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Abstract
European ash (Fraxinus excelsior) is currently battling an onslaught of ash dieback, a dis-

ease emerging in the greater part of its native area, brought about by the introduction of the

ascomycete Hymenoscyphus fraxineus (= Hymenoscyphus pseudoalbidus). The closely-

related fungus Hymenoscyphus albidus, which is indigenous to Europe, is non-pathogenic

when in contact with F. excelsior, but could pose a potential risk to exotic Fraxinus species.
The North American green ash (Fraxinus pennsylvanica) is planted widely throughout

Europe and regenerates naturally within this environment but little is known about the sus-

ceptibility of this species to ash dieback. We performed wound inoculations with both fungi

(nine strains of H. fraxineus and three strains of H. albidus) on rachises and stems of F.
excelsior and F. pennsylvanica under field conditions in Southern Poland. Necrosis forma-

tion was evaluated after two months on the rachises and after 12 months on the stems.

After inoculation of H. albidus, only small lesions (of up to 1.3 cm in length) developed on

the F. excelsior and F. pennsylvanica rachises, but with no significant distinction from the

controls. Hymenoscyphus albidus did not cause necrotic lesions on the stems of either

Fraxinus species. In contrast, H. fraxineus induced necroses on all inoculated rachises of

both ash species with mean lengths of 8.4 cm (F. excelsior) and 1.9 cm (F. pennsylvanica).
Necroses also developed on all of the inoculated F. excelsior stems (mean length 18.0 cm),

whereas on F. pennsylvanica such lesions only occurred on about 5% of the stems (mean

length 1.9 cm). The differences between strains were negligible. No necroses were

observed on the control plants. Reisolations of H. albidus were only successful in around

8–11% of the cases, while H. fraxineus was reisolated from 50–70% of the inoculated

organs showing necrotic lesions. None of the Hymenoscyphus species were isolated from

the control plants. Our data confirm H. fraxineus’ high virulence with regards to F. excelsior
and demonstrate a low virulence in relation to F. pennsylvanica under field conditions in

Poland. Hymenoscyphus albidus did not express any perceivable pathogenicity on both

host species.
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Introduction
The genus Fraxinus comprises 48 tree and shrub species indigenous to the temperate and sub-
tropical regions of the Northern Hemisphere [1]. In Europe, F. excelsior L. is the most wide-
spread native species, while F. angustifolia Vahl and F. ornus L. thrive in Southern Europe. The
American green ash (F. pennsylvanicaMarsh.) is the most widely distributed ash species in
North America and is also frequently planted in Europe where it has become locally natural-
ized. Green ash is used for ornamental purposes [2, 3], for timber production [4–6], as part of
shelterbelts [7], or as an ameliorative pioneer for fostering the establishment of native trees [2].
In some European countries, green ash is considered an invasive tree species, existing mainly
in floodplain forests and along rivers [5, 6, 8].

Since the early 1990s, European ash (F. excelsior) has been undergoing dieback on a large
scale in Europe, calling into question both the survival and future use of this species [9–12].
The causal agent of this epidemic is the ascomycete Hymenoscyphus fraxineus (T. Kowalski)
Baral, Queloz & Hosoya (= Hymenoscyphus pseudoalbidusQueloz et al., anamorph Chalara
fraxinea T. Kowalski) [13, 14]. The pathogen was introduced from East Asia where it occurs on
Fraxinus mandshurica Rupr. and F. chinensis ssp. rhynchophylla (Hance) E. Murray (syn. F.
rhynchophylla Hance) [15–17]. The fungus infects ash leaves by means of ascospores and gen-
erates necrotic lesions, as well as causing the shedding of leaves. Ascomata are formed in the
leaf litter during the subsequent summer. On susceptible hosts, the fungal mycelium can spread
from the petiole into the shoot, where it causes extensive xylem and bark necroses eventually
leading to tree mortality [14].

