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Abstract: In this paper, we present a Weibull link (skewed) model for categorical response data arising
from binomial as well as multinomial model. We show that, for such types of categorical data, the most
commonly used models (logit, probit and complementary log–log) can be obtained as limiting cases.
We further compare the proposed model with some other asymmetrical models. The Bayesian as
well as frequentist estimation procedures for binomial and multinomial data responses are presented
in detail. The analysis of two datasets to show the efficiency of the proposed model is performed.
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1. Introduction

The statistical problem of estimating binary response variables is very important in many areas
including social science, biology and economics [1]. The vast bibliography of categorical data presents the
big evolution of the methods that handle appropriately binary and polychotomous data. More details can
be found in Agresti [2]. Generalized linear model (GLM) has a wide range of tools in regression for count
data [3]. Two important and commonly used symmetric link functions in GLM are the logit and probit
links [4]. Many studies have investigated the limitations of these symmetric link functions. It is well
accepted that when the probability of the binary response approaches 0 at a different rate from the rate
(as a function of covariate) it approaches 1, symmetric link functions cannot be appropriate [5]. Many
parameteric classes of link functions are in the literature, including the power transform of logit link
by Aranda-Ordaz [6] and the a general link class of Chen et al. [5]. Other works with one-parameter
class include Guerrero and Johnson [7], Morgan [8], Whittmore [9] and a host of others. Existing
models for two-parameter families include Stukel [10], Prentice [11], Pregibon [12], Czado [13] and
Czado [14].

Stukel’s model with transformation of both tails of logit link is very general and can approximate
many important links including probit, logit and complementary log–log. However, the Bayesian
analysis of Stukel’s model is not straightforward to implement, particularly in presence of multiple
covariates and noninformative improper priors. The model proposed by Chen et al. [5], which includes
the skew-probit model, uses a latent variable approach [15] that is convenient for sampling from
the posterior distribution. Using the Albert and Chib [15] technique, Kim et al. [16] proposed the
generalized t-link models, Naranjo et al. [17] proposed the asymmetric exponential power (AEP)
model, and Rubio and Liseo [18] discuss the Jeffreys prior for skew-symmetric models. However the
frequentist analysis for these models are not trivial. For the skew-probit model, The existence of the
maximum likelihood estimator (MLE) of the linear regression parameters (β) can be proved only under
the restrictive condition that the skewness parameter of the link function is known [19].
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The majority of the works in literature are devoted to the models for binary response data. For the
case of multinomial data, the multinomial extension of the logit link [20] (Chapter 8) and associated
inference tools are simple to perform, and the marginal distribution of each component preserves the
logit link. As mentioned before, the symmetric link may not be always appropriate. This is even clearer
in multinomial data, where the sense of symmetric link is not simple to state. Generally, some categories
has few observations when compared to the other ones, suggesting the idea of asymmetric distribution.
We are also not aware of any model with asymmetric link function for multinomial data.

Caron and Polpo [21] briefly suggested an asymmetrical link function, called Weibull link,
exclusively for binary response data. The use of Weibull distribution in survival/reliability analysis is
well known. One important fact is the simplicity of the distribution, which has an analytic expression
for the distribution function. Our proposed link model, based in the Weibull distribution, preserves
this simplicity and it is a good option for the analysis of binary data.

In this paper, we take the Bayesian route and extend their work to multinomial data. Further we
present for the first time the associated Bayesian inference tools and explore the properties of the
proposed link function. We show that the benefits of this model are as follows: (1) flexibility of the
Weibull distribution; (2) logit, probit and complementary log–log links as limiting cases; (3) case of
implementation of both frequentist and Bayesian inferences; and (4) a general extension to handle
multinomial response. The implementation of the associated Markov chain Monte Carlo (MCMC)
algorithm to sample from posterior distribution is not complicated. In addition, we develop an
Empirical Bayes tool [22,23] to obtain the prior when there is no relevant prior information available to
the statistician.

We illustrate the use of Weibull link via analysis of two following data examples. (1) For the
experiment to study the potencies of three poisons [24], the main binary response is whether the insect
is alive after being treated with assigned dose level. For this example, we compare our Weibull link
model with other asymmetric and symmetric link models. (2) The main response of the study by
Grazeffe et al. [25] is the multiple levels of DNA damage in circulating hemocytes of each adult snail
irradiated with an assigned dose. This study is used to illustrate the analysis of multinomial response
data under Weibull link model, and comparing the results with those obtained by Grazeffe et al. [25]
using logistic regression.

The article is organized as follows. In Section 2, we present the Weibull model, its novel properties
and some approximations of the link function. In Section 3, we present the estimation procedures
using MLE as well as the Bayesian estimation. In Section 3, we also present the estimation procedure
for multinomial response. Section 4 is devoted to illustrating the Weibull link for analyzing two
real datasets, and comparison with other existing models. Finally, Section 5 presents some future
considerations and final comments.

