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Abstract

The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to
multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification,
except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In
order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is
presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity
prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) a-helix and
(ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310
cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-
fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial
and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher
accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at ,http://
sourceforge.net/projects/csamppred/. and runs on any Linux machine.
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Introduction

Microorganisms may cause enormous problems in diverse fields,

including human health and agribusiness. In the last few decades,

many microorganisms have developed resistance against a number

of antimicrobial agents. In this context, the antimicrobial peptides

(AMP) have been proposed as an alternative to control such

dangerous microorganisms [1]. The AMPs can perform different

functions under different environmental conditions. This ability is

also known as ’peptide promiscuity’ [2]. According to Franco

(2011) [2], there are two levels of multifunctionality, where on the

first level, a single peptide can perform diverse functions; and on

the second level, a peptide superfamily has members with different

functions and/or members with multiple activities, which could be

related to different exposed residues in the same structural

framework [2].

These compounds have been isolated from several sources, in all

life kingdoms [1,3], and they can be classified in two major groups,

according to the presence or absence of disulphide bridges [3].

The disulphide-free peptides are composed mainly of a-helical and

unstructured AMPs; while the cysteine-stabilized AMPs are

composed of several classes, which are divided according to their

disulphide patterns. The cysteine-stabilized peptides can be related

to both multifunctional behaviors [2,4], with a strong tendency to

have superfamily multifunctionality.

Family’s multifunctional behavior has been linked to special

events, such as gene duplication, which allow the generation of

novel protein functions derived from the ability of a protein to

adopt a new function based on the modification of a few amino

acid residues in an existing fold [2,5]. Those modifications can

have effects, slight or not, on the pivotal function, being able to

yield a totally unusual function. Therefore, the structure-activity

relationship is controversial for AMPs, since this relationship is

becoming more and more unclear [2].

This kind of behavior can be observed in several cysteine-

stabilized peptides, including the ones which are restricted to one

life kingdom, such as the a defensins from vertebrates [6,7]; the

cyclotides [8,9] and the thionins [10,11] from plants; and also

observed in classes which can be found in more than one life

kingdom, such as the CSab defensins, which can be found in

plants [12,13], insects [14,15] and fungi [16,17,18]; and the

hevein-like peptides, which can be found in plants and fungi

[4,19].

Recently, it has been proposed that physicochemical properties

can be used as descriptors to predict the antimicrobial activity of

cysteine-stabilized peptides by means of machine learning methods

[20]. Several studies have applied machine learning methods for

antimicrobial activity prediction [20–26]. These methods aim to

identify AMPs prior to in vitro tests, so that antimicrobial sequences

can be identified directly from protein databases and further

expressed in heterologous systems or synthesized [21,26].

In protein data bases, several sequences are annotated as

hypothetical, unnamed or unknown proteins, including sequences

that resemble antimicrobial peptides [4,27]. An easy way to

explore the protein databases consists of searching for sequences

through patterns or another similarity search approach, such as
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local alignments [17]. This kind of approach is commonly applied

to cysteine-stabilized antimicrobial peptides, since the classes have

a typical cysteine pattern. Indeed, the majority of plant AMPs are

cysteine rich [27,28], with only few examples of plant disulphide-

free AMPs [29–33]. If compared to the peptide purification

process, the database search has the advantages of fast sequence

identification and low costs. Therefore, this kind of approach can

be applied in a more general manner, searching for any small

cysteine-rich peptides in plant genomes [27] or in a more specific

manner, by searching for a specific AMP class against the whole

database [4,34].

However, since cysteine-stabilized AMPs are mostly multifunc-

tional peptides, how is it possible to identify the sequences with

antimicrobial activity? The answer will in fact be obtained only

through in vitro and/or in vivo tests; however, the prediction

methods can provide an indication of activity, improving the

search methods. Bearing this in mind, here the CS-AMPPred

(Cysteine-Stabilized Antimicrobial Peptides Predictor) is pre-

sented, as an updated version of the support vector machine

(SVM) model proposed by our group [20] for antimicrobial

activity prediction in cysteine-stabilized peptides.

