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Abstract
Mitochondrial oxidative phosphorylation provides over 90% of the energy produced by aero-

bic organisms, therefore the regulation of mitochondrial activity is a major issue for coping

with the changing environment and energy needs. In fish, there is a large body of evidence

of adaptive changes in enzymatic activities of the OXPHOS pathway, but less is known at

the transcriptional level and the first aim of the present study was to define the molecular

identity of the actively transcribed subunits of the mitochondrial respiratory chain of a live-

stock animal, using gilthead sea bream as a model of farmed fish with a high added value

for European aquaculture. Extensive BLAST searches in our transcriptomic database

(www.nutrigroup-iats.org/seabreamdb) yielded 97 new sequences with a high coverage of

catalytic, regulatory and assembly factors of Complex I to V. This was the basis for the de-

velopment of a PCR array for the simultaneous profiling of 88 selected genes. This new ge-

nomic resource allowed the differential gene expression of liver and muscle tissues in a

model of 10 fasting days. A consistent down-regulated response involving 72 genes was

made by the liver, whereas an up-regulated response with 29 and 10 differentially express-

ed genes was found in white skeletal muscle and heart, respectively. This differential regu-

lation was mostly mediated by nuclear-encoded genes (skeletal muscle) or both

mitochondrial- and nuclear-encoded genes (liver, heart), which is indicative of a complex

and differential regulation of mitochondrial and nuclear genomes, according to the changes

in the lipogenic activity of liver and the oxidative capacity of glycolytic and highly oxidative

muscle tissues. These insights contribute to the identification of the most responsive ele-

ments of OXPHOS in each tissue, which is of relevance for the appropriate gene targeting

of nutritional and/or environmental metabolic disturbances in livestock animals.
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Introduction
The main cellular function of mitochondria is the production of ATP by oxidation of metabolic
fuels in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathway.
In this process, NADH and FADH2 function as electron donors of Complex I (NADH: ubiqui-
none oxidoreductase) and Complex II (succinate dehydrogenase) that are transported through
Complex III (ubiquinol cytochrome c reductase) to Complex IV (cytochrome c oxidase),
where molecular oxygen serves as the final electron acceptor of the mitochondrial respiratory
chain. This electron transport generates a proton gradient across the inner-mitochondrial
membrane coupled with Complex V (ATP synthase) to the synthesis of ATP from ADP and Pi.
In mammals, this process is highly regulated at the transcriptional level, with the mitochondrial
translation machinery becoming responsible of the synthesis of 13 catalytic and highly hydro-
phobic proteins of the mitochondrial respiratory chain. However, more than 70 OXPHOS pro-
teins are encoded by nuclear DNA (nDNA), imported from the cytosol, and translocated
across outer and inner mitochondrial membranes by conserved molecular chaperones and pro-
tein components of the TOM/TIM complex [1,2]. All this, therefore, is encompassed by a com-
plex regulation of nuclear and mitochondrial genomes, which involves hundreds of genes
controlling the expression, function, transport, assembly and turnover of mitochondrial pro-
teins and enzyme subunits of OXPHOS in particular [3].

Attempts to assess the wide gene expression regulation of OXPHOS by fasting and caloric
restriction have been addressed in humans and other experimental models of mammals. Im-
portantly, the achieved response depends on the tissue and intensity of nutritional stress sti-
muli, but a common rule is the down-regulation of OXPHOS in adipose tissue and liver, which
in turn is followed by the up-regulation of OXPHOS in skeletal muscle [4]. In fish, there is a
large body of evidence of adaptive changes in enzyme activities of OXPHOS with changes in
metabolic capabilities [5,6], diet composition [7,8], thermal condition [9–11] and exposure to
environmental pollutants [12,13]. Less is known at the molecular level, but this situation is
changing with the advent of wide gene expression analysis, and more and more information is
coming from the transcriptionally mediated effects of hypoxia, pollutants and environmental
conditions upon the OXPHOS of a wide range of fish species, including fish species models
[14,15] and wild/farmed fish, such as European eel [16,17], salmon [18] and trout [19]. Experi-
mental data also reveal a relatively high conservation of OXPHOS enzymes in the genome of
teleostean fish lineages [20]. However, the molecular identity and, more importantly, the tran-
scriptional plasticity of OXPHOS in a given tissue and/or fish species remain
mostly unexplored.