Fraxinus angustifolia Vahl is also affected by the disease, albeit to a lesser extent, whereas F.
ornus seems to be largely tolerant to the fungus. For the introduced F. pennsylvanica, field
observations of natural infections in several European countries indicated that this species is
less susceptible to ash dieback compared to the European species F. excelsior and F. angustifolia
[14, 18–20]. This was corroborated by stem inoculations in a phytotrone [21]. However, to our
knowledge, no results of field inoculations on F. pennsylvanica have been reported this day.

The ash dieback pathogen, H. fraxineus, is, morphologically speaking, almost indistinguish-
able fromHymenoscyphus albidus (Roberge ex Gillet) W. Phillips, the existence of which has
been known in Europe for over 150 years [22–24]. This species also infects common ash leaves
and forms apothecia on the leaf remnants found on the ground through summer; however, it is
not regarded as pathogenic [21, 25–27].

Determining whether F. pennsylvanica could replace F. excelsior or not is of great signifi-
cance to European forestry. In North America, neitherH. fraxineus norH. albidus are currently
present, but both fungi could be introduced in future, thus reinforcing the need for the timely
provision of data for the purpose of risk assessment. Therefore, the aim of the present study is
to determine the virulence (i.e. the degree of pathogenicity) of both Hymenoscyphus species on
F. pennsylvanica under field conditions in Poland and to compare it with the interaction of
these fungi with F. excelsior.

Materials and Methods
The tests were conducted on an experimental plot in the Stary Sącz Forest District, Southern
Poland (49° 33' 83'' N, 20° 39' 35'' E), on five-year-old Fraxinus excelsior seedlings (provenance
Poland) and also on those of F. pennsylvanica (provenance unknown). Permission to conduct
the field experiments was obtained from the head forester, Mgr inż. Paweł Szczygieł. Inocula-
tions were performed with six and nineH. fraxineus isolates from Southern Poland [28] on
stems and rachises, respectively, as well as three isolates of H. albidus from Switzerland ([24],
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see Table 1). The strains are deposited in the culture collection of the University of Agriculture
in Cracow.

For inoculum production, the fungi were grown for three weeks in darkness at room tem-
perature on malt extract agar (MEA; 20g ⁄ l malt extract, Difco, Sparks, MD, USA; 15g ⁄ l agar,
Difco). Subsequently, for H. fraxineus, small sterile ash wood sticks (5 x 2 x 2 mm) were placed
on the colonies and incubated for three additional weeks. For H. albidus, which is only known
to occur on leaves, fragments of ash rachises of similar size were used. For control inoculations,
sterile sticks, which had been incubated on MEA for three weeks, were used.

The stems of the current season’s growth (0.6–0.8 cm thick) were inoculated in late July
2012, as were the rachises in 2012 and 2013 (Table 1). The inoculum was inserted into superfi-
cial tissue incisions as described in [29] and covered by parafilmTM (Bemis Company, www.
parafilm.com). Control inoculations were made in the same manner with sterile inocula. In
total, 36 stems and 54 rachises of each Fraxinus species were inoculated with both species of
Hymenoscyphus respectively (Tables 2 and 3).

For H. albidus, 12 replicate inoculations were made per fungal isolate on rachises in 2012
and six in 2013. Stem inoculations were also performed in 12 replications in 2012.

For H. fraxineus, six rachises and stems, respectively, were inoculated with the same fungal
strain. Each inoculation was carried out on a different tree.

The symptoms on rachises were assessed after two months and those on the stems after 12
months. The lengths of superficially visible necrotic lesions, minus the length of the inoculation
wound, were measured and any instances of fungal fructification were recorded. In cases where

Table 1. Origin of theH. fraxineus andH. albidus strains used for the inoculation experiments. All strains were obtained from F. excelsior.