Materials and Methods

Data Sets
The positive data set (PS) was constructed by selecting

sequences with four or more cysteine residues from the Antimi-

crobial Peptides Database (APD) [35]. This set was manually

curated, keeping only the sequences annotated at least with

activities against bacteria, fungi or virus. In addition, incomplete

sequences were removed. PS was composed of 385 sequences with

size ranging from 16 to 90 amino acid residues. The negative data

set (NS) was composed of a subset of Protein Data Bank (PDB),

while in our previous work it was composed of random proteins

predicted as transmembrane [20]. Initially, the protein sequences

retrieved from the search by the term ‘‘NOT antimicrobial’’ were

selected and then the sequences ranging from 16 to 90 residues

were chosen. Therefore, redundant sequences were removed with

a cutoff of 40% through CDHIT [36], with 1749 sequences

remaining; from these, 385 were randomly selected to compose

the NS. The blind data set (BS1) was composed of 75 sequences

(approximately 20%) randomly selected from each set, PS and NS,

totaling 150 sequences, while the training data set (TS) was

composed of the remaining sequences, totaling 620 sequences (310

from each set). Similar negative data sets were used by Thomas

et al. [23], Torrent et al. [24] and Fernandes et al. [25].

Sequence Descriptors and Statistical Analysis
Preliminarily, nine structural/physicochemical properties were

chosen: (i) average charge, (ii) average hydrophobicity, (iii)

hydrophobic moment, (iv) amphipathicity, (v) a-helix propensity,

(vi) flexibility and indexes of (vii) a-helix, (viii) b-sheet and (ix) loop

formation. From our previous work [20], only three properties

were considered (average hydrophobicity, hydrophobic moment

and amphipathicity), being the average charge chosen instead the

total charge. The secondary structure indexes were calculated as

the average of weighted amino acid frequencies of Levitt (1977)

[37]; flexibility was calculated as the average of amino acid

flexibility, through the scale form Bhaskaran & Ponnuswamy

(1988) [38]; the a-helix propensity was measured as the average

energy to be applied in each amino acid for a-helix formation

[39]; the amphipathicity was calculated as the ratio between

hydrophobic and charged residues [3]; average hydrophobicity

and hydrophobic moment were calculated using Eisenberg’s scale

[40]; the hydrophobic moment was given by Eisenberg’s equation

[40]; and the average charge was calculated as the net charge at

physiological pH normalized by the number of residues. The final

ensemble of sequence descriptors was defined through a principal

component analysis (PCA). The nine descriptors were measured

for the positive data set, and then the PCA was applied,

Figure 1. Principal component analysis of sequence descriptors for cysteine-stabilized peptides. The components are indicated by
arrows: as larger the arrow is, major is the component contribution to the set’s variance. (A) The disposition of the nine sequence descriptors in the
peptide space; (B) the final ensemble of descriptors, the descriptors hydrophobic moment, index of b-sheet formation, rate between charged and
hydrophobic residues and a-helix propensity were ruled out.
doi:10.1371/journal.pone.0051444.g001
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subsequently the descriptors with redundant behavior or with little

influence on variance were removed. Therefore, a two sided

Wilcoxon-Mann-Whitney non-parametric test was applied for

verifying the differences between the sequence descriptors in the

PS and NS sets, with a critical value of 0.05. The statistical

analyses were done through the R package for statistical

computing (http://www.r-project.org).