In gilthead sea bream, a highly cultured fish in the whole of the Mediterranean area, at-
tempts to phenotype the transcriptionally mediated response of hepatic mitochondria under
acute and chronic stress have been proved highly informative to underline the health and wel-
fare of farmed fish [21,22]. In addition, meta-analysis of microarray data using the on-line Fish
and Chip tool (www.fishandchips.genouest.org/index.php) strongly supports the key role of
fish mitochondria in coping with different cellular stresses, such as hypoxia, low energy status
and hypercortisolism [23]. However, the wide gene expression profiling of OXPHOS is far
from being established in fish, and the first aim of the present study was to compile, revise and
curate all the nucleotide sequences encoding for enzyme subunits of the mitochondrial respira-
tory chain in the recently updated gilthead sea bream transcriptomic database [24]. Secondly,
we aimed to develop and validate a mitochondrial PCR-array for the comprehensive gene ex-
pression profiling of almost a complete set of assembly factors and enzyme complex subunits
with either catalytic or regulatory properties on the basis of the available literature for ortholo-
gous genes in mammals and other fish species [20,25,26]. Thirdly, we sought to use this new
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genomic resource to achieve valuable insights into the tissue-specific regulation of OXPHOS
by changing energy status upon fasting in liver and muscle tissues with either glycolytic (white
skeletal muscle) or highly oxidative (heart) metabolic capabilities. At the protein level, the
changes in gene expression were validated by Western blotting of cytochrome c oxidase sub-
unit 4 (COX4). The final aim was to contribute to identifying the most responsive elements of
the OXPHOS pathway for the tissue-specific phenotyping of nutritional and environmental
metabolic disturbances of farmed fish and gilthead sea bream in particular.

Material and Methods

Sequence analysis
The gilthead sea bream transcriptomic database hosted at www.nutrigroup-iats.org/
seabreamdb is highly enriched in mitochondrial-related genes with 926 non-redundant se-
quences with the Gene Ontology term “mitochondrion.” This allowed the unequivocal annota-
tion of 99 sequences (E-values> 1e-15) as components of the KEGG pathway oxidative
phosphorylation: 40 enzyme subunits and 1 assembly protein of Complex I, 4 enzyme subunits
and 2 assembly proteins of Complex II, 12 enzyme subunits and 1 assembly protein of Com-
plex III, 20 enzyme subunits and 3 assembly proteins of Complex IV, and 15 enzyme subunits
and 1 assembly protein of Complex V as diagrammatically represented in Fig. 1. Ninety-seven
out of 99 were new gilthead sea bream sequences with open reading frames of 159–1992 nucle-
otides in length and a variable number of reads (10–2349) composing the assembled sequences
(S1–S5 Tables). All these sequences were uploaded to GenBank with accession numbers
KC217558–KC217654. With the exception of the mitochondrial-encoded ATP synthase F0
subunit 6 (KC217599) and the nuclear-encoded protein OSCP1 (KC217613), all the uploaded
sequences encode for complete coding regions.

Fasting trial
Fish and samples to address the effect of fasting on the transcriptional regulation of OXPHOS
come from a previous study [27]. Briefly, juvenile gilthead sea bream (Sparus aurata L.) of At-
lantic origin (Ferme Marine de Douhet, Ile d’Oléron, France) were raised in the indoor experi-
mental facilities of the Institute of Aquaculture Torre de la Sal (IATS). After an acclimation
period of 3 months, fish with an average body weight of 86 g were distributed into 500 L tanks
in 2 groups of 30 fish each. One group of fish continued to be fed with a commercial diet
(EFICO YM 4.5, BioMar, Dueñas, Palencia, Spain) twice per day at full ration until visual sati-
ety (CTRL group). The second group remained unfed for ten days. The feeding trial was con-
ducted under natural photoperiod and temperature conditions at the latitude of the IATS
(40°5N; 0°10E). Water flow was 20 L/min, the oxygen content of water effluents was always
higher than 85% saturation, and unionized ammonia remained below toxic levels (<0.02 mg/
L). At the end of the trial (following overnight fasting), eight randomly selected fish per dietary
treatment were anesthetized with 3-aminobenzoic acid ethyl ester (MS-222, 100 μg/mL). Liver,
white skeletal muscle (right-hand side) and heart ventricles were rapidly excised, frozen in liq-
uid nitrogen and stored at −80°C until RNA extraction.

Gene expression analysis
RNA from liver was extracted using a MagMAX-96 total RNA isolation kit (Life Technologies,
Carlsbad, CA, USA). RNA yield was 50–100 μg with 260 and 280 nm UV absorbance ratios
(A260/280) of 1.9–2.1, and RIN (RNA integrity number) values of 8–10 were measured on an
Agilent 2100 Bioanalyzer, which is indicative of clean and intact RNA. Reverse transcription
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(RT) of 500 ng total RNA was performed with random decamers using a High-Capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s in-
structions. Negative control reactions were run without reverse transcriptase and real-time
quantitative PCR was carried out on an Eppendorf Mastercycler Ep Realplex Real-Time PCR
Detection System (Eppendorf, Wesseling-Berzdorf, Germany).