Isolate No. Species Location Coordinates Year of inoculation

20011 H. fraxineus PL, Siewierz 50° 28' N 19° 14' E 2012

20018 H. fraxineus PL, Siewierz 50° 28' N 19° 14' E 2012

20045 H. fraxineus PL, Świerklaniec 50° 26' N 18° 56' E 2012

20047 H. fraxineus PL, Świerklaniec 50° 26' N 18° 56' E 2012

20058 H. fraxineus PL, Brynek 50° 31' N 18° 44' E 2012

20075 H. fraxineus PL, Brynek 50° 31' N 18° 44' E 2012

20192 H. fraxineus PL, Stary Sącz 49° 33' N 20° 380 E 2013

20220 H. fraxineus PL, Stary Sącz 49° 33' N 20° 380 E 2013

20227 H. fraxineus PL, Ojców 50° 13' N 19° 49' E 2013

090726.5 H. albidus CH, Quinto 46° 30' 14.8'' N 08° 42' 59.5'' E 2012, 2013

090812.3 H. albidus CH, Leukerbad 46° 22' 55.3'' N 07° 37' 20.1'' E 2012, 2013

090812.7 H. albidus CH, Leukerbad 46° 22' 55.3'' N 07° 37' 20.1'' E 2012, 2013

doi:10.1371/journal.pone.0141592.t001

Table 2. Necrotic lesions on rachises twomonths post inoculation withH. albidus andH. fraxineus.

Fungus Host Inoculated rachises [n] With necrotic lesion [n] Mean length of necrosis* [cm] (min–max)

H. albidus F. excelsior 54 9 0.1 c** (0–1.2)

H. fraxineus F. excelsior 54 54 8.4 a (1.7–16.6)

Control F. excelsior 8 0 0.0 c (0)

H. albidus F. pennsylvanica 54 18 0.2 c (0–1.3)

H. fraxineus F. pennsylvanica 54 54 1.9 b (0.5–6.2)

Control F. pennsylvanica 8 0 0.0 c (0)

* mean of all rachises

**Variables with the same letter are not significantly different for p = 0.05 (Kruskal-Wallis test).

doi:10.1371/journal.pone.0141592.t002
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the entire distal part of the organ had died off in both the rachises and the stems, only the axial
extension of the primary necrosis (identifiable by virtue of its distinguished tissue discoloration
and depression) was determined.

Reisolations were attempted from all stems and rachises with necrotic lesions (both fungus and
mock inoculated) and from plants where wound closure was incomplete (but showing no bark
necroses) within 24 hours of harvesting [29]. Six tissue samples were taken from each necrotic
stem or rachis—two from the inoculation site, two from the proximal lesion edge and two from
an intermediate position in the distal part of the lesion. In the case of partially closed wounds, the
samples were taken from below the wound surface and from green tissues approximately 1.5 cm
distal and proximal to the inoculation wound. The samples (size approx. 5 x 2 x 2 mm; in the case
of very little necroses consisting of dead and living host tissue) were excised aseptically upon disin-
fection of the surface with 96% ethanol and upon removal of the superficial tissue. The samples
were placed on malt extract agar (MEA) with 200mg/L Tetracycline (Tetracyclinum TZF Polfa,
Poland) and incubated at 15°C for at least three weeks and identified morphologically. The isola-
tion from an organ was regarded as positive if the respective fungus grew from at least one tissue
sample. In total, 1362 inoculation samples and 168 control samples underwent evaluation.

For statistical purposes, one-way analysis of variance (ANOVA) was used, followed by a
HSD Tukey test for variables with homogeneity of variance and, in other cases, the non-
parametric multiple comparison Kruskal-Wallis test was utilized (see results). Homogeneity of
variance was tested by means of a Levene's test. All statistical calculations were performed
using the software STATISTICA, version 10 (www.statsoft.com).

Results
Once F. excelsior and F. pennsylvanica were inoculated with H. albidus andH. fraxineus,
necrotic lesions developed around the inoculation wounds in varying degrees depending on
the fungal species tested, the ash species in question and the organ inoculated.

Rachis inoculations with H. albidus
On rachises inoculated with H. albidus, we saw necrotic lesions develop on 16.7% of the
wounds on F. excelsior and on 33.3% of those on F. pennsylvanica (Table 2). However, the

Table 3. Presence of stem necroses 12months post inoculation withH. albidus and H. fraxineus.