Support Vector Machine’s Training and Validation
Three SVM models were developed through SVM Light [41],

using the linear, polynomial and radial kernels. The training was

done using the training set. An overview of the model’s accuracy

was estimated through a 5-fold cross validation, taking into

account only the training data set. Therefore, the models were

challenged against the blind data set, where the following

parameters were measured:

Sensitivity~
TP

TPzFN
|100 ð1Þ

Specificity~
TN

TNzFP
|100 ð2Þ

Accuracy~
TPzTN

TPzTNzFNzFP
|100 ð3Þ

Figure 2. Distribution of sequence descriptor values. The left box in each panel corresponds to the AMPs. All descriptors have statistical
differences when compared to the non-antimicrobial data set, with a critical value of 0.05. The observed p-values are as follows: charge (,2.2e-16),
hydrophobicity (2.169e-06), flexibility (,2.2e-16), index of a-helix formation (,2.2e-16) and index of loop formation (2.908e-10).
doi:10.1371/journal.pone.0051444.g002

Figure 3. ROC curves for the CS-AMPPred models against the
blind data set (BS1).
doi:10.1371/journal.pone.0051444.g003
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PPV~
TP

TPzFP
|100 ð4Þ

MCC~
(TP|TN){(FP|FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)|(TPzFN)|(TNzFP)|(TNzFN)

p ð5Þ

Where TP is the number of true positives; FN, the false negatives;

TN, the true negatives; FP, the false positives, PPV, the probability

of positive prediction; and MCC, Matthews Correlation Co-

efficient.

Additionally, the sensitivity of each SVM model was tested

separately against each peptide class: a-defensins, b-defensins,

CSab defensins, cyclotides, hepcidins, hevein-like peptides,

knottins, panaedins, tachplesins, h-defensins, thionins and un-

defined. The group of undefined peptides encompasses peptides

without a defined class and classes with fewer than five members.

Furthermore, the 1364 sequences from PDB that were not

included in NS were used for verifying the specificity of models.

Benchmarking
The blind data set was used to compare the models generated in

this study with the algorithms SVM, Discriminant Analysis (DA),

and Random Forest (RF) from the Collection of Antimicrobial

Peptides (CAMP) [23], an artificial neuro fuzzy inference system

(ANFIS) [25] and also the SVM model generated by our previous

work [20]. The assessment of each model was done through the

parameters described in equations 1 to 5. Additionally, the blind

data set from our previous work (BS2) [20] was also used as

a second benchmarking assessment. BS2 is composed of 53

antimicrobial sequences with six cysteine residues extracted from

APD and 53 proteins randomly generated predicted as trans-

membrane proteins [20]. There is an overlapping between the

positive BS1 and BS2 sequences, once they were extracted from

APD. Nevertheless there is no overlapping between the negative

sequences, once in BS1 they were extracted from PDB.

Furthermore the sequences from BS2 were randomly generated

clearly showing any coinciding. A third assessment was done with

the weighted average of the two benchmarks. BS1 and BS2 are

available as Data Sets S1 and S2, respectively, in fasta format.

Results and Discussion

The cysteine patterns are widely spread in several classes of

biologically active peptides. These patterns are highly conserved

and are responsible for keeping stable the structural folding. For

this reason they are used for peptide classification [4,20,27]. Due

to their multifunctionality, they have an enormous biotechnology

potential [1,2,31,32]. However, due to their multifunctional

character, the identification of a single function without in vitro

and/or in vivo tests is a very difficult task. As an example, we can

cite the cyclotide parigidin-br1. This peptide was identified in

leaves of Palicurea rigida [8] but was unable to control bacterial

development, despite sharing 75% of identity with a bactericidal

cyclotide named circulin b [42].

Among the possible activities, the antimicrobial one is a good

target for prediction, since there are several databases dedicated to

peptides with this kind of activity, such as APD [35] and CAMP

[23]. Several models of antimicrobial activity prediction have been

proposed by using such databases [20–25]. On the other hand,

there are no non-antimicrobial peptide databases, which becomes

an enormous challenge for constructing reliable models

[20,21,25]. Several approaches have been proposed to overcome

this problem, including the use of proteins with the annotation of

non-antimicrobial from SwissProt or PDB [21,23–25] or even

using sequences predicted to have signal peptides or trans-

Table 1. Evaluation of CS-AMPPred models against the individual cysteine-stabilized AMP classes and also PDB sequences which
were not used in the data sets.