The 96-well PCR-array layout was designed for the simultaneous profiling of a panel of 88
OXPHOS genes under uniform cycling conditions: 33 enzyme subunits and 1 assembly protein
of Complex I, 4 enzyme subunits and 2 assembly proteins of Complex II, 12 enzyme subunits
and 1 assembly protein of Complex III, 19 enzyme subunits and 3 assembly proteins of Com-
plex IV, and 12 enzyme subunits and 1 assembly protein of Complex V (n = 12) (Table 1).
Housekeeping genes and controls of general PCR performance were included in each array. All
the pipetting and liquid manipulations required to perform the PCR-array were done by
means of an EpMotion 5070 Liquid Handling Robot (Eppendorf, Hamburg, Germany) with no
technical replicates in separate plates due to the very high data reproducibility. Briefly, RT

Fig 1. Schematic representation of annotated genes of the OXPHOS pathway in gilthead sea bream.Mitochondrial-encoded genes are highlighted in
bold. Assembly factors are indicated in italics.

doi:10.1371/journal.pone.0122889.g001
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Table 1. A. PCR-array layout (88 genes) with extra wells for housekeeping genes (ACTB) and general controls of PCR performance.

A

1 2 3 4 5 6 7 8 9 10 11 12

A ND2 NDUFA6 NDUFB4 NDUFC2 NDUFV3 CYB UQCRQ COX4a COX6b1b SCO1 ATP5F1 PPC1

B ND5 NDUFA7 NDUFB5 NDUFS2 NDUFAF2 CYCS UQCR10 COX4b COX6c1 SURF1 ATP5G1 PPC2

C NDUFA1 NDUFA8 NDUFB6 NDUFS4 SDHA CYC1 UQCR11-A COX5a1 COX7a1 COX15 ATP5I PPC3

D NDUFA2 NDUFA9 NDUFB8 NDUFS5 SDHB UQCRFS1 UQCR11-B COX5a2 COX7a2 ATP5A1 ATP5J2 PPC4

E NDUFA3 NDUFA12 NDUFB9 NDUFS6 SDHC UQCRC1 UQCC COX5b2 COX7b ATP5B ATP5L NPC

F NDUFA4 NDUFB1 NDUFB10 NDUFS7 SDHD UQCRC2 COXI COX6a1 COX7c ATP5C1 ATP5O ACTB

G NDUFA4-like2 NDUFB2 NDUFB11 NDUFV1 SDHAF1 UQCRH COXII COX6a2 COX8a ATP5D OSCP ACTB

H NDUFA5 NDUFB3 NDUFC1 NDUFV2 SDHAF2 UQCRB COXIII COX6b1a COX8b ATP5E ATPAF2 ACTB

B

Position Symbol Description Accession No.

A1 ND2 NADH-ubiquinone oxidoreductase chain 2 KC217558

B1 ND5 NADH-ubiquinone oxidoreductase chain 5 KC217559

C1 NDUFA1 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1 KC217562

D1 NDUFA2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 KC217563

E1 NDUFA3 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3 KC217564

F1 NDUFA4 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4 KC217565

G1 NDUFA4-like2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 KC217566

H1 NDUFA5 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 KC217567

A2 NDUFA6 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 KC217568

B2 NDUFA7 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 KC217569

C2 NDUFA8 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 KC217570

D2 NDUFA9 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 KC217571

E2 NDUFA12 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 KC217574

F2 NDUFB1 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 KC217576

G2 NDUFB2 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2 KC217577

H2 NDUFB3 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3 KC217578

A3 NDUFB4 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4 KC217579

B3 NDUFB5 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5 KC217580

C3 NDUFB6 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 KC217581

D3 NDUFB8 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8 KC217583

E3 NDUFB9 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9 KC217584

F3 NDUFB10 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 KC217585

G3 NDUFB11 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11 KC217586

H3 NDUFC1 NADH dehydrogenase 1 subunit C1 KC217587

A4 NDUFC2 NADH dehydrogenase 1 subunit C2 KC217588

B4 NDUFS2 NADH dehydrogenase iron-sulfur protein 2 KC217589

C4 NDUFS4 NADH dehydrogenase iron-sulfur protein 4 KC217591

D4 NDUFS5 NADH dehydrogenase iron-sulfur protein 5 KC217592

E4 NDUFS6 NADH dehydrogenase iron-sulfur protein 6 KC217593

F4 NDUFS7 NADH dehydrogenase iron-sulfur protein 7 KC217594

G4 NDUFV1 NADH dehydrogenase [ubiquinone] flavoprotein 1 KC217595

A5 NDUFV3 NADH dehydrogenase [ubiquinone] flavoprotein 3 KC217597

B5 NDUFAF2 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 2 KC217598

C5 SDHA Succinate dehydrogenase [ubiquinone] flavoprotein subunit KC217615

D5 SDHB Succinate dehydrogenase [ubiquinone] iron-sulfur subunit KC217616

E5 SDHC Succinate dehydrogenase cytochrome b560 subunit KC217617

(Continued)
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Table 1. (Continued)