Fungus Host Inoculated
stems (n)

Lack of longitudinal necrosis [n] Longi-tudinal necrosis
present [n]

Mean length of necrosis* [cm]
(min–max)

complete
scarring

incom-plete
scarring

H. albidus F. excelsior 36 23 13 0 0 b** (0)

H.
fraxineus

F. excelsior 36 0 0 36 18.0 a (8.0–27.9)

Control F. excelsior 6 6 0 0 0 b (0)

H. albidus F.
pennsylvanica

36 27 9 0 0 b (0)

H.
fraxineus

F.
pennsylvanica

36 25 9 2 1.9 b (1.2–2.7)

Control F.
pennsylvanica

6 6 0 0 0 b (0)

*–mean of the all isolates

**Variables with the same letter are not significantly different for p = 0.05 (Kruskal-Wallis test).

doi:10.1371/journal.pone.0141592.t003
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necroses were small in size (up to 1.2 cm long on F. excelsior and 1.3 cm on F. pennsylvanica)
(Table 2, Figs 1 and 2). There was no significant difference in lesion length between the tested iso-
lates (Fig 1). Wound closure was complete in 19.4% of the rachises of both Fraxinus species (Fig
2C and 2D). However, in some cases, necroses developed before wound closure could take place
(Fig 2F) or, in other cases, were associated with pronounced callus formation (Fig 2G). In the
case of F. pennsylvanica, independent of the presence of a necrotic lesion, reddish discoloration
of the rachis surface was observed around the wound in 22.2% of inoculations (Fig 2D–2F).

Stem inoculations with H. albidus
Stem inoculation withH. albidus did not produce necrosis on any of the 72 individual trees for
either of the two ash species and the inoculation wounds completely or, in some cases partially
healed within one year (Fig 3A–3C, Table 3).

Rachis inoculations with H. fraxineus
Hymenoscyphus fraxineus caused large, light to dark brown necrotic lesions to appear on all
inoculated F. excelsior rachises (mean length 8.4 cm, maximal length 16.6 cm; Table 2, Fig 4A)
without exhibiting significant differences between the isolates (Fig 1) or between the samples
from different years. The leaf section distal to the lesion had died off at the time of harvest (two

Fig 1. Lesion development on rachises. Difference in necrosis length on F. excelsior and F. pennsylvanica rachises two months after inoculation of
selected strains ofH. fraxineus and H. albidus. Variables with the same letter are not significantly different for p = 0.05 (HSD Tukey post hoc test after
ANOVA).

doi:10.1371/journal.pone.0141592.g001
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months post inoculation) in 35.2% of the rachises. The extension of the necrosis in both proxi-
mal and distal directions varied considerably and, in some cases, ceased upon insertion of leaf-
let petiolules.

Similiarly, on F. pennsylvanica, necroses also developed on all inoculated rachises (Fig 4B–
4G). However, these lesions were significantly smaller than those seen on F. excelsior (average
length 1.9 cm, maximal length 6.2 cm) and considerably larger than those appearing on the
control trees (Table 2). Amongst the fungal isolates, strain No. 20018 produced notably longer
lesions (HSD Tukey test, p = 0.05) (Fig 1). In a single case, the formation of a pseudosclerotial

Fig 2. Rachis inoculations withH. albidus on F. excelsior (A-B) and F. pennsylvanica (C-H). Appearance of the inoculated wounds after two
months. (A) Wound without callus formation and no necrosis, (B) necrotic lesion starting from the distal wound edge, (C) largely closed wound with no
discoloration of the surrounding tissue, (D) completely closed wound surrounded by a narrow area of reddish discoloration, (E) partially closed wound
surrounded by a pronounced area of reddish discoloration, (F) completely closed wound surrounded by a narrow necrotic lesion, (G) completely closed
wound surrounded by an extended necrotic lesion, (H) partially closed wound with limited necrosis next to the margin. Scale bars denote a length of 0.3 cm.

doi:10.1371/journal.pone.0141592.g002
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plate ofH. fraxineus (identified by the presence of Chalara phialides) could be observed on the
wound surface (Fig 4B). As with F. excelsior, sometimes the spreading of the lesion was