Model a-defensins1 b-defensins1 CSab defensins1 Cyclotides1 Undefined1 PDB#

Linear 93.33 96.83 81.36 70.34 84.13 80.65

Polynomial 97.78 95.24 77.12 81.36 79.37 82.55

Radial 97.78 96.83 77.12 83.05 80.95 81.89

1Antimicrobial Peptide Classes, values computed through equation 1 (Sensitivity).
#Non Antimicrobial Peptides, values computed through equation 2 (Specificity), using the 1364 sequences from PDB which were not included in NS.
doi:10.1371/journal.pone.0051444.t001

Table 2. Benchmarking of prediction methods using the BS1.

Model Sensitivity Specificity Accuracy PPV MCC Reference

CS-AMPPred Linear 89.33 89.33 89.33 89.33 0.79 This work

CS-AMPPred Polynomial 94.67 85.33 90.00 86.59 0.80 This work

CS-AMPPred Radial 94.67 85.33 90.00 86.59 0.80 This work

ANFIS 94.67 76.00 85.33 79.78 0.72 [25]

CAMP SVM 93.33 78.67 86.00 81.40 0.73 [23]

CAMP Discriminant Analysis 98.67 70.67 84.67 77.08 0.72 [23]

CAMP Random Forest 90.67 61.33 76.00 70.10 0.54 [23]

SVM 84.00 26.66 55.33 53.39 0.13 [20]

doi:10.1371/journal.pone.0051444.t002

CS-AMPPred: The Cysteine-Stabilized AMPs Predictor
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membrane portions [20,25]. In this work, a subset of PDB was

used as a negative data set, since the proteins in PDB are overall

more curated than in other databases. The construction of the NS

was done in three steps. First, the proteins from PDB were selected

by searching for the term ‘‘NOT Antimicrobial’’; second, the

redundant sequences were removed with a cutoff of 40% of

identity, ensuring that the non-redundant sequences represent

a large sample space; and the last step was randomly selecting 385

sequences to compose the NS, avoiding an imbalance between NS

and PS. In the case of CS-AMPPred, a NS composed of non-

antimicrobial peptides with a similar number of cysteine residues

would be ideal for validating it. However, there is no warranty that

a peptide has no antimicrobial activity, unless it had been already

screened against several microorganisms. In the case of parigidin-

br1, it does not show bactericidal activity, but it was not tested as

fungicidal [8].

Another problem involved in antimicrobial activity prediction is

the size variation of the sequences. In this study, the sequences in

PS can vary from 16 to 90 amino acid residues. To solve this

problem two strategies have been proposed, (i) the use of a fixed

length of amino acids [21] and (ii) the use of physicochemical

properties as sequence descriptors [20,23,24]. Here, nine struc-

tural/physicochemical properties were chosen as sequence de-

scriptors and then reduced to five descriptors by means of PCA

(Figure 1). The final descriptors were average hydrophobicity,

average charge, flexibility, and indexes of a-helix and loop

formation (Figures 1b and 2). In addition, a two-sided Wilcoxon-

Mann-Whitney non-parametric test was applied to verify statistical

differences between PS and NS (Figure 2). The test indicates that

there are differences between the sets. Similar results were

observed by Torrent et al. [24]. These descriptors were chosen

according to properties commonly related to AMPs, such as

hydrophobicity and charge [20,23,25]. However, some descriptors

can have the same behavior of others or even be expressionless, as

observed for the hydrophobic moment (Figure 1). Therefore the

PCA was done in order to select the descriptors strongly related to

cysteine-stabilized antimicrobial peptides.

It is important to highlight that the use of net charge as

a descriptor shows a clear bias. The charge can indefinitely

increase or decrease with the sequence, while the other descriptors

have a maximum and a minimum value. For this reason, in this

study the average net charge at physiological pH was utilized.

However, the use of averaged descriptors causes a second bias,

since shuffled sequences will have the same averaged values

[20,43]. In our previous work the hydrophobic moment was

proposed to solve this bias [20]. Nevertheless, the PCA shows that

hydrophobic moment may not be a good property for the

antimicrobial activity prediction of cysteine-stabilized peptides.