A

1 2 3 4 5 6 7 8 9 10 11 12

F5 SDHD Succinate dehydrogenase [ubiquinone] cytochrome b small subunit B KC217618

G5 SDHAF1 Succinate dehydrogenase assembly factor 1 KC217619

H5 SDHAF2 Succinate dehydrogenase assembly factor 2 KC217620

A6 CYB Cytochrome b DQ198005

B6 CYCS Cytochrome c KC217632

C6 CYC1 Cytochrome c1, heme protein KC217621

D6 UQCRFS1 Cytochrome b-c1 complex subunit Rieske KC217622

E6 UQCRC1 Cytochrome b-c1 complex subunit 1 KC217623

F6 UQCRC2 Cytochrome b-c1 complex subunit 2 KC217624

G6 UQCRH Cytochrome b-c1 complex subunit 6 KC217625

H6 UQCRB Cytochrome b-c1 complex subunit 7 KC217626

A7 UQCRQ Cytochrome b-c1 complex subunit 8 KC217627

B7 UQCR10 Cytochrome b-c1 complex subunit 9 KC217628

C7 UQCR11-A Cytochrome b-c1 complex subunit 10 isoform A KC217629

D7 UQCR11-B Cytochrome b-c1 complex subunit 10 isoform B KC217630

E7 UQCC Ubiquinol-cytochrome c reductase complex chaperone CBP3 homolog KC217631

F7 COXI Cytochrome c oxidase subunit I KC217652

G7 COXII Cytochrome c oxidase subunit II KC217653

H7 COXIII Cytochrome c oxidase subunit II KC217654

A8 COX4a Cytochrome c oxidase subunit 4 isoform 1 JQ308835

B8 COX4b Cytochrome c oxidase subunit 4 isoform 2 KC217633

C8 COX5a1 Cytochrome c oxidase subunit 5A, mitochondrial-like isoform 1 KC217634

D8 COX5a2 Cytochrome c oxidase subunit 5A, mitochondrial-like isoform 2 KC217635

E8 COX5b2 Cytochrome c oxidase subunit 5B isoform 2 KC217637

F8 COX6a1 Cytochrome c oxidase subunit 6A isoform 1 KC217638

G8 COX6a2 Cytochrome c oxidase subunit 6A isoform 2 KC217639

H8 COX6b1a Cytochrome c oxidase subunit VIb isoform 1a KC217640

A9 COX6b1b Cytochrome c oxidase subunit VIb isoform 1b KC217641

B9 COX6c1 Cytochrome c oxidase subunit 6C-1 KC217642

C9 COX7a1 Cytochrome c oxidase subunit 7A1 KC217643

D9 COX7a2 Cytochrome c oxidase subunit 7A2 KC217644

E9 COX7b Cytochrome c oxidase subunit 7B KC217645

F9 COX7c Cytochrome c oxidase subunit 7C KC217646

G9 COX8a Cytochrome c oxidase subunit 8A KC217647

H9 COX8b Cytochrome c oxidase subunit 8B KC217648

A10 SCO1 SCO1 protein homolog, mitochondrial KC217649

B10 SURF1 Surfeit locus protein 1 KC217650

C10 COX15 Cytochrome c oxidase assembly protein COX15 homolog KC217651

D10 ATP5A1 ATP synthase subunit alpha KC217601

E10 ATP5B ATP synthase subunit beta KC217602

F10 ATP5C1 ATP synthase subunit gamma KC217603

G10 ATP5D ATP synthase subunit delta KC217604

H10 ATP5E ATP synthase subunit epsilon KC217605

A11 ATP5F1 ATP synthase subunit b KC217606

B11 ATP5G1 ATP synthase lipid-binding protein KC217607

(Continued)
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reactions were diluted to convenient concentrations and the equivalent of 660 pg of total input
RNA was used in a 25 μL volume for each PCR reaction. PCR wells contained a 2x SYBR
Green Master Mix (Bio-Rad, Hercules, CA, USA), and specific primers at a final concentration
of 0.9 μMwere used to obtain amplicons of 50–150 bp in length (S6–S10 Tables). The program
used for PCR amplification included an initial denaturation step at 95°C for 3 min, followed by
40 cycles of denaturation for 15 s at 95°C and annealing/extension for 60 s at 60°C. The effi-
ciency of PCR reactions was always higher than 90% and similar for all the genes. Negative
controls without sample templates were routinely performed for each primer set. The specifici-
ty of reactions was verified by analysis of melting curves (ramping rates of 0.5°C/10 s over a
temperature range of 55–95°C), the linearity of serial dilutions of RT reactions, and electropho-
resis and sequencing of PCR-amplified products.

