://doi.org/10.1371/journal.pone.0191152.g002

Log-normal-like distributions from variation in elongation rates
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A convenient way to visualize the deviation of experimental data from a predicted distribu-

tion is the quantile-quantile plot (Q-Q plot). The quantiles of the simulation distribution are

plotted against the test distribution quantiles which lie along y = x line. As can be seen in Fig 3,

the log-transformed distributions exhibit normality over a wide range as its quantiles also lie

on the y = x line, with deviations seen in the tails. The deviations in the tails of the distribution

in our model indicate that protein abundance distributions in vivo may possess a larger

dynamic range than log-normal distributions. These deviations may pose special challenges

for cellular regulation if not accompanied by rapid regressions to the mean. In a multicellular

organism, cells that are outliers with respect to expression may serve a protective or sentinel

function, providing population responses that may have a greater dynamic range attributable

to the response characteristics of outliers.

Alternate and somewhat more familiar distributions, such as the gamma distribution, have

been proposed to account for protein abundance variation. Within the context of the model

presented here, it should be clear that the essential feature of the variation arises from well-jus-

tified kinetic equations that indicate the productivity of a given transcript depends on an

expression that contains high powers of products of random variables. As such, the theoretical

starting point in the search for an appropriate model distribution should incorporate the abil-

ity to represent products, as opposed to sums, of random variables.

Broadly, our simulation results are consistent with the emergence of log-normality when-

ever the range of rate distributions for individual elongation steps remains as large between

cells as between individual transcripts within the same cell. It is difficult to plausibly formulate

circumstances under which this would not be true.

An essential tenet of the law of large numbers is the independence of the limiting distribu-

tion of sums of variables upon the distributions of the individual variables [58]. Currently,

accurate experimental data are not available for rate constant distributions in vivo. Based on

chemical reaction kinetics a case can be made that the rate constant distribution may often

have the exponential form of the typical Arrhenius distribution [59]. However, as living cells

exist in conditions that are far from equilibrium and subject to regulatory influences the possi-

bility that rate constant distributions assume some other form cannot be ruled out. In numeri-

cal simulations we have found that the steady state protein distribution form is largely

unaffected by the changes in distribution of rate constants (�i), as shown in Fig 4.

The rate variables (�i), which represent the rates for migration of the ribosome along the

mRNA, are primarily influenced by factors that can be collectively described as extrinsic noise.

Changes in protein abundance will contain deterministic components under conditions in

which a cell or population is transiting the cell cycle, acclimating to environmental conditions,

or undergoing differentiation [60]. The influence of deterministic components may produce

correlations that affect the rate constants at any given position in the mRNA. However, the

presence of correlation among rate constants does not significantly influence the steady state

distribution, as shown in Fig 5.

The interaction between successively translated ribosomes such as collisions [46] will cause

a reduction of the elongation rates for trailing ribosomes near the collision sites. The effect of

the presence of codons with small values for �i (“slow codons”), either because their cognate

tRNAs are underrepresented or because of specific contexts, such as secondary structure in the

mRNA, that impede translation, may also cause similar lowering of elongation rate. These cir-

cumstances, in the extreme case, should have an effect that is equivalent to a rate limiting

phase in the elongation cycle.

To simulate this scenario a linear lattice of size 30 was chosen. At site 20 the scaled rate con-

stant was set close to zero to represent the dynamical effects caused by the presence of a slow

codon at that site. The calculation of the protein probability density in this condition confirms

Log-normal-like distributions from variation in elongation rates
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Fig 3. A quantile-quantile (Q-Q) plot shows that the steady state protein distribution is well described by a log-normal except in the tail region

where deviations arise. The histograms (a) and (b) show the simulated results for the steady state protein distributions in cases in which the �i follow:

(a) a gamma distribution (shape parameter 10, scale parameter 5); or (b) a normal distribution (mean 50 and standard deviation 15). The solid (black)

line in (a) and (b) represent the best unbiased fit for the corresponding data. The best unbiased fit for (a) is a sum of two log-normal distributions with

weights 0.985935 and 0.0140649, and for (b) is a sum of log-normal and log-logistic distributions with weights 0.368091 and 0.631909 respectively. In

the (Q-Q) plots (c) and (d), the log-transformed steady state distributions data corresponding to (a) and (b) respectively are plotted against a normal

distribution. In the (Q-Q) plots (e) and (f), the log-transformed steady state distributions data corresponding to (a) and (b) respectively are plotted

against the best unbiased fit distribution. The relative improvement of fit compared to (c) and (d) is noticeable.