Therefore, the properties must be carefully used together with the

cysteine patterns of cysteine-stabilized AMPs. We state that this

predictor must be used for cysteine stabilized peptides with

a known pattern or a previously identified domain, since those

descriptors are going to be only significant if the sequence is in its

correct order.

In fact, the descriptors selection through PCA was useful for

developing a more accurate antimicrobial activity prediction

system, since the three kernel functions reach higher accuracies in

the k-fold cross validation in comparison to our previous work

[20]. While in this work the kernels reach accuracies of at least

84.19% (linear and radial kernels), in our previous work, the best

Table 3. Benchmarking of prediction methods using the BS2.

Model Sensitivity Specificity Accuracy PPV MCC Reference

CS-AMPPred Linear 69.81 92.45 81.13 90.24 0.64 This work

CS-AMPPred Polynomial 77.36 90.57 83.97 89.13 0.69 This work

CS-AMPPred Radial 79.25 90.57 84.91 89.37 0.70 This work

ANFIS 100.00 100.00 100.00 100.00 1.00 [25]

CAMP SVM 88.68 96.23 92.45 95.92 0.85 [23]

CAMP Discriminant Analysis 90.57 98.11 94.34 97.96 0.89 [23]

CAMP Random Forest 96.23 0.00 48.11 49.04 20.14 [23]

SVM 98.11 67.92 83.02 75.36 0.69 [20]

doi:10.1371/journal.pone.0051444.t003

Table 4. Benchmarking of prediction methods using the BS1 and BS2.

Model Sensitivity Specificity Accuracy PPV MCC Reference

CS-AMPPred Linear 81.25 90.62 85.94 89.65 0.72 This work

CS-AMPPred Polynomial 87.50 87.50 87.50 87.50 0.75 This work

CS-AMPPred Radial 88.28 87.50 87.89 87.60 0.76 This work

ANFIS 96.88 85.94 91.41 87.32 0.83 [25]

CAMP SVM 91.41 85.94 88.67 86.67 0.77 [23]

CAMP Discriminant Analysis 95.31 82.03 88.67 84.14 0.78 [23]

CAMP Random Forest 92.97 35.94 64.45 59.20 0.35 [23]

SVM 89.84 43.75 66.79 61.50 0.38 [20]

doi:10.1371/journal.pone.0051444.t004

CS-AMPPred: The Cysteine-Stabilized AMPs Predictor
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accuracy on k-fold cross validation was 77% (polynomial kernel)

[20]. Here, the best accuracy was also reached by the polynomial

kernel, with 85.81%. This accuracy improvement indicates that

the five selected descriptors (average hydrophobicity, average

charge, flexibility, and indexes of a-helix and loop formation)

showed higher efficiency than the four descriptors previously

described by Porto et al. [20] (net charge at physiological pH,

average hydrophobicity, hydrophobic moment and amphipathi-

city).

The receiver-operating characteristic (ROC) curves obtained for

each kernel function against the blind data set (Figure 3) show that

the models are underestimated in 5-fold cross validation, which

also was observed in our previous work [20]. The accuracy of each

model increases by ,5% against the blind data set; the highest

accuracies are obtained with the polynomial and radial kernels

(90%), while the linear kernel shows 89.33% of accuracy.

Furthermore, the MCC indicate that the tree models have a good

quality prediction, with values of 0.79, 0.80 and 0.80 for linear,

radial and polynomial kernels, respectively. In addition, the

models have a PPV of 89.33%, 86.59% and 86.59%, respectively.

Although the model based on the polynomial kernel was the

best one for overall prediction concerning the blind data set and 5-

fold cross validation, the models based on linear and radial kernels

were better predictors than the polynomial kernel for some

individual classes, such as b-defensins, CSab defensins, cyclotides

and peptides without a defined class (Table 1). However, the three

CS-AMPPred models reach accuracies of 100% for the other

classes (hepcidins, hevein-like peptides, knottins, panaedins,

tachplesins, h-defensins and thionins). However, the model based

on polynomial kernel has a better prediction for non-antimicrobial

peptides. By using the 1364 sequences from PDB which were not

included in NS, the three models reach a specificity of ,82%

(Table 1). Despite this decoy, this value continues being considered

as a good prediction.