2. Weibull Regression Model

2.1. Link function

Let X = (1, X1, . . . , Xr)′ be the design matrix, where 1 is a vector with all values equal to 1,
j = 1, . . . , r. We denote the vector of binary response variable as Y . Similar to GLM, our interest
lies in modeling the probability Pr[Yi = 1 | ηi] = µ(ηi) = E(Yi) as Pr[Yi = 1 | ηi] = g−1(ηi),
i = 1, . . . , n, where η = βX, β = (β0, β1, . . . , βr) are the linear coefficients, and g(·) is the link
function. The link function relates the covariates X with the mean response µ = E(Y | X). In this case,
the g−1 is a cumulative distribution function (cdf) on the real line. Our interest is a link function that
can accommodate symmetric and asymmetric tails which has a simple parameteric functional form,
and can be easily tractable. To obtain these goals, we use the cdf of Weibull distribution

F(η) = 1− exp{−(η − α)γ}I(η>α), (1)
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for g−1, where α ∈ R is the location/threshold parameter, γ > 0 is the shape parameter, and I(η>α) is
the indicator of η > α. IA is the indicator function of event A, that is IA = 1 and IAc = 0.

Alternatively, the Weibull link function is defined as

η = g(µ) = [− log (1− µ)]
1
γ ,

µ = g−1(η) = 1− exp{−ηγ},
(2)

where µ(η) = E(Y | η) ≥ 0, γ > 0, and η > 0.
Note that, in the above parameterization, the restriction of η > 0 is not a problem because

the parameter β0 plays the role of both the location/threshold parameter α and the intercept of
linear predictor η = βX. By doing this, we avoid the identifiability problem in estimation of β0,
also we have a more parsimonious model. The skewness of the Weibull link depends only on the
parameter γ, and can be evaluated by (Γ3 − 3Γ2Γ1 + 2Γ3

1)/(Γ2 − Γ2
1)

3/2, where Γj = Γ(1 + j/γ) and
Γ(·) is the Gamma function. The skewness lies in the interval (−1.1395, ∞). We also evaluated the
Arnold–Groeneveld (AG) skewness measure [26], which is a skewness measure related to the mode
of a distribution. Again, the AG skewness depends only on the parameter γ, and can be evaluated
as 2 exp{(1− γ)/γ} − 1, and lies in the interval (−0.26424, ∞). However, sometimes, a model with
skewness lower than −1.1395 is desired; in this case, we can use the reflected Weibull distribution
to define the link as µ = g−1(ω) = exp{−ηγ}, and the skewness lies in the interval (−∞, 1.1395).
The different forms of Weibull link are shown in Figure 1 with solid line for the Weibull link and
dashed line for the reflected Weibull link.

Figure 1. Forms of Weibull link. Solid lines are for the Weibull link and dashed lines are for the reflected
Weibull link. We have used η = β0 + β1x, where x is a grid in (0.0001, 5.9), β0 = −2.9, and for β1 we
have considered the values 0.2, 0.3, 0.4, 0.6, and 2.
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2.2. Special Cases

The choice of the Weibull distribution as link function is due to its flexible properties.
Rinne [27] (Chapter 3) discusses the various properties of Weibull along with Weibull distribution
as approximation to some symmetrical distributions. We highlight the relations of Weibull with the
normal and logistic distributions, because they explain the relations of Weibull link with probit and
logit link functions. Based on results of Rinne [27], we have

g−1
1 (η) = 1− exp

{
−(0.90114 + 0.27787η)3.60235

}
≈ Φ(η),

g−1
2 (η) = 1− exp

{
−(0.89864 + 0.16957η)3.50215

}
≈ exp(η)

1 + exp(η)
,

where Φ is the distribution function of the standard normal distribution. These results show that
Weibull link can approximate the probit link and the logit link. The degrees of these approximations
are illustrated in Figure 2.
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Figure 2. Similarity of Weibull link with: (a) probit link; and (b) logit link. The maximum absolute
distance between Weibull link and probit link is 0.0078, and with logit link is 0.0148.

We have the following proposition for another important case of link, the complementary
log–log link [4].

Proposition 1. The complementary log–log link defined by g−1(η) = 1− exp{− exp(η)} is a limiting case
of the Weibull link because

lim
γ→∞

{
1− exp

[
−
(

1 +
η

γ

)γ]}
= 1− exp{− exp(η)}. (3)

Proof. Taking α = −1 in Equation (1) and dividing η by γ, without loss of generality, we can rewrite
the Weibull link given in Equation (2) as:

g−1(η) = 1− exp
{
−
(

1 +
η

γ

)γ}
.

Now, taking the limit γ→ ∞ of g−1(η) completes the proof.

Given this result, we can say that for a dataset when the estimated value of γ is large then the
complementary log–log link should be appropriate. Using the reflected Weibull link, we have a similar
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result with the log–log link, defined as g−1(η) = exp{− exp(−η)} [4]. The complementary log–log
and log–log link as limiting cases are illustrated in Figure 3.
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Figure 3. Similarity of Weibull link with: (a) complementary log–log link; and (b) log–log link.
The maximum absolute distance between Weibull link and complementary log–log link is 0.0082 (the value
of γ parameter was 21.03), and with log–log link is 0.0031 (the value of γ parameter was 114.45).