https://doi.org/10.1371/journal.pone.0191152.g003
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a local maximum around site 20, consistent with the expectation that the presence of a slow

codon on mRNA and ribosome collison pauses translation leading to accumulation near the

site (Fig 6). The results are similar when the ribosome collision sites and sites with slow codons

are chosen near any arbitrary set of consecutive sites on the lattice. Such pausing and stacking

effect has been reported in many different experiments, e.g. by Wolin and Walters [44].

Distribution of the number of polypeptides per transcript

The number of polypeptides per transcript can be calculated with some assumptions about the

decay kinetics of the transcripts. The rate of production of a completed polypeptide of length d
is given by �dVd(t) and the integral with respect to time over the lifetime of the transcript gives

the number of polypeptides. For first order decay of transcripts with rate constant c, the distri-

bution representing the location of the leading ribosome will be the Laplace transform in time

of the transition operators with respect to conjugate variable c. Taking the example of Eq (4),

Fig 4. The steady state distribution of proteins does not depend on the precise form of the underlying rate constant distributions for elongation.

The plots show the simulated results for the steady state protein distributions in cases in which the underlying rate constant distributions along the

entire chain follow (a) normal distribution (mean 50 and standard deviation 15), (b) exponential distribution (mean 100), (c) gamma distribution

(shape parameter 10, scale parameter 5), and (d) log-normal distribution (derived from normal distribution with mean 3.5 and standard deviation 1).

The parameters of the scaled rate constant (�) distribution were chosen so that the system is in the steady state phase in all plots.

https://doi.org/10.1371/journal.pone.0191152.g004
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the i, j entry of the matrix for i� j gives

QðtÞi;j ¼
Qj� 1

k¼1
ðcþ �kÞ

Qd
k¼iþ1
ðcþ �kÞ

Qi� 1

m¼j �m
Qd

k¼1
ðcþ �kÞ � l

Qd
m¼1

�m

ð8Þ

with d the number of codons as in Eq (4). The structure of (6) shows the characteristic multi-

plicative interactions that contribute in an important way to the overall stochastic variation.

The consequences of this multiplicative effect can be seen in Fig 7 which shows that the num-

ber of polypeptides per transcript calculated via simulation of Eq (8) produce a distribution

with approximate log-normality.

The transient phase of translation dynamics

This section examines the effect of stochastic dynamics on a collection of mRNAs arising from

a transcriptional burst in a cell population. One useful quantity that quantifies the transient

Fig 5. The incorporation of correlation between individual rates has little effect on the resulting steady state distribution. (a) The spatial

arrangement of rate constants at an arbitrarily chosen mRNA site across an ensemble of mRNA molecules encoding the same protein. For visual clarity,

the moving averages of rate constants along 100 adjacent mRNAs is shown. (b) Steady state distribution corresponding to (a). (c) Spatially correlated

rate constants at an arbitrarily chosen site of mRNA (moving average over 100 sites is plotted) across an ensemble of mRNA. (d) Steady state

distribution corresponding to (b).

https://doi.org/10.1371/journal.pone.0191152.g005
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phase of the dynamics is the average extent of polypeptide chain formation in a cell population.

Let L be such a quantity described by the expectation value

L ¼
Xd

i¼1

iViðtÞ ð9Þ

Fig 6. The effect of a low rate constant for elongation at a given residue. In this case it is expected that the elongation will stall at a site with a very low

rate constant. (a) In order to simulate this condition the mean value for the rate constant distributions at various sites is allowed to vary between 50 and

150 except at site 20, where the mean value is set near zero. (b) The resulting distribution of the polypeptides across various sites clearly shows the

stalling effect with resulting accumulation around the residue site 20. Although this example has been constructed to verify the validity of the model, the

occurrence of pause sites has been reported in the literature.