Fluorescence data acquired during the PCR extension phase were normalized using the
delta-delta Ct method [28]. β-actin, elongation factor 1, α-tubulin and 18S rRNA were initially
tested for gene expression stability using GeNorm software, but the most stable gene was β-
actin (M score = 0.17) and, therefore, it was used as the housekeeping gene in the normaliza-
tion procedure. When genes for a given nutritional condition were individually analyzed, fold-
change calculations for each gene were in reference to the expression ratio between fasted and
CTRL fish (values> 1 indicate fasting up-regulated genes; values< 1 indicate fasting down-
regulated genes). For multi-gene analysis comparing mRNA gene expression level, all data val-
ues in a given tissue were in reference to the expression level in CTRL fish of NDUFC2 (liver),
NDUFA5 (skeletal muscle) or NDUFB2 (heart), for which a value of 1 was arbitrarily assigned
in the corresponding tissue.

Western blotting
Samples for Western blotting were diluted with SDS-PAGE sample buffer (10% glycerol, 12.5%
Tris base, 2% SDS, 0.05% bromophenol blue and 5% mercaptoethanol), boiled and centrifuged
at 13,000 g for 10 min. The supernatants were decanted and equal amounts of protein (20 μg)
were layered and electroblotted as reported elsewhere [29]. Briefly, blots were incubated with a
polyclonal rabbit antiserum raised against human COX4 (ab16056, Abcam, Cambridge, UK)
diluted at 1:2000. This antibody is directed to a 19 amino acid epitope (NPIQGLASKWDYE-
KNEWKK) from within residues 150 to the C-terminus of human COX4, sharing a homology

Table 1. (Continued)

A

1 2 3 4 5 6 7 8 9 10 11 12

C11 ATP5I ATP synthase subunit e KC217609

D11 ATP5J2 ATP synthase subunit f KC217610

E11 ATP5L ATP synthase subunit g KC217611

F11 ATP5O ATP synthase subunit O KC217612

G11 OSCP Protein OSCP1 KC217613

H11 ATPAF2 Mitochondrial F1 complex assembly factor 2 KC217614

A12-D12 PPC Positive PCR control (serial dilutions of standard gene) AY590304

G12 NPC Negative PCR control

F12-H12 ACTB ß-Actin X89920

B. Complete name and GenBank accession number for each gene in the OXPHOS array. Mitochondrial-encoded catalytic subunits are in bold and italics.

Nuclear-encoded catalytic subunits are in bold. Nuclear-encoded regulatory subunits are in normal font. Nuclear-encoded assembly factors are in italics.

doi:10.1371/journal.pone.0122889.t001
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of 78% and 88% with gilthead sea bream COX4a and COX4b, respectively. Detection of signal
was done using an enhanced chemiluminiscence system (Santa Cruz Biotechnology, Santa
Cruz, CA, USA) and a VersaDoc Model 5000 imaging system (Bio-Rad). Prestained markers
(Fermentas, Burlington, Canada) were used to estimate the size and position of protein in
the gel.

Statistical analyses
Fasting-mediated effects on growth performance and tissue mRNA transcripts were analyzed
by Student t-test at a significance level of 5%. All analyses were made using the SPSS package
version 20.0 (SPSS Inc., Chicago, IL, USA).

Ethics statement
All procedures were approved by the Ethics and Animal Welfare Committee of Institute of
Aquaculture Torre de la Sal and carried out in a registered installation (code 36271-42-A) in
accordance with the principles published in the European animal directive (2010/63/EU) and
Spanish laws (Royal Decree RD53/2013) for the protection of animals used in scientific experi-
ments. In all lethal samplings, fish were decapitated under 3-aminobenzoic acid ethyl ester
(MS-222, 100 μg/mL) anesthesia, and all efforts were made to minimize suffering.

Results

Fish performance
As shown in Table 2, continuously fed fish (CTRL) grew efficiently with an 18–20% increase in
body weight, while fasted fish lost 6–8% of body weight mass over the course of the 10-day fast-
ing period. The viscera weight and liver weight of fasted fish were significantly lower than
those of CTRL fish, and the resulting viscerosomatic and hepatosomatic indexes decreased
from 8.5% to 5.4% and from 2.1% to 0.6%, respectively.

Gene expression profiling
Complete data on liver, white skeletal muscle and heart gene expression are shown in S11
Table. As a general rule, fasting produced a down-regulated response of OXPHOS in the liver
tissue, which was statistically significant for 80% of the genes present in the array (72 out of
88). In contrast, a statistically significant up-regulated response was found for 29 and 10 genes

Table 2. Growth and biometric parameters of fed (CTRL group) and fasted gilthead sea bream.