3. Estimation

3.1. Binomial Data

Consider a sample of size n from the binary variable/response Y, with Pr[Yi = 1] = pi for
i = 1, . . . , n. We denote the observed data as D = {n, Y = y, X = x}, where y = (y1, . . . , yn) is
the observed vector of Y = (Y1, . . . , Yn), and x = (1, x1, . . . , xr)′, is the observed covariate matrix of
X = (1, X1, . . . , Xr)′. The likelihood function for the Weibull link can be written as

L (β, γ | D) ∝
n

∏
i=1

pi
yi (1− pi)

1−yi

∝
n

∏
i=1

[
1− exp

{
−η

γ
i
}]yi

[
exp

{
−η

γ
i
}]1−yi, (4)

and the log-likelihood as

l (β, γ | D) ∝
n

∑
i=1

[
yi log

{
1− exp

(
−η

γ
i
)}
− (1− yi)η

γ
i
]

, (5)

where ηi is the i-th element of the vector η = βX, and β, γ are the parameters to be estimated.
A numerical method such as Nelder and Mead [28] can be used to obtain the MLE for (β, γ).

The expression of the gradient vector and Hessian matrix are given in Appendix A. Using the gradient
vector and Hessian matrix, it is simple to implement a Newton–Raphson algorithm to obtain the MLE.
As initial guesses for the numerical algorithm, we suggest to use the estimator β̃i,probit under probit
model for βi (i 6= 0), β̃0,guess = −min(β̃probitx) + 0.001 for β0, and 3.60235 for γ. The initial guesses
(β, γ) can be interpreted as the Weibull link being an approximate probit link.

For the Bayesian analysis, the posterior density is

p(β, γ | D) ∝ L(β, γ | D)p(β, γ), (6)
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where p(β, γ) is the joint prior. We suggest using the hierarchical Bayes model. Assuming the
parameters are a priori independent, the first level of hierarchy has γ following a gamma distribution
with mean mγ and variance vγ, and β with multivariate normal distribution with mean vector mβ and
covariance matrix vβ I, where I is the identity matrix. The values of vγ and vβ are fixed, and for mγ and
mβ we consider a prior, that is p(mγ) = p(mβ) ∝ 1. Arguably, we can use the mode of the integrated
likelihood of (mγ, mβ) to determine a prior distribution [23]. The hyper-parameters vγ and vβ are
viewed as prior precision parameters. The EM (Expectation–Maximization) algorithm [29] can be used
to obtain the estimates of mγ and mβ. The MCMC procedure is used to generate a sample from the
posterior distribution. For the MCMC procedure, we used a Gibbs sampler with Metropolis–Hasting.
The convergence of the chain was monitored using ergodic means. We omit the details about these
computational tools because they are already well known tools and are not the main subject of the
present paper. In addition, it was not necessary to develop any special scheme to sample from the
posterior chain.

Another advantage of the Weibull link is that the posterior distributions are proper even when
we use a wide range of non-informative priors. The Jeffreys’ prior for the parameter β has the form
p(β | γ) ∝ |I(β | γ)|1/2, where the Fisher information matrix I(β | γ) can be obtained by taking the
expectation of the Hessian matrix given in Appendix A.

Considering the improper prior p(β) ∝ 1, and the non-informative prior p(γ) ∝ 1/γc, for γ > 1
and c > 1 a known constant [30], we have the non-informative prior distribution

p(β, γ) ∝ p(β)p(γ) ∝
1
γc . (7)

With this constraint (in the parameter γ of the Weibull link), the skewness lies in the interval
(−1.1395, 2], which is still a flexible link. For the improper prior of Equation (7), the propriety of the
resulting posterior distribution in Equation (6) is stated in Theorem 1.

Theorem 1. Let zi = −1 when yi = 0 and zi = 1 when yi = 1, and X∗ be the matrix with rows zix′i. Suppose
that the design matrix X is of full rank, and there exists a positive vector a = (a1, . . . , an)′ ∈ Rn, with ai > 0,
for i = 1, . . . , n, such that X∗′a = 0, under the non-informative prior of Equation (7), then the posterior density
Equation (6) is proper.

Proof. Let u, u1, . . . , un be independent random variables with common Weibull distribution with
shape parameter γ. For 0 < k < ∞, we have that E(|u|k) = Γ(1 + k/γ) < ∞. Observing that
1− F(x) = E[I(u > x)] and F(x) = E[I(u ≤ x)], where I is an indicator function. Then, we have
[F(x′iβ)]

yi [1 − F(x′iβ)]
1−yi ≤ E(ziui ≥ zix′iβ) and [F(x′iβ)]

yi [1 − F(x′iβ)]
1−yi ≥ E(ziui > zix′iβ).