https://doi.org/10.1371/journal.pone.0191152.g006
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where i denotes the discrete site location and Vi(t) gives the probability that elongation has

proceeded up to site i at time t assuming the polypeptide has been initiated at time 0. Fig 8(a),

is a plot of L for a lattice chain of length d = 30 with exponentially distributed rate constants of

scaled mean 10. The expected length of the polypeptide chain formed in the cell population, L,

varies linearly with time, except for a slight deviation from linearity at longer times. To mimic

the physiological process, in the simulation fully formed proteins are required to decay with

some probability. The mass of protein that decays after termination is proportional to the total

amount of fully formed protein. The protein decay feature causes a deviation from linearity for

L at longer times. Examination of the sum of site-specific probabilities across the cell popula-

tion at increasing times (Fig 8(b)) reveals the effect of elongation proceeding towards the ter-

mination site. As expected, with time the occupation probability decreases near the initiation

site and increases near the termination site as nascent peptides are released as fully formed

proteins.

The variance of the occupation probabilities at different sites across a cell population along

the mRNA chain is expected to change with time, as should the occupation probability vari-

ance at a particular site. In order to capture the nature of this variation the process was simu-

lated with exponentially distributed spatially varying rate constants (�i) over a linear chain of

length 30 (Fig 9). With increasing time the numerically estimated variance at different loca-

tions tends to converge (Fig 9(a)) and decrease (Fig 9(b)).

Fig 7. The number of proteins per mRNA follows a log-normal distribution. The plot shows the histogram of the protein abundance (in fractional

units) per template. For the simulation of this plot, the underlying rate constant (�) distribution is taken to follow a gamma distribution with shape

parameter 10 and scale parameter 5. Similar results are obtained in cases in which the underlying rate constant distributions are different.

https://doi.org/10.1371/journal.pone.0191152.g007
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Fig 8. The dynamics of polypeptide chain formation. (a) The average length of polypeptide chain d increases linearly with time. (b)

With increasing time the overall occupation probability of polypeptides decreases near the initiation site and increases near the

termination site. L denotes length of the lattice chain and m is the mean value of the underlying rate constant distribution, which is given

by an exponential distribution for this figure.

https://doi.org/10.1371/journal.pone.0191152.g008
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Fig 9. The change in estimated variance of the occupation probability at different sites along the mRNA. (a) The variation of the

estimated variance at different residues along the mRNA chain with time. (b) The changes in estimated variance at different times

along the mRNA chain at different residue locations. The estimated variance is obtained by taking the log-transform of a log-normal

distribution and calculating the variance of the resulting normal distribution.

https://doi.org/10.1371/journal.pone.0191152.g009
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Conclusion

This work draws attention to the role played by translation rate fluctuation in determining the

shape of steady state protein concentration distributions. The multiplicative sources of noise

resulting from variations in the ribosomal translocation rates give rise to an approximately

log-normal distribution. Physical and chemical laws that are dominated by multiplicative com-

ponents rather than additive, are expected to lead to log-normality in natural systems [61].

The analysis presented here implies that the equilibrium protein concentrations across cell

population are distributed so that the central part of the distribution follows a log-normal.

This result is consistent with experimentally observed steady state protein distributions.

The tails of the distribution deviate from log-normal behavior. The tail characteristics are

not robust and shows a variety a behaviors depending on the form of the underlying rate con-

stant distributions (Fig 3). How the dynamical influences of rate constant fluctuations modu-

late the behavior in the tail of the steady state protein distribution requires further study.

The model described here can be made more specific by explicitly incorporating additional

factors that influence protein concentrations, such as transcription or factors involved in pro-

tein degradation. But in its current form, the model provides an explanation for the experi-

mentally observed log-normal protein distribution across cell population and confirms the

conclusion drawn by several recent studies that indicate that protein abundance is primarily

determined by extrinsic noise sources which control translation.

A general framework for characterizing the transition matrices for stepwise processes that

relies on the properties of polynomial functions of a complex variable has been provided. This

framework offers a consistent general approach for the derivation of stochastic group and

semigroup operators and supports the identification of the transition process with random

step probability as a natural generalization of the Poisson to processes with multiplicative

noise.

Considerable effort has been devoted to characterizing various aspects of the origin of sto-

chastic gene expression in cellular processes [29, 36]. This work draws attention to the signifi-

cant and likely dominant role played by translational noise in stochastic gene expression in

living cells. Progress in single cell measurements of translational parameters will undoubtedly

enhance our understanding of the sources of variation in gene expression.