The benchmarking with the BS1 indicates that the CS-

AMPPred models have the best performances when compared

to other systems; even the linear model, which was the worst

CS-AMPPred model, was better than the other described

algorithms (Table 2). However, using the BS2, the CS-

AMPPred models were not as efficient as two CAMP algorithms

(SVM and DA) and the ANFIS network (Table 3). This CS-

AMPPred performance reduction with the BS2 was expected,

since it contains antimicrobial sequences that belong only to

three classes: a-defensins, CSab defensins and cyclotides. In

these classes, the sensitivity of CS-AMPPred models is reduced

when compared to the overall sensitivity from each model

(Table 1). This reduction has an influence on the third

benchmarking (Table 4), where the parameters of CS-AMPPred

models, ANFIS network and CAMP’s SVM and DA were more

balanced.

In summary, the CS-AMPPred models obtained the best

evaluations in a wider blind data set (Table 1). The CS-AMPPred

models have the highest accuracies when tested on the general

blind set and have a smaller number of input descriptors when

compared with the CAMP models, which need 68 descriptors,

once more showing the reliability of our principal component

analysis. The CS-AMPPred models also achieve similar accuracies

to other systems with more sequence descriptors, such as the

artificial neural network (ANN) from Torrent et al. [24], which

achieves an accuracy of 89.2% using eight descriptors; and the

quantitative structure active relationship (QSAR) based ANN from

Fjell et al. [22], which achieves an accuracy of 86.5% using 44

descriptors. However, the comparison with these two other

systems must be made carefully since different data sets were

used for assessment.

However, the most intriguing results were obtained with two

other models, the SVM of our previous study [20] and the RF

algorithm from CAMP [23], since they have a bad assessment,

with MCC values below 0.7 (Tables 2, 3 and 4). The RF model

did not have high specificity values for prediction of random

protein sequences predicted as transmembrane (Table 3), and

the SVM from our previous work did not have a good

specificity for proteins from PDB (Table 2). These bad

assessments show that when these prediction models are

challenged with an unknown data set, their assessment

parameters may not be the same. Indeed, a benchmarking

event such as CASP for protein structure prediction is needed

for comparing different algorithms and evaluates their perfor-

mances in an actual blind data set.

In conclusion, this report presents the CS-AMPPred, an

antimicrobial peptide predictor based on SVM Light [41]. The

CS-AMPPred achieves predictions with enhanced reliability,

showing an accuracy of 90% (polynomial model). Furthermore,

it has a better assessment than previous systems in the overall

blind data set. This better assessment is due to the specific

target from our system, which was done aiming to predict

antimicrobial activity for cysteine-stabilized peptides. In fact, this

predictor can be used to predict the antimicrobial activity of

several peptide sequences, since they have a regular cysteine

pattern. The CS-AMPPred can be helpful for revealing the

antimicrobial activity from multifunctional peptides. In addition,

it can be useful for a prediction prior to synthesis of some

predicted proteins in protein databases. In the future, sequences

without antimicrobial activity will be predicted and tested

in vitro.

Availability and Requirements
A standalone version of CS-AMPPred was developed under

the GNU/GPL 3.0 license and it is available for download at

,http://sourceforge.net/projects/csamppred/.. The software

was developed using the programming language PERL and

compiled using the PERL Archiving Toolkit. CS-AMPPred runs

on any Linux machine and its download is free for academic

use; commercial users should contact the authors for license.

Supporting Information

Data Set S1 The blind data set 1 (BS1) in fasta format. It was

composed of 75 sequences randomly selected from each set (PS

and NS) totaling 150 sequences.

(FAS)

Data Set S2 The blind data set 2 (BS2) in fasta format. BS2 is

composed of 53 antimicrobial sequences with six cysteine residues

extracted from APD and 53 proteins randomly generated

predicted as transmembrane proteins [20].