CTRL Fasted P a

Final body weight (g) 109.48 ± 3.42 79.93 ± 1.82 <0.001

Viscera (g) 9.35 ± 0.49 4.34 ± 0.23 <0.001

Liver (g) 2.31 ± 0.13 0.52 ± 0.03 <0.001

VSI (%) b 8.52 ± 0.23 5.41 ± 0.19 <0.001

HSI (%) c 2.10 ± 0.06 0.64 ± 0.02 <0.001

DM intake (g/fish) 17.25 -

Each value is the mean ± SEM of the 8 sampled fish for transcriptional analysis. Initial average weight for the entire population was 86 ± 0.08 g.
aP values result from Student-t test.
bViscerosomatix index = (100 × viscera wt.) / fish wt.
cHepatosomatic index = (100 × liver wt.) / fish wt.

doi:10.1371/journal.pone.0122889.t002
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in white skeletal muscle and the heart, respectively. Overall, in each tissue the magnitude of
change paralleled the number of differentially expressed genes, and the multiplier factor for the
average fold-change of differentially expressed genes was 0.5 in the liver, 1.7 in white skeletal
muscle and 1.5 in the heart.

For a better understanding of expression data, differentially expressed genes with a fold-
change cutoff of 1.25 and 0.8 were compiled and graphically represented for each tissue in Figs.
2–4. In the liver (Fig. 2), the magnitude of change was of the same order within and among all
the components of the respiratory chain, encoded either by mtDNA or nDNA. Thus, 29 out of
33 sequences of Complex I, including catalytic (ND2, ND5, NDUFS2, NDUFS4, NDUFS5,
NDUFS7, NDUFV1-3), regulatory (NDUFA1-3, NDUFA5-9, NDUFA12, NDUFB2-6,
NDUFB9-11, NDUFC1) and assembly factors (NDUFAF2), were significantly down-regulated
with fold-changes of 0.3–0.7. Complex II was also consistently and significantly down-regulat-
ed (4 out of 6 sequences) with fold-changes of 0.4–0.5 for catalytic (SDHA), regulatory (SDHC,
SDHD) and assembly factors (SDHAF2). Two catalytic (CYB, UQCRFS1) and 8 regulatory
(UQCRC1-2, UQCRH, UQCRB, UQCRQ, UQCR10, UQCR11-A, UQCR11-B) subunits of
Complex III (10 out of 13) were significantly down-regulated with fold-changes of 0.4–0.7.
Complex IV was also extensively down-regulated (18 out of 23 subunits) with fold-changes
varying between 0.2 and 0.7 for catalytic (COXI-III), regulatory (NDUFA4, COX4a,-b,
COX5a2, COX5b2, COX6a2, COX6b1a-b, COX6c1, COX7a1-2, COX7b-c, COX8b) and as-
sembly (SURF1) factors. Finally, 5 catalytic (ATP5A1, ATP5B, ATP5C1, ATP5D, ATP5E) and
6 regulatory (ATP5F1, ATP5G1, ATP5I, ATP5J2, ATP5L, ATP5O) elements of Complex V (11
out of 13) were significantly down-regulated by nutrient intervention with fold-changes of 0.3–
0.6.

As shown in Fig. 3, 11 nuclear-encoded subunits of Complex I with catalytic (NDUFS4,
NDUFS7), regulatory (NDUFA1, NDUFA6-7, NDUFB5, NDUFB9-10, NDUFC2) and assem-
bly (NDUFAF2) functions were consistently up-regulated (fold-change 1.3–2.3) by fasting in
white skeletal muscle, but we failed to detect consistent changes in catalytic mitochondrial-en-
coded elements. Complex II was entirely encoded by nDNA and a consistent up-regulation
was found for catalytic (SDHB) and regulatory (SDHC, SDHD) subunits with fold changes of
1.4–1.6. It was the same for Complex III and IV with a significant up-regulation of 13 nuclear
transcripts encoding for catalytic (UQCRFS1), regulatory (UQCRC1-2, UQCRH, UQCRQ,
UQRC10, NDUFA4, COX5A1-2, COX8B) and assembly factors (UQCC, SCO1, SURF1) with
fold-changes varying between 1.3 and 2.8, but again no consistent changes were found for the
mitochondrial-encoded subunits. Less evident were the transcriptionally mediated effects on
Complex V, and a consistent up-regulation with fold changes of 1.5 was only found for the nu-
clear-encoded ATP5A1 and ATP5O.

In the heart (Fig. 4), the number of differentially regulated genes of OXPHOS was drastically
reduced to 10 with overrepresentation of nuclear-encoded assembly factors (Complex I, NDU-
FAF2; Complex II, SDHAF1-2; Complex IV, SURF1) and mitochondrial-encoded elements
(Complex III, CYB; Complex IV, COXI, COXII, COXIII) with fold-changes of 1.3–1.4 and
1.6–1.8, respectively.