Appendix A

Contour integral form for matrix power series

In eukaryotic cells evidence of mRNA template circularization has been observed, both bio-

chemically in the form of protein complexes that bind to both poly(A) and the mRNA cap

structure [62], and ultrastructurally, in the form of polysomes linked in circular configuration.

To model the motion of ribosomes on such a template, we identify the generator for the trans-

lation operator with the structure

T ¼

� �1 0 � � � 0 l �d

�1 � �2 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � � �d� 1 0

0 0 � � � �d� 1 � �d

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð10Þ
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from which we construct the desired solution as the sum
P1

n¼0
ðtTÞn=n!. A consistent and

general representation of the terms of the power series expansion of Tk = (U − 1)k can be

obtained in the form of a contour integral. In general the matrix T(d)k with elements i, j can be

represented by an integral

TðdÞki;j ¼
1

2pı

I

gi;jðs; dÞs
kds ð11Þ

where gi,j(s, d) is a rational function (i.e. a function f ðsÞ ¼ pðsÞ
qðsÞ, p, q both polynomials of finite

order). To avoid confusion of terms with the residues of a protein, the residue of the complex

function f will be referred to as the “residue of integration,” in keeping with the interpretation

that the contour integral along a path enclosing a function analytic within the contour is zero,

whereas if the function has a pole within the contour there is a residual value resulting from

integration. For integrals of such functions, the sum of the residue of integration of f(s) at

infinity plus the sum of the residues of integration at the zeroes of q equals zero. It is conve-

nient for the purpose of proof by induction to transform the integrand, recalling that the resi-

due of integration at infinity of f(s) is defined as the negative of the residue of integration at 0

of z−2 f(1/z), where z = s−1.

The i, j entry of the nth power of this matrix representing the sum
P1

n¼0
ðtTÞn=n! takes the

form, for i< j,

1

2pı

I
l
Qj� 1

k¼iþ1
ð1þ z�kÞ

Qd
m¼j �m

Qi� 1

m¼1
�m

zj� iþnþ1� dð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
dz ð12Þ

and

1

2pı

I Qj� 1

k¼1
ð1þ z�kÞ

Qd
k¼iþ1
ð1þ z�kÞ

Qi� 1

m¼j �m

zj� iþnþ1ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
dz ð13Þ

for i� j, where the contour of integration encloses the origin but none of the roots of the

denominator polynomial
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�m. To establish this by induction we first

observe that the variable n appears only in the denominator in the exponent of z. To calculate

the residues of integration at zero one must consider five cases for n = 1: (i) i = 1, j = d; (ii) i< j
(excepting case (i)); (iii) i = j; (iv) i = j + 1; and (v) i> j + 1. For case (i), zj−i+2−d = z and the

limit of Eq (12) as z! 0 is

1

2pı

I
l�d

zð1þ z�1Þð1þ z�dÞ
dz ¼ l�d ð14Þ

For case (ii), the limit of Eq (12) as z! 0 is dominated by j − i + 2 − d� 0 and the function is

analytic within the contour:

1

2pı

I
l
Qd

m¼j �m
Qi� 1

m¼1
�m

zj� iþ2� d
dz ¼ 0 ð15Þ

For case (iii) the limit of Eq (13) as z! 0 is

1

2pı

I
1

z2ð1þ z�iÞ
dz!

1

2pı

I
1

z2
�
�i
z

� �

dz ¼ � �i ð16Þ
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For case (iv) the limit of Eq (13) as z! 0 is

1

2pı

I
�j

zð1þ z�jÞð1þ z�jþ1Þ
dz ¼ �j ð17Þ

and for case (v) the limit of Eq (13) as z! 0 is dominated by j − i + 2� 0 and the function is

analytic within the contour:

1

2pı

I Qi� 1

k¼j �k

zj� iþ2
dz ¼ 0 ð18Þ

To complete a proof by induction one must formally establish, using Eqs (10)–(13) that