Fig 3. Stem inoculations withH. albidus (A-C) andH. fraxineus (D-F). Appearance of the inoculated
wounds after 12 months. (A) Completely closed wound on F. excelsior, (B) partially closed wound on F.
excelsior, (C) completely closed wound on F. pennsylvanica, (D) extensive necrosis on F. excelsior, (E)
partially closed wound with small necrotic lesion on F. pennsylvanica, (F) completely closed wound on F.
pennsylvanica. Scale bars denote a length of 0.5 cm.

doi:10.1371/journal.pone.0141592.g003
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Fig 4. Rachis inoculations withH. fraxineus on F. excelsior (A) and F. pennsylvanica (B-G).
Appearance of the inoculated wounds after twomonths. (A) Extensive necrosis on F. excelsior, (B)
necrosis on F. pennsylvanica surrounded by reddish discoloration, the wound surface is blackened due to the
formation of a pseudosclerotial plate of the fungus, (C) no further growth of the necrosis upon insertion of a
petiolule, (D) necrotic lesion surrounded by reddish discoloration, (E) non-necrotic wound without

Virulence of Hymenoscyphus albidus andH. fraxineus

PLOSONE | DOI:10.1371/journal.pone.0141592 October 30, 2015 8 / 15



interrupted by leaflet insertions (Fig 4C). The rachis necroses on F. pennsylvanica were often
(64.8% of cases) encased in a reddish discolored area (Fig 4B and 4D). Occasionally single leaf-
lets distal to the lesion withered and, in one case, the whole distal leaf portion died off.

Stem inoculations with H. fraxineus
Hymenoscyphus fraxineus caused necrotic lesions on all inoculated F. excelsior stems. Their mean
length was 18.0 cm, the maximum being 27.9 cm (Table 3, Figs 5 and 3D). As a result of girdling,
the entire distal segments died off in 11.1% of the stems. In contrast, only two out of the 36
(5.5%) inoculated F. pennsylvanica plants developed necrotic lesions (mean length 1.9 cm, Figs 5
and 3E, Table 3). In all other cases, the wounds either completely or partly healed (Fig 3F) and
the distal part of the shoot remained healthy and unharmed. There was no significant difference
between the inoculated trees and the control ones (Table 3). The difference in necrosis length
between F. excelsior and F. pennsylvanica was highly significant. With F. pennsylvanica, there was
no significant difference between the inoculated trees and the control ones (Table 3).

Reisolations and controls
H. albidus was only reisolated from some ofvthe inoculated rachises affected by necrosis and
from stems showing incomplete wound closure (Table 4) and never from living tissues

surrounding discoloration, (F) completely closed wound with pycnidia of Phoma sp. on the protruding tissue
resulting from the incision, (G) extensive necrotic lesion with some reddish discoloration at the distal and
proximal ends. Scale bars denote a length of 0.3 cm.

doi:10.1371/journal.pone.0141592.g004

Fig 5. Lesion development on stems.Difference in necrosis length on Fraxinus excelsior and Fraxinus pennsylvanica stems 12 months after inoculation
with selected strains of Hymenoscyphus fraxineus andHymenoscyphus albidus. Variables with the same letter are not significantly different for p = 0.05
(Kruskal-Wallis test).

doi:10.1371/journal.pone.0141592.g005
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extending below or above the wound. In contrast, H. fraxineus was detected in the majority of
inoculated rachises of both ash species and in the stems of F. excelsior, but only very rarely in
the stems of F. pennsylvanica (Table 4). However, fungi of the mitosporic genera Alternaria,
Cladosporium, Colletotrichum, Epicoccum, Fusarium, Lecytophora, Phoma and Phomopsis were
repeatedly isolated from necrotic areas or asymptomatic tissues adjacent to the wound. Several
species (Alternaria, Cladosporium, Phoma, Phomopsis) had sporulated on the dead tissue at the
time of sampling (Fig 4F).

None of theHymenoscyphus species were isolated from any of the mock inoculations, inde-
pendent of host species and organ (Fig 6). All control wounds had completely healed at the
time of evaluation (Table 4, Fig 6).