Let u∗ = (z1u1, . . . , znun). By the Fubini’s theorem, we get∫ ∞

1

∫
Rk

L(β, γ | yX)
1
γc dβdγ

=
∫ ∞

1

1
γc

∫
Rn

∫
Rk

I(ziui > zix′iβ, 1 ≤ i ≤ n)dβdF(u)dγ

=
∫ ∞

1

1
γc

∫
Rn

∫
Rk

I(X∗β ≤ u∗)dβdF(u)dγ.

From Lemma 4.1 of Chen and Shao [31] there exists a constant K depending only on X∗ such that∫
Rk

I(X∗β ≤ u∗)dβ ≤ K||u∗||k,

which yields ∫ ∞

1

∫
Rk

L(β, γ | yX)
1
γc dβdγ < ∞,
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by E(|u|k) < ∞, and
∫ ∞

1 1/γcdγ < ∞ for c > 1.

This prior give a constraint in the parameter γ. However, any proper prior can be used with the
proposed model, avoiding any constraint problem in the parameter γ.

3.2. Multinomial Data

For multinomial responses, we have that Yi ∈ {1, . . . , K}, and pk = Pr(Yi = k), for k = 1, . . . ,K
and ∑Kj=1 pj = 1. The logistic multinomial regression model consider a reference category, generally the
category K, and have a link function

pk = g−1
k (ηk) =

exp(ηk)

1 + ∑K−1
k=1 exp(ηk)

, k = 1, . . . ,K− 1, and pK = 1−
K−1

∑
k=1

pk =
1

1 + ∑K−1
k=1 exp(ηk)

,

where ηk = βkX, βk = {βk0, βk1, . . . , βkr}. The likelihood function for multinomial response data D is

L (p|D) ∝
n

∏
i=1

K
∏
k=1

pI(yi=k)
k =

K
∏
k=1

psk
k , (8)

where sk =
n
∑

i=1
I(yi = k), and IA is the indicator function of event A, that is IA = 1 and IAc = 0.

Note that
K
∑

k=1
sk = n.

Using a reparameterization [32] of p as p1 = θ1, pk = θk
k−1
∏
`=1

(1 − θ`), for k = 1, . . . ,K − 1,

and pK =
K−1
∏
`=1

(1− θ`) the likelihood function in Equation (8) can be rewritten as

L (θ|D) ∝
K−1

∏
k=1

θ
sk
k (1− θk)

n−
k
∑
`=1

s`
=
K−1

∏
k=1

L (θk|D) . (9)

This shows that the estimation for multinomial data is equivalent to estimating K− 1 binomial
response models. We can consider any link function for binary data, taking θk = g−1(ηk). For the MLE,

we have p̂1 = θ̂1, p̂k = θ̂k
k−1
∏
`=1

(1− θ̂`), and p̂K =
K−1
∏
`=1

(1− θ̂`). For Bayesian estimation, we generate

a sample from the posterior distribution of each θk, then we can do the transformation to obtain the
estimators of p. Considering the Weibull link function, we need to generate a sample from the posterior
of γk and βk, for each k = 1, . . . ,K − 1, and then perform the proper transformation to obtain the
sample from the posterior of θk. In this case, the prior of θk can be viewed as a transformation of the
priors of γk and βk. Thus, for both MLE and Bayesian estimator, we can use the procedures described
in Section 3.1. The partition scheme presented to solve the multinomial model estimation is intuitive.
For more details about the reparameterization used here, see Pereira and Stern [32].

3.3. Model Selection and Diagnostics

In the case of binomial data, to compare models within frequentist set up, we use the Akaike
Information Criterion (AIC) [33] and the Bayesian Information Criterion (BIC) [34]. For Bayesian
analysis, we use long established tool of Deviance Information Criterion (DIC) [35]. We omit the
details of these popular tools for the sake of brevity. In addition, for Bayesian analysis we use the
Pr(D|M) [36], where D is the observed data and M is the used model. Pr(D|M) is approximated by
{1/m ∑n

i=1 Pr(D|M, θi)
−1}−1, where θi is the i-th sample from the posterior distribution of θ under

model M, given the data D. This measure is directly related to the Bayes Factor (BF). If the interest
is to evaluate the BF10 of the model M1 against M0, considering Pr(M0) = Pr(M1) = 0.5, we have
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that BF10 = Pr(D|M1)/Pr(D|M0). For both Bayesian and frequentist paradigms, we use: a version of
Kolmogorov–Smirnov statistics (KS) as measure of goodness of fit (KS is defined as KS = maxi |yi − ŷi|,
the maximum absolute error of the predicted and the observed frequencies, where ŷi is the predicted
value of yi); the Mean Absolute Error (MAE) defined as MAE = 1

n ∑n
i=1 |yi − ŷi|; and the Brier Score

(B-S) defined by Brier [37].

4. Data Example

In the data examples, we compare the proposed link function with some others links. Table 1
presents the link functions considered.

Table 1. Link functions.