COX4 protein levels
Western blot of tissue extracts with the COX4 antibody revealed a protein band of expected
size (approximately 20 kDa) in both liver and muscle tissue samples. Of note, COX4 protein
levels were significantly decreased by fasting in the liver tissue (70% CTRL values), paralleling
the changes observed by mRNA gene expression analysis. In contrast, a slight increase was
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Fig 2. Fold-change of differentially expressed genes (P< 0.05) in the liver tissue of fasted fish. Fish
were fed with a commercial diet to visual satiety (Control, CTRL group) or remained unfed for ten days (fasted
group). Data of fold-change are relative to the CTRL group. The intensity of green boxes represents the
degree of down-regulation. Mitochondrial-encoded catalytic subunits are in bold and red. Nuclear-encoded
catalytic subunits are in red. Nuclear-encoded regulatory subunits are in black. Nuclear-encoded assembly
factors are in blue and italics.

doi:10.1371/journal.pone.0122889.g002
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Fig 3. Fold-change of differentially expressed genes (P< 0.05) in the white skeletal muscle of fasted
fish. Fish were fed with a commercial diet to visual satiety (Control, CTRL group) or remained unfed for ten
days (fasted group). Data of fold-change are relative to the CTRL group. The intensity of red boxes
represents the degree of up-regulation. Nuclear-encoded catalytic subunits are in red. Nuclear-encoded
regulatory subunits are in black. Nuclear-encoded assembly factors are in blue and italics.

doi:10.1371/journal.pone.0122889.g003
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found in heart and white skeletal muscle, although both at the protein and mRNA levels the
fasting-induced changes were not statistically significant (Fig. 5).

Discussion
Mitochondrial OXPHOS provides over 90% of the ATP produced by mammalian cells, and,
therefore, the number of mitochondria and their level of activity vary with the tissue and cell
type reflecting the energy requirements of the cell [30,31]. This also applies to fish, and the ex-
pression profile of selected markers of mitochondrial dynamics and apoptosis, mitochondrial
protein import, folding and assembly, and mitochondrial biogenesis and oxidative metabolism
mirror the intensity and severity of natural and husbandry stressors in farmed gilthead sea

Fig 4. Fold-change of differentially expressed genes (P< 0.05) in the cardiac muscle of fasted fish.
Fish were fed with a commercial diet to visual satiety (Control, CTRL group) or remained unfed for ten days
(fasted group). Data of fold-change are relative to the CTRL group. The intensity of red boxes represents the
degree of up-regulation. Mitochondrial-encoded catalytic subunits are in bold and red. Nuclear-encoded
catalytic subunits are in red. Nuclear-encoded regulatory subunits are in black. Nuclear-encoded assembly
factors are in blue and italics.

doi:10.1371/journal.pone.0122889.g004
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bream [22]. Previous studies on gilthead sea bream also indicate that the mitochondrial “allo-
static load” is altered by dietary oils in crowded stressed fish [21], and overall we consider that
stressful and health risk factors segregate with the low expression levels of genes required for
mitochondrial biogenesis and OXPHOS as previously reported in higher vertebrates [32]. Fur-
thermore, experimental evidence in gilthead sea bream [33,34] and other fish species [35,36]
indicates that hypoxia and nutrient (metabolic fuel) overflow activate the futile cycle of energy
production via the increased expression of uncoupling respiratory proteins (UCP1–3) to
match the antioxidant defense system. However, as pointed out before, the fine regulation of
OXPHOS is not yet established, and the present study provides new and valuable insights into
how gilthead sea bream mitochondria are modulated in a tissue-specific manner to cope with
the altered metabolic needs upon starvation. This includes the uploading to public repository
databases of almost a complete set of OXPHOS genes (97 new gilthead sea bream sequences),
which allowed a new and powerful genomic resource to be developed for a comprehensive
transcriptomic profiling of the mitochondrial respiratory chain in a marine farmed fish species
of a high added value.

Complex I is the largest among the mitochondrial respiratory chain and varies from 14 sub-
units in prokaryotes to 45 subunits in mammals [37–39]. In the present study, we unequivocal-
ly annotated up to 40 new enzyme subunits, including among them four mtDNA-encoded
subunits (ND1, ND2, ND5, ND6), six iron-sulphur proteins (NDUFS2-7), three flavoprotein
subunits (NDUFV1-3), 13 regulatory subunits of the alpha subcomplex (NDUFA1-3,

Fig 5. Western blot of COX4 in liver, white skeletal muscle and cardiac muscle of CTRL and fasted
fish.Representative Western blots of tissue protein samples (20 μg) of CTRL and fasted individuals, and
integrated intensities of bands. For each tissue, data are expressed as the percentage of intensity in
comparison with the CTRL group samples (100% value). Data are represented as mean ± SEM (n = 6) and
statistically significant differences between CTRL and fasted groups are indicated (*, P<0.05; Student t-test).