Discussion
The presented study confirms the high virulence of H. fraxineus in relation to F. excelsior.
Moreover, we detected no difference in virulence among the fungal strains tested on this host.
This uniformity could be explained by the limited allelic diversity of the pathogen population
in Europe [15, 21]. The fungus infects several Fraxinus species and F. excelsior is known to be
particularly susceptible [14, 30–32]. The encounter of an exotic pathogen with a naive (i.e.
non-coevolved) host population can result in the emergence of a new lethal disease. Several
such events have previously affected forest tree species populations on a large scale, e.g. chest-
nut canker, Dutch elm disease, sudden oak death and white pine blister rust [33–37]. A very
minor proportion of F. excelsior exhibits a tolerance to to ash dieback, thus hope remains for
the evolutionary rescue of the host in the long run [32]. However, the introduction of addi-
tional fungal alleles from Asia could possibly negate this effect [15].

The formation of necrotic lesions caused byH. fraxineus was repeatedly demonstrated via
artificial stem inoculations [19, 29, 38, 39]. We also observed necroses on ash leaf rachises,
which led to the dying off of the distal leaf parts, a symptom commonly observed in nature.
However, natural infection occurs via ascospores [40] and it is not possible to adequately imi-
tate this process by means of wound inoculations. After ascospore infection, various processes
could be considered decisive for disease expression: (i) subtle defense responses of the host dur-
ing early stages of the infection process and/or (ii) interactions between the pathogen and epi-
phytic or endophytic leaf colonizers. With our inoculation technique, we focused on capturing
the defense capabilities exhibited by the host when confronted with a previously established
infection. The fungal metabolites, which are ultimately responsible for necrosis formation,

Table 4. Reisolations ofH. albidus andH. fraxineus from the wounds of inoculated stems and rachises.

Fungus Host Stems Rachises

with necroses % (n) 1 with incomplete wound
closure % (n)

with necroses % (n) with in-complete
scarring % (n)

H. albidus F. excelsior -2 7.7 (13) 11.1 (9) 9.1 (11)

H. fraxineus F. excelsior 66.7 (36) 70.4 (54)

Control F. excelsior 0 (6) 0 (8)

H. albidus F. pennsylvanica - 11.1 (9) 11.1 (18) 8.3 (12)

H. fraxineus F. pennsylvanica 50.0 (2) 11.1 (9) 59.3 (54)

Control F. pennsylvanica 0 (6) 0 (8)

1 Number of samples
2 No necroses observed and no reisolations attempted.

doi:10.1371/journal.pone.0141592.t004
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have yet to be defined. Several secondary metabolites ofH. fraxineus have been described [26,
41–46], but their role in necrosis formation is as yet unclear. Currently, the only known H.
fraxineus phytotoxins—viridiol and 3,4-dimethylpentan-4-olide—are also produced by its
non-pathogenic sister species H. albidus [26, 46].

Hymenoscyphus fraxineus induced significantly smaller lesions on F. pennsylvanica com-
pared to those that formed on F. excelsior and our data are well in line with the observations
that green ash is significantly less susceptible to ash dieback than F. excelsior. Also, on this host,
there were almost no differences in virulence among the fungal strains, only one of the nine
strains caused significantly larger necroses (Fig 1). Concerning the susceptibility of F. pennsyl-
vanica toH. fraxineus, only a small number of coincidental observations are available: In Esto-
nia, F. pennsylvanica is affected to a moderate degree [18]. In Austria, dieback of F.
pennsylvanica has only been observed sporadically and this species appears to be much more
resistant than both F. excelsior and F. angustifolia [20]. In northern Germany, only mild

Fig 6. Control inoculations on rachises (A-F) and stems (G-H) of F. excelsior and F. pennsylvanica. Appearance of the wounds after twomonths
(rachises) and 12 months (stems). (A-B) completely closed wounds on F. excelsior, (C) completely closed wound with strong callus formation, surrounded
by reddish discoloration on F. pennsylvanica, (D) normal wound closure with no discoloration, (E) same situation as in D, but with localized reddish
discoloration, (F) wound closed by means of an inconspicuous callus, no discoloration, (G) completely closed stem wound on F. excelsior, (H) completely
closed stem wound on F. pennsylvanica. Scale bars denote a length of 0.3 cm.