Link Function Parameteric Space

Weibull g−1(η) = 1− exp(−(ηγ)) γ > 0, η > 0

reflected Weibull g−1(η) = exp(−(ηγ)) γ > 0, η > 0

AEP

if η ≤ 0, take ω = (−2ηΓ(1 + 1/θ1))
θ1

g−1(η) = η exp(−ω)/4 + FG(ω, 1 + 1/θ1, 1)/2
if η > 0, take ω = (2ηΓ(1 + 1/θ2))

θ2

g−1(η) = 0.5 + η exp(−ω)/4 + FG(ω, 1 + 1/θ2, 1)/2
θ1 > 0 and θ2 > 0

Aranda–Ordaz g−1(η) = 1− (α exp(η) + 1)−1/α α > 0

complementary log–log g−1(η) = 1− exp(− exp(η))

log–log g−1(η) = exp(− exp(η))

logit g−1(η) =
exp(η)

1 + exp(η)

Prentice g−1(η) = FB

(
1

1 + exp{−η} , λ1, λ2

)
λ1 > 0 and λ2 > 0

probit g−1(η) = FN(η)

skew-probit g−1(η) = FSN(η, δ) δ ∈ (−1, 1)

Stukel

if η > 0 and α1 > 0, h(η) =
exp(α1η)− 1

α1
if η > 0 and α1 = 0, h(η) = η

if η > 0 and α1 < 0, h(η) =
− log(1− α1η)

α1

if η < 0 and α2 > 0, h(η) =
− exp(−α2η)− 1

α2
if η < 0 and α2 = 0, h(η) = η

if η < 0 and α2 < 0, h(η) =
log(1 + α2η)

α2

g−1(η) =
1

1 + exp{−h(η)}
AEP is the asymmetric exponential power link from Naranjo et al. [17]; Γ(·) is the mathematical gamma
function; FG(·, a, b) is the distribution function of a random variable with distribution Gamma with shape a and
scale b; FB(·, λ1, λ1) is the distribution function of a random variable with distribution Beta(λ1, λ2); FN(·) is
the distribution function of a random variable with distribution normal, with mean zero and variance 1; and
FSN(·, δ) is the distribution function of a random variable with distribution skew-normal, with mean zero,
variance 1 and asymmetric parameter δ [38].

4.1. Binary Data Example

We analyze the study of relative potency of three different poisons: Rotenone, Deguelin and
Mixture [24]. The experiment was to test the different poisons with different doses, with objective to
understand the potency of the poisons. Five doses for rotenone, six doses for deguelin and six doses
for the mixture were considered. For each dose and poison, around 50 insects were considered by
observing how many insects were killed. The data are presented in Table 2. We consider that the
response variable is binary with Y = 1 representing the insect killed, and as covariates: X1 as the log
(Dose), X2 as an indicator of Rotonone, and X3 as an indicator of Deguelin. The mixture of poisons
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is considered as the reference poison (that is, X2 = 0 and X3 = 0). Our main objective is to find the
model that better represents (fits) these Data. We are not looking for the “best” poison or dose.

Table 2. Relative potency of Rotenone, a Deguelin concentrate, and a Mixture of two.

Rotenone Deguelin Mixture

log (Dose) Dead n log (Dose) Dead n log (Dose) Dead n

1.01 44 50 1.70 48 48 1.40 48 50
0.89 42 49 1.61 47 50 1.31 43 46
0.71 24 46 1.48 47 49 1.18 38 48
0.58 16 48 1.31 34 48 1.00 27 46
0.41 6 50 1.00 18 48 0.71 22 46

- - - 0.71 16 49 0.40 7 47

We obtain the MLE for Weibull parameters and for comparison we also estimated the parameters of
complementary log–log, Stukel, probit, logit, Aranda–Ordaz, and Prentice models. Table 3, presents some
statistics of each model to compare them. The best models, based on AIC, are complementary log–log
and Weibull. The advantage of the complementary log–log is that this model has one fewer parameter.
However, γ̂ = 114.5084 (Table 4), indicating that the Weibull model is going to the complementary
log–log model. As expected, the Weibull model performs similar to the complementary log–log
(see Proposition 1). The model with lowest KS is the logit model. The estimated logit and Weibull links
are illustrated in Figure 4. The model with lowest MAE is the Stukel model. The estimated parameter
values of Weibull logit, and Stukel models are given in Table 4.
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Figure 4. Comparison of MLE for Weibull (solid line) and logit link (dashed line) for three types of
poisons: (a) Rotonone; (b) Deguelin; and (c) Mixture. The dots are the observed proportions.

Table 3. Comparison of the link functions under MLE.