(FAS)
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de Análises Proteômicas e Bioquı́micas of Universidade Católica de Brası́lia
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Identification of novel antibacterial peptides by chemoinformatics and machine

learning. J Med Chem 52: 2006–2015.
23. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010)

CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids

Res 30: D774–D780.
24. Torrent M, Andreu D, Nogués VM, Boix E (2011) Connecting peptide

physicochemical and antimicrobial properties by a rational prediction model.
PLoS One 6 (2): e16968.

25. Fernandes FC, Rigden DJ, Franco OL (2012) Prediction of antimicrobial

peptides based on the adaptive neuro-fuzzy inference system application.
Biopolymers 98 (4): 280–287.

26. Porto WF, Silva ON, Franco OL (2012) Prediction and Rational Design of
Antimicrobial Peptides. In: Faraggi E, editor. Protein Structure, InTech, 377–

396.
27. Silverstein KAT, Moskal WA, Wu HC, Underwood BA, Graham MA, et al.

(2007) Small cysteine-rich peptides resembling antimicrobial peptides have been

under-predicted in plants. Plant J 51 (2): 262–280.
28. Cândido ES, Porto WF, Amaro DS, Viana JC, Dias SC, et al. (2011) Structural

and functional insights into plant bactericidal peptides. In: Méndez-Vilas A,
editor. Science against microbial pathogens: communicating current research

and technological advances. Formatex, 951–960.

29. Pelegrini PB, Murad AM, Silva LP, Dos Santos RC, Costa FT, et al. (2006)
Identification of a novel storage glycine-rich peptide from guava (Psidium guajava)

seeds with activity against Gram-negative bacteria. Peptides 29 (8): 1271–1279.
30. Mandal SM, Dey S, Mandal M, Sarkar S, Maria-Neto S, et al. (2009)

Identification and structural insights of three novel antimicrobial peptides
isolated from green coconut water. Peptides 30 (4): 633–637.

31. Mandal SM, Migliolo L, Das S, Mandal M, Franco OL, et al. (2012)

Identification and characterization of a bactericidal and proapoptotic peptide
from Cycas revoluta seeds with DNA binding properties. J Cell Biochem 133: 184–

193.
32. Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, et al. (2012) Cn-

AMP-1: A new promiscuous peptide with potential for microbial infections

treatment. Biopolymers 98 (4): 322–331.
33. Tavares LS, Rettore JV, Freitas RM, Porto WF, Duque AP, et al. (2012)

Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from
guava seeds. Peptides 37 (2): 294–300.

34. Mulvenna JP, Mylne JS, Bharathi R, Burton RA, Shirley NJ, et al. (2006)
Discovery of cyclotide-like protein sequences in graminaceous crop plants:

ancestral precursors of circular proteins? Plant Cell 18 (9): 2134–2144.

35. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide
database and its application in peptide design. Nucleic Acids Res 37: D933–

D937.
36. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large

sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.

37. Levitt M (1978) Conformational preferences of amino acids in globular proteins.
Biochemistry 17 (20): 4277–4285.

38. Bhaskaran R, Ponnuswamy PK (1988) Positional flexibilities of amino acid
residues in globular proteins. Int J Peptide Protein Res 34(4): 241–255.

39. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental

studies of peptides and proteins. Biophys J 75: 422–427.
40. Eisenberg D, Weiss RM, Terwilliger TC, Wilcox W (1982) Hydrophobic

moments and protein structure. Faraday Symp Chem Soc 17: 109–120.
41. Joachims T (1999) Making large-Scale SVM learning practical. In: Schölkopf B,

Burges C, Smola A, editors. Advances in Kernel Methods - Support Vector
Learning. MIT-Press, 41–56.

42. Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of

antimicrobial peptides containing end-to-end macrocycle and cystine-knot
disulfides. Proc Natl Acad Sci USA 96(16): 8913–8918.

43. Loose C, Jensen K, Rigoutsos I, Stephanopoulos G (2006) A linguistic model for
the rational design of antimicrobial peptides. Nature 443 (7113): 867–869.

CS-AMPPred: The Cysteine-Stabilized AMPs Predictor

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e51444