doi:10.1371/journal.pone.0141592.g006
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symptoms were noted subsequent to exposure to natural infection pressure [19]. However, fol-
lowing stem wound inoculations withH. fraxineus in a phytotron, F. pennsylvanica exhibited a
moderate level of susceptibility. In addition, a relatively high proportion (16% out of 75) of nat-
ural stem infections was observed on plants delivered from a nursery in Germany [21]. As a
consequence, we cannot discount the importance of environment-related predisposition with
regards to this host’s susceptibility [47] or the possibility that particularly susceptible prove-
nances exist [48]. The native range of green ash is vast and the species comprises at least three
ecotypes [49]. A significant drawback of our data, as well as of the studies cited above, is the
fact that no detailed information on host provenance is available. Future susceptibility tests
should therefore be performed on a more representative selection of F. pennsylvanica
genotypes.

For F. pennsylvanica, in contrast to F. excelsior, the susceptibility of rachises was much
higher than that of stems, but the extension of the necroses along rachises took shape more
slowly than they did on F. excelsior, indicating the presence of an effective defense mechanism.
Consequently, the risk of stem infection is considerably smaller for F. pennsylvanica than for F.
excelsior. This gives rise to the possible solution of replacing, to an extent, infested F. excelsior
with F. pennsylvanica in Europe. However, this only applies should the expansion of the emer-
ald ash borer in Europe be contained [50, 51].

NeitherH. fraxineus nor H. albidus have been detected in North America [52]. The intro-
duction of H. fraxineus to North America would add to the threat already being posed by the
emerald ash borer. Since green ash, like other ash species, could serve as a vector for the ash-
dieback pathogen, plant transfer from Europe or Asia to North America should be avoided.
Other American ash species are also at risk, such as F. nigraMarsh., which has proven highly
susceptible toH. fraxineus in Estonia [18]. Our experiments demonstrate thatH. albidus,
which is indigenous to Europe, is virtually non-pathogenic for both ash species, independent of
the inoculated organ (rachis or stem). Only small necrotic lesions developed on a handful of
artificially inoculated ash rachises andH. albidus was seldom reisolated. Consequently, we can-
not disregard that H. albidus exerts some influence, albeit minor, on the tissues surrounding
the inoculation wound, potentially predisposing them to secondary fungi. albudus

This fungus is evidently particukarly poorly adapted to the wound environment or, alterna-
tively, it does not compete well against other wound colonizing microbes. Hymenoscyphus albi-
dus was never isolated from living tissue and this could cast doubts on the possibility of this
species leading an endophytic lifestyle, as suggested by Baral und Bemmann [23]. Nevertheless,
molecular detection techniques could possibly reveal the presence of the fungus in living plant
tissue, as shown by Cleary et al. [53] for H. fraxineus in ash seeds. So far, F. excelsior rachises
(and in rare cases those of F. angustifolia) have been recognized as a substrate ofH. albidus [23,
54–56]. The sporulation window of H. albidus spans July to September [23, 56]. Our inocula-
tions were made using colonized rachis pieces at the beginning of this period, most likely pro-
viding a suitable precondition for fungal development. In any case, our data show that the
ecological behaviour of H. albidus does not mirror that of H. fraxineus after wound inoculation
and further detailed studies of its biology are required. In comparison with H. fraxineus, such
data might enhance our understanding of ash dieback etiology. In spite of the limitations dis-
cussed above, we conclude thatH. albidus does not pose a noteworthy risk for F. pennsylvanica
and the same has also recently been concluded for F.mandshurica [27]. However, theHyme-
noscyphus species comprise only a minute proportion of the whole tree microbiome and eco-
logical surprises could definitely arise [57]. Avoidance of further pathogen introductions and a
comprehensive understanding of host-pathogen interactions in a changing environment repre-
sent the greatest modern-day challenges for forest pathology [58].
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