Model log(L) AIC BIC KS MAE B-S

Stukel −369.51 751.01 779.26 0.1704 0.0482 0.1474
probit −369.66 751.32 779.56 0.1583 0.0492 0.1475

comp. log–log −370.32 748.66 767.48 0.1451 0.0551 0.1476
Weibull −370.34 750.69 774.22 0.1440 0.0553 0.1477

logit −372.57 753.14 771.97 0.1292 0.0656 0.1486
Aranda–Ordaz −373.41 754.82 773.65 0.1351 0.0668 0.1487

Prentice −374.90 759.80 783.33 0.3674 0.1396 0.1750

Table 4. MLE for the binomial example.

Model [Estimate (SE)]
Parameter Weibull Logit Stukel

β0 0.9735 (0.0110) −3.9559 (0.3546) −5.1973 (2.0524)
β1 0.0266 (0.0111) 4.8273 (0.3394) 5.5892 (1.9677)
β2 0.0053 (0.0024) 0.6910 (0.2308) 1.3233 (0.6397)
β3 −0.0051 (0.0024) −0.9125 (0.2449) −1.0658 (0.4397)
- γ = 114.5084 (47.9818) - α1 = 0.1732 (0.2871)
- - - α2 = −0.9663 (0.8492)

Another important models are the skew-probit proposed by Chen et al. [5] and AEP proposed
by Naranjo et al. [17]. To compare with the Weibull model we perform a Bayesian analysis for
these models. The priors for the parameters of the Weibull model are the same as that described in
Section 3.1. We use the values vγ = 100 and vβ = 25. The estimated values for the hyper-parameters
of first hierarchical level are m̂γ = 9.1089 and m̂β = (0.1588, 0.8879, 0.1261,−0.1717). For the priors
of skew-probit model, we used a uniform distribution over the interval (−1, 1) for the asymmetry
parameter and independent normal distribution with mean 0 and variance 25 for each β j, j = 0, . . . , 3.
For the priors of AEP model, we used independent priors: gamma distribution with mean 1 and
variance 100 for the parameters θ1 and θ2, and normal distribution with mean 0 and variance 25 for
each β j, j = 0, . . . , 3. Table 5 presents the model selection criteria (DIC, KS, MAE, B-S and Pr(D|M))
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for the three competing models. For criteria DIC, KS, MAE and B-S, a smaller value indicates a better
agreement between the model and observed data. For criterion Pr(D|M), a higher value indicates
a better agreement between the model and observed data. We note that the Weibull model has better
KS; AEP has the better DIC and MAE; and skew-probit has better Pr(D|M). The B-S was very similar
for all models. For the three models, the posterior mean of relevant parameters are given in Table 6.

Table 5. Comparison of the link functions under Bayesian estimation.

DIC KS MAE B-S Pr(D|M)

AEP 749.01 0.1826 0.0564 0.1472 744.66
Weibull 751.38 0.1278 0.0644 0.1484 748.42

skew-probit 751.92 0.1432 0.0662 0.1486 749.13

Table 6. Bayesian estimates for binomial example.

Model [Posterior Mean (Standard Deviation)]
Parameter Weibull Skew-Probit AEP

β0 0.2661 (0.2022) −2.1900 (0.4006) −4.9790 (1.5058)
β1 0.7799 (0.2332) 2.6464 (0.2226) 5.2736 (1.4799)
β2 0.1152 (0.0402) 0.3756 (0.1258) 1.2292 (0.4575)
β3 −0.1474 (0.0576) −0.4982 (0.1309) −1.0145 (0.3830)
- γ = 4.0285 (1.1992) δ = −0.0434 (0.5506) θ1 = 0.4491 (0.1152)
- - - θ2 = 0.9057 (0.1904)

4.2. Multinomial Data Example

Grazeffe et al. [25] reported a study of DNA mutation of the cells of adult snails, each irradiated
with a single dose of gamma radiation. They recorded four categories of DNA mutation with Y = 1, 2, 3
and 4 representing no mutation, low, intermediate, and high DNA mutation respectively. The snails
are randomized into five different dose levels with X ∈ {0, 2.5, 5, 10, 20}. The data are presented in
Table 1 of Grazeffe et al. [25]. The objective is to compare effects of different dose levels on DNA mutation
Y (Y = 1 for C0, Y = 2 for C1, Y = 3 for C2 and Y = 4 for C3). We illustrate the use of Weibull link model,
under frequentist approach, for analysis of this study with multinomial responses. Further, in Table 10,
we compare our estimates of Pr[Y = k | x] with those obtained by Grazeffe et al. [25] based on the logit
link model, and the other models discussed here.

For a proper comparison with previous method of Grazeffe et al. [25], we obtain the MLE with
only X and X2 as covariates. We use the reflected Weibull link, because this model has lowest values
of KS and MAE than those for Weibull link. To obtain the estimation of the reflected Weibull model
we first estimate the values of θ1, θ2, θ3. To simplify, consider the three binary variables Z1, Z2 and Z3,
where θk = Pr(Zk = k), k = 1, 2, 3. Then, using the results in Section 3.2, we construct Table 7 with the
observed values of Zs, and estimate the models for Zs.

Table 7. Observed values of constructed variables Z1, Z2 and Z3.