doi:10.1371/journal.pone.0122889.g005
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NDUFA5-13, NDUFA4-L2; NDUFA4 has been considered as a subunit of complex IV as re-
cently reported by [40]), 11 regulatory subunits of the beta subcomplex (NDUFB1-11) and the
two subunits of the NDUFC complex (NDUFC1 and NDUFC2), in addition to the essential as-
sembly factor NDUFAF2/mimitin [41]. Two assembly factors (SDHAF1-2) and four nDNA-
encoded enzyme subunits of Complex II with either catalytic (SDHA-B) or regulatory
(SDHC-D) properties were also recognized and properly annotated [42]. Likewise, Complex
III is composed of 12 enzyme subunits and all of them, with the exception of cytochrome b
(CYB), are encoded by nDNA [43]. Importantly, all these enzyme subunits are conserved in
gilthead sea bream, and together with two enzyme isoforms of the regulatory subunit UQCR11
(UQCR11-A, UQCR11-B) they have been identified as actively transcribed genes in a typical
marine fish.

Complex IV is composed of a variable number of enzyme subunits (4–13) [44,45], and the
catalytic core represented by the mtDNA-encoded COXI, COXII and COXIII is already found
in our transcriptomic gilthead sea bream database. This enzyme complex is the most studied,
and early studies in sheep, dogs, rabbits, rats, mice and humans share a characteristic gene ex-
pression pattern on the basis of the species [46], tissue [47] and developmental stage [48]. In
the present study, up to 20 enzyme subunits of Complex IV were annotated, including 16 con-
served vertebrate paralogs of COX4 (COX4a, COX4b), COX5a (COX5a1, COX5a2), COX5b
(COX5b1, COX5b2), COX6a (COX6a1, COX6a2), COX6b (COX6b1, COX6b2), COX6c
(COX6c1, COX6c2), COX7a (COX7a1, COX7a2), COX8 (COX8a, COX8b) and five fish spe-
cies-specific subunits annotated as COX6b1a, COX6b1b, COX6c1, COX7b and COX7c [49].
Additionally, we annotated for the first time in a non-model fish species the assembly factors
COX15, SCO1 and SURF1, which are essential for the normal function of the enzyme complex
[50]. Indeed, COX15 converts heme O into heme A by hydroxylation, which is then incorpo-
rated during early assembly into Complex IV, and any mutation in COX15 leads to the arrest
and degradation of the complex [51]. Likewise, SCO1 is involved in cellular copper homeosta-
sis, and mutations in SCO1 cause a neonatal hepatopathy and ketoacidotic coma [52]. In hu-
mans and flies, mutations in SURF1 are generally lethal, but paradoxically SURF1 knockouts
are associated with prolonged longevity and neuroprotection in mice [53].

Complex V comprises a catalytic sector (F1), a membrane sector (F0) and a long stalk con-
necting F1 to F0. Out of a total of 15 subunits, two (ATP6 and ATP8) are encoded by mtDNA
and the remaining by nDNA [54,55], and all of them, including the F1-stator (ATP5A1, B, C),
the rotor (ATP5D, E, ATP5G) and the proton translocation of the F0 sector, comprising the
membrane stator (ATP6, ATP8), the stator-peripheral stalk (ATP5F1, ATP5H, ATP5J2,
ATPO, OSCP) and the dimerization subunits (ATP5I, ATP5L), were properly annotated. The
ATPAF2 assembly factor, required for the correct function of Complex V [26], was also identi-
fied, which confirms and extends the notion that catalytic, regulatory and assembly factors of
OXPHOS have been highly conserved through the evolution of fish and higher vertebrate spe-
cies with a differential and tissue-specific regulation in fish exposed to different metabolic
stressors as reported below.

From a functional point of view, it is noteworthy that in our fasting model most of the com-
ponents of our OXPHOS array were significantly down-regulated in the liver tissue. The mag-
nitude of change was of the same order of magnitude for all the enzyme complexes (Complex
I–V), and importantly this massive response included catalytic enzyme subunits, encoded ei-
ther by mtDNA (ND2, ND5, CYB, COXI-III) or nDNA (NDUFS2, NDUFS4, NDUFS5,
NDUFS7, NDUFV1-3, SDHA, UQCRFS1, ATP5A1, ATP5B, ATP5C1, ATP5D, ATP5E), and
nuclear-encoded regulatory enzyme subunits (NDUFA1-9, NDUFA12, NDUFB2-6, NDUFB9-
11, NDUFC1, SDHC, SDHD, UQCRC1-2, UQCRH, UQCRB, UQCRQ, UQCR10,
UQCR11-B, COX4a,-b, COX5a2, COX5b2, COX6a2, COX6b1a-b, COX6c1, COX7a1-2,
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COX7b-c, COX8b, ATP5F1, ATP5G1, ATP5I, ATP5J2, ATP5L, ATP5O) and nuclear-encoded
assembly factors (NDUFAF2, SDHAF2, SURF1) as well. This consistent response substantiates
a reduced energy demand as the result of the fasting inhibition of hepatic lipogenesis, which is
considered a major energy-demanding process in the liver tissue [