TTn = Tn+1. The actual process is slightly different; we establish that

TTn � Tnþ1 ¼ �
1

2pı

I

1dz
� n� 2dz ¼ 0d ð19Þ

where 1d and 0d are the d dimensional unit and null matrices, respectively. There are 5 cases to

be calculated: (i) i< j (i = 1); (ii) i< j (i> 1); (iii) i = j (i = 1); (iv) i = j (i> 1); and (v) i> j. For

case (i) we establish

l�d

Qj� 1

k¼1
ð1þ z�kÞ

Qd� 1

m¼j �m

zj� dþnþ1ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ

� ðz� 1 þ �1Þ

Qj� 1

k¼2
ð1þ z�kÞl

Qd
m¼j �m

zj� dþnð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
¼ 0

ð20Þ

For case (ii),

�i� 1

l
Qj� 1

k¼ið1þ z�kÞ
Qd

m¼j �m
Qi� 2

m¼1
�m

zj� iþnþ2� dð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ

� ðz� 1 þ �iÞ

Qj� 1

k¼iþ1
ð1þ z�kÞl

Qd
m¼j �m

Qi� 1

m¼1
�m

zj� iþnþ1� dð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
¼ 0

ð21Þ

For case (iii)

l�d

Qd� 1

m¼1
�m

zn� dþ2ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ

� ðz� 1 þ �iÞ

Qd
k¼2
ð1þ z�kÞ

znþ1ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
¼ � z� n� 2

ð22Þ

For case (iv)

�i� 1

l
Qj� 1

k¼ið1þ z�kÞ
Qd

m¼j �m
Qi� 2

m¼1
�m

zj� iþnþ2� dð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ

� ðz� 1 þ �iÞ

Qj� 1

k¼1
ð1þ z�kÞ

Qd
k¼iþ1
ð1þ z�kÞ

Qi� 1

k¼j �m

zj� iþnþ1ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
¼ � z� n� 2

ð23Þ
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And for case (v)

�i� 1

Qj� 1

k¼1
ð1þ z�kÞ

Qd
k¼ið1þ z�kÞ

Qi� 2

m¼j �m

zj� iþnþ2ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ

� ðz� 1 þ �iÞ

Qj� 1

k¼1
ð1þ z�kÞ

Qd
k¼iþ1
ð1þ z�kÞ

Qi� 1

m¼j �m

zj� iþnþ1ð
Qd

k¼1
ð1þ z�kÞ � lzd

Qd
m¼1

�mÞ
¼ 0

ð24Þ

A more convenient characterization of Eqs (12) and (13) for evaluation of the steady state for-

mulates the matrix in terms of s = z−1 and gives, for the i, j entry of the nth power of the matrix

Eq (11), for i< j

1

2pı

I snl
Qj� 1

k¼iþ1
ðsþ �kÞ

Qd
m¼j �m

Qi� 1

m¼1
�m

Qd
k¼1
ðsþ �kÞ � l

Qd
m¼1

�m
ds ð25Þ

and

1

2pı

I sn
Qj� 1

k¼1
ðsþ �kÞ

Qd
k¼iþ1
ðsþ �kÞ

Qi� 1

m¼j �m
Qd

k¼1
ðsþ �kÞ � l

Qd
m¼1

�m
ds ð26Þ

otherwise, where the contour encloses all of the roots of the denominator polynomial
Qd

k¼1
ðsþ �kÞ � l

Qd
m¼1

�m. For λ = 1, T is a stochastic (conservative) matrix, and therefore

should have a steady state given by the residues of integration of Eqs (25) and (26) at s = 0.

Inspection of Eqs (25) and (26) shows that for λ = 1, s = 0 is indeed a root of the denominator

polynomial, and hence the steady state solution is given by the residue of integration at 0 of the

sum of Eqs (25) and (26) over n with sn replaced by (ts)n/n!, which is

Qd
m¼1

�m

�i

Xd

k¼1

Qd
m¼1

�m
�k

¼
1

�i

Xd

k¼1

1

�k

ð27Þ

in both cases. The i, j entry of the matrix representing the steady state distribution has no

dependence on j, consistent with intuition.

In the case λ = 0, the i, j entry of the nth power of matrix (10) is zero for i< j, and

1

2pı

I sn
Qi� 1

m¼j �m
Qi

k¼jðsþ �kÞ
ds ð28Þ

otherwise, where the contour taken in the conventional (positive) sense encloses all of the

roots of the denominator polynomial (i.e. encircles all of the real axis values of −�k, j� k� i.
The matrix etT in this case is given by Eq (28) with sn replaced by the sum

P1

n¼0
ðtsÞn=n!, the

integral of which converges, despite its resemblance to a function with an essential singularity

at infinity. The evaluation of the contour integral for n = 0 yields the unit matrix as required.

Evaluation of the integral leads to (etT)i,j = 0 for i< j, and

ðetTÞi;j ¼ ð� 1Þ
iþj
Xi

k¼j

e� t�k
Qi� 1

m¼j �m
Qi� k

p¼1
ð�k � �kþpÞ

Qk� 1

q¼j ð�k � �qÞ
ð29Þ

otherwise.
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In the event that all of the �k are equal, the evolution operator represented by Eq (29) takes

the particularly simple form of a Poisson distribution

ðt�Þi� j

ði � jÞ!
e� t� ð30Þ

for i� j (and 0 otherwise) and hence Eq (29) can be considered a natural generalization of a

Poisson process to a domain in which the underlying stochastic process is not homogeneous.

The gamma distribution, an extension of the Poisson to nonintegral event frequencies, takes

the related form

ðt�Þk

Gðkþ 1Þ
e� t� ð31Þ

which bears comparison to Eq (29) because Eq (31) has been proposed to appropriately cap-

ture the statistics of low multiplicity translations emitted by a single mRNA template.

When the operator T acts on an initial state vector V(t0) = 1, 0, . . ., 0 of length d at time

t0 = 0, etTV(0) gives the probability density of the location of a ribosome on the mRNA at time

t. If the source of the translation is an mRNA with a probability of existence at time t of c e−ct,
the relative effect of additional initiations will be given by

R1
0

c e� ctetTvð0Þdt, and the i, j entry

of
R1

0
c e� ctetTdt for i< j is

cl
Qj� 1

k¼iþ1
ðcþ �kÞ

Qd
m¼j �m

Qi� 1

m¼1
�m

Qd
k¼1
ðcþ �kÞ � l

Qd
m¼1

�m

ð32Þ

and

c
Qj� 1

k¼1
ðcþ �kÞ

Qd
k¼iþ1
ðcþ �kÞ

Qi� 1

m¼j �m
Qd

k¼1
ðcþ �kÞ � l

Qd
m¼1

�m

ð33Þ

otherwise.

The rate of production of full length protein is given by v(t)d�d = etT V(0)d�d = (etT)d,1�d and

the integral with respect to time weighted by the lifetime of the encoding RNA gives

c �d

Z 1

0

e� ctðetTÞd;1dt ¼
c
Qd

m¼1
�m

Qd
k¼1
ðcþ �kÞ � l

Qd
m¼1

�m
ð34Þ

for the average number of polypeptides produced per mRNA template, assuming that the char-

acteristic lifetime of the mRNA, c−1, is long compared to the translation time. In the event this

is not true, we can estimate the number of polypeptides per template in the elongation-limited

domain by dividing the mean length that the lead ribosome has translated down the mRNA,

divided by the average number of residues between successive ribosomes, R. This has the form

Xd

i¼1

i
R

Z 1

0

ce� ctvðtÞidt ¼
Xd

i¼1

i
R

Z 1

0

ce� ctðetTÞi;1dt ð35Þ

which, using Eq (32) and setting λ = 0 (since the probability of reinitiation can be neglected),

gives

Xd

i¼1

i
R

c
Qi� 1

m¼1
�m

Qi
k¼1
ðcþ �kÞ

ð36Þ
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for the mean number of ribosomes per template over the life of the template. In the limit that

all �k are equal, Eq (34) gives

Xd

i¼1

i
R

c

� 1þ
c
�

� �i ¼

ðcþ �Þ 1 �
cþ �
�

� �� d� �

� cd
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2R�

ð37Þ

the approximations holding for c� �.

Connection with divided differences

Divided differences [63] are nested differences defined recursively by the sequence

ð38Þ

using a notation that is a variation [64] [63] on the representation introduced by

Aitken [65]. In general

ð39Þ

¼
Xi

k¼j

f ðxkÞ
Qi� k

p¼1
ðxk � xkþpÞ

Qk� 1

q¼j ðxk � xqÞ
ð40Þ

With this expansion and f(�) = e−t� Eq (29) becomes (using (−1)2j = 1)

ð41Þ

and the reduction to a Poisson Eq (30) reflects the fact that the divided difference has a limit

for suitably differentiable functions of

ð42Þ

where f(n)(x) is the nth derivative with respect to x. A more direct connection can be made

through the contour integral formula of Frobenius [63] which can be restated in our context as
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ð43Þ

A Mathematica notebook for this appendix can be found at https://github.com/bs5975/Datta-

Seed-Appendix-A.

Appendix B

Notes on numerical simulations

For numerical calculations, an ensemble of 25,000 U matrices were constructed for a chain of

length d = 30. The matrices were populated with � values drawn from a specific common dis-

tribution, such as an exponential or normal, with the �i varying from site to site. The time evo-

lution of the extent of polypeptide formation was calculated by using Eq (1) in Section III. For

the distribution of elongation rates, the rate constants at various sites were scaled by both α
and time, where α has the dimension of inverse time. Note from Eq (1) that once α is fixed,

longer time evolution is given by scalar multiplication of the rate constant distribution values

by a larger factor. In general values were chosen to avoid crossing the bounds of numerical

precision afforded by the machine and software architectures. In the rare cases that out-of-

bound exceptions were thrown, the data points were discarded.

For shorter time evolution, the simulation results for the dynamics during the transient

phase are described in Section VI. For longer time evolution, the extent of polypeptide forma-

tion calculated over an ensemble of 25,000 at the termination site is representative of the total

quantities of proteins across cell population. Fig 2 shows the evolution of fully formed polypep-

tide distribution as the system passes through the transient phase to reach a statistically steady

state characterized by an invariant probability density.

The best fit for the steady state distribution in Fig 3 was evaluated using the Mathematica

function FindDistribution. The resulting fit is unbiased in the sense that no pre-specified target

function was used to find the best fit.

The numerical simulations presented in the paper were carried out in 32 bit Matlab R2009b

and Mathematica 11.1. Code can be found at https://github.com/sdatta91/PD-code.git.

Appendix C

Codon optimization and the rate-limiting step in translation

Consider the following step-wise procedure for codon optimization. For convenience we

assume a circular template and individually measure each of the rate constants �i. Let all of the

�i be unequal. Then there is a smallest �i and that �i is limiting: it sets the rate at which the ribo-

somes circulate on the template. We then optimize that codon. Now there is a new location, k,

at which �k is the smallest of the �. We optimize that codon, and proceed. Eventually, we reach

a point at which the rate-limiting codon cannot be substituted with another codon with an

increase in the rate, and our optimization has come to an end. That we can achieve a similar

result by changing all of the codons at once is not particularly relevant, except possibly as it

affords additional improvements that may result from altering interactions between codons,

for example when individually optimal codons form structures that impede translation.

When the rate-limiting codon that cannot be improved is the initiation codon, initiation is

rate-limiting. But this situation cannot describe the initial state of the template, otherwise

changing any of the other codons would have no effect.
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In the foregoing the device of a circular template can be considered a heuristic aid. At

steady state on a linear template, a ribosome released from the template takes a step on a circu-

lar lattice to position 0, representing the free ribosome pool.

Appendix D

List of symbols

0d the null d × d matrix

1d the unit d × d matrix

I the unit d × d matrix

Q(t) convolution semi-group operator (a d × d matrix)

R the average number of residues between successive ribosomes

T generator of the convolution semi-group (a d × d matrix)

U stochastic transition matrix of length d

V(t) vector representing the occupation state of d codons

Vi(t) the ith entry of vector V(t)

c the rate constant of an mRNA undergoing first order decay

d number of codons in open reading frame

f any suitably smooth, e.g. C1, function

f(k)(x) the kth derivative of f(x) with respect to x

gi,j(s, d) the i, jth entry of a matrix of rational functions of the complex variable s

pi probability of transition from codon i to codon i + 1

s complex variable of integration

t time variable

z complex variable of integration

α proportionality between pi and �i (αpi = �i)

�i rate of transition from codon i to codon i + 1

λ probability of reinitiation by a ribosome at termination codon

ρ(pi) probability density of the transition probability pi

ı
ffiffiffiffiffiffiffi
� 1
p

divided difference of f over the variables xj � � � xi
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