Dose (X)
Z1 Z2 Z3

0 1 0 1 0 1

0 446 654 321 125 249 72
2.5 458 442 280 178 175 105
5 703 197 450 253 277 173

10 841 159 545 296 281 264
20 842 58 793 49 660 133

The parameter estimates for the three binary models are presented in Table 8,
and we have θ̂1(x) = e−(0.0234−1.6395x+0.6748x2)0.1742

, θ̂2(x) = e−(1.0930−0.0368x+0.0030x2)2.3604
and

θ̂3(x) = e−(1.2429−0.0866x+0.0047x2)1.7562
.
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Table 8. MLE of Weibull model for the multinomial example.

Parameter Model [Estimate (SE)]

Y = 1 (Z1) Y = 2 (Z2) Y = 3 (Z3)

γ 0.1742 (0.0209) 2.3604 (0.1905) 1.7562 (0.1415)
β0 0.0234 (0.0123) 1.0930 (0.0258) 1.2429 (0.0369)
β1 −1.6395 (0.8355) −0.0368 (0.0067) −0.0866 (0.0078)
β2 0.6748 (0.3295) 0.0030 (0.0002) 0.0047 (0.0003)

As described in Section 3.2, we have p̂1(x) = θ̂1(x), p̂2(x) = [1− θ̂1(x)]θ̂2(x), p̂3(x) = [1 −
θ̂1(x)][1 − θ̂2(x)]θ̂3(x), and p̂4(x) = [1− θ̂1(x)][1− θ̂2(x)][1− θ̂3(x)], where p̂k(x) is the estimated
value of Pr[Y = k|x], k = 1, . . . , 4.

Table 9 presents the inferential statistics for model comparisons. All statistics indicate a preference
for Weibull link model. The main difference for the Stukel model was because Weibull model has three
parameters fewer than the Stukel model in this multinomial example.

Table 9. Comparison of the link functions for multinomial example.

log(L) AIC BIC KS MAE B-S

Weibull −5654.224 11332.45 11410.16 0.030 0.0095 0.6324
Stukel −5654.961 11339.92 11437.07 0.031 0.0100 0.6325

Prentice −5667.156 11364.31 11461.46 0.066 0.0158 0.6341
Aranda–Ordaz −5671.681 11361.36 11419.65 0.733 0.3116 1.1898

logit −5672.196 11362.39 11420.68 0.075 0.0171 0.6348
comp. log–log −5672.799 11363.60 11421.89 0.936 0.3129 1.2876

probit −5673.003 11364.01 11422.29 0.079 0.0175 0.6348
log–log −5676.075 11370.15 11428.44 0.693 0.2099 0.9490

The estimated frequencies, under Weibull, Stukel and logit models, of DNA mutation for each
class is presented in Table 10, and illustrated in Figure 5. This figure shows that the Weibull link model
has a better fit for categories Y = 1 and 4, when compared with the logit link model. For categories
Y = 2 and 3, both models have comparable performances. Weibull and Stukel models have similar
values of estimated frequencies.

Table 10. Relative frequencies of mutation (observed and model’s estimates).

Mutation Classes (Y)
Dose (Gy) Model 1 2 3 4

0

Observed 0.595 0.114 0.065 0.226
Weibull 0.595 0.120 0.065 0.220

Logit 0.606 0.114 0.064 0.215
Stukel 0.594 0.120 0.065 0.221

2.5

Observed 0.491 0.198 0.117 0.194
Weibull 0.491 0.178 0.112 0.219

Logit 0.430 0.201 0.123 0.246
Stukel 0.490 0.178 0.113 0.218

5

Observed 0.214 0.281 0.192 0.308
Weibull 0.233 0.289 0.200 0.278

Logit 0.289 0.273 0.183 0.255
Stukel 0.233 0.289 0.201 0.277

10

Observed 0.159 0.296 0.264 0.281
Weibull 0.137 0.302 0.264 0.296

Logit 0.136 0.298 0.268 0.298
Stukel 0.135 0.304 0.263 0.298

20

Observed 0.064 0.054 0.148 0.733
Weibull 0.075 0.054 0.147 0.725

Logit 0.067 0.055 0.148 0.730
Stukel 0.077 0.054 0.146 0.723
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Figure 5. Estimated population frequencies.

5. Final Comments

In this paper, we have presented a Weibull model to estimate the problem of binary and
multinomial regression analysis. The model is very flexible and capable to handle with many
different types of data. The comparison with other skew-link model, in binomial data example
(Section 4.1), shows that the performance of the Weibull link was good when compared to the others
models. The model with worst measures was the Prentice model. All others had an equivalent result.
We are convinced that our proposed model is a good option. A good feature of the model is that the
logit, probit, complementary log–log, and log–log link functions are approximations of Weibull link.
Then, the proposed model can accommodate even symmetric link function. For the flexibility of the
Weibull link model, we are comfortable to suggest its use in practice.

Other aspect of the proposed Weibull model is that the associated numerical procedure of
MLE is very simple to implement, particularly in comparison to other competing. For Bayesian
estimates, we also suggest an Empirical Bayes approach to determine the prior. Under full Bayesian
estimation, we compare the model with the skew-probit model [5] and AEP model [17], in Section 4.1.
Again, all models had similar results, however the KS of Weibull model were the measures with the
greatest differences among all models. The performance of our model was good, even under full
Bayesian framework, in binomial data example (Section 4.1).

We also develop a partition scheme for the multinomial regression model simplifying the problem
toK− 1 binomial regression analysis. This is a general scheme that can be used for other link functions,
which opens a vast options to estimate multinomial data. In Section 4.2, we analyze a multinomial
data problem, where the Weibull model had the best measure values when compared with all other
models. Our perspective is that the Weibull model is a good option for binary/multinomial regression,
mainly due to its simplicity. We have analytic form for the link function, as well as for the gradient
and Hessian matrix.
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Appendix A. Gradient and Hessian for Log-Likelihood of Weibull Model

Let ξi1 = exp{−η
γ
i }, ξi2 = exp{−2η

γ
i }, i = 1, . . . , n.

Appendix A.1. Gradient

The gradient vector is g = (g1, g2, . . . , gr), where

g1 =
∂l(γ, β|D)

∂γ
=

n

∑
i=1
−(1− yi)η

γ
i log(ηi) +

yiξi1η
γ
i log(ηi)

1− ξi1
;

g2 =
∂l(γ, β|D)

∂β0
=

n

∑
i=1
−γ(1− yi)η

γ−1
i +

γyiξi1η
γ−1
i

1− ξi1
;

for j = 1, . . . , r− 2,

g(j+2) =
∂l(γ, β|D)

∂β j
=

n

∑
i=1
−γxij(1− yi)η

γ−1
i +

γxijyiξi1η
γ−1
i

1− ξi1
.

Appendix A.2. Hessian Matrix

The Hessian matrix H is

H =


h11 h12 · · · h1r
h21 h22 · · · h2r

...
...

. . .
...

hr1 hr2 · · · hrr

 ,

where, for j = 1, . . . , r− 2,

h11 =
∂2l(γ, β|D)

∂γ∂γ
=

n

∑
i=1
−(1− yi)[log(ηi)]

2η
γ
i

+
{ξi1yi[log(ηi)]

2}[ηγ
i − η

2γ
i ]

1− ξi1

−
ξi2yi[log(ηi)]

2η
2γ
i

(1− ξi1)
2 ;

h21 =
∂2l(γ, β|D)

∂γ∂β0
=

∂2l(γ, β|D)
∂β0∂γ

= h12;

h(j+2)1 =
∂2l(γ, β|D)

∂γ∂β j
=

∂2l(γ, β|D)
∂β j∂γ

= h1(j+2);
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h12 =
∂2l(γ, β|D)

∂β0∂γ
=

n

∑
i=1
−[1 + γ log(ηi)](1− yi)η

γ−1
i

+
[1 + (1− η

γ
i )γ log(ηi)]ξi1yiη

γ−1
i

1− ξi1

−
ξi2γyi log(ηi)η

2γ−1
i

(1− ξi1)
2 ;

h22 =
∂2l(γ, β|D)

∂β0∂β0
=

n

∑
i=1
−(γ− 1)γ(1− yi)η

γ−2
i

+
[(γ− 1)− γη

γ
i ]ξi1γyiη

γ−2
i

1− ξi1

−
ξi2γ2yiη

2γ−2
i

(1− ξi1)
2 ;

h(j+2)2 =
∂2l(γ, β|D)

∂β0∂β j
=

n

∑
i=1
−(γ− 1)γxij(1− yi)η

γ−2
i

+
[(γ− 1)− γη

γ
i ]ξi1γxijyiη

γ−2
i

1− ξi1

−
ξi2γ2xijyiη

2γ−2
i

(1− ξi1)
2 ;

h1(j+2) =
∂2l(γ, β|D)

∂β j∂γ
=

n

∑
i=1
−[xij(1− yi)η

γ−1
i ][1 + γ log(ηi)]

+
ξi1xijyiη

γ−1
i [1 + γ log(ηi)(1− η

γ
i )]

1− ξi1

−
ξi2γxijyi log(ηi)η

2γ−1
i

(1− ξi1)
2 ;

h2(j+2) =
∂2l(γ, β|D)

∂β j∂β0
=

∂2l(γ, β|D)
∂β0∂β j

= h(j+2)2;

for k = 1, . . . , r− 2 and k 6= j,

h(k+2)(j+2) =
∂2l(γ, β|D)

∂β j∂βk
=

n

∑
i=1
−(γ− 1)γxijxik(1− yi)η

γ−2
i

+
[(γ− 1)− γη

γ
i ]ξi1γxijxikyiη

γ−2
i

1− ξi1

−
ξi2γ2xijxikyiη

2γ−2
i

(1− ξi1)
2 = h(j+2)(k+2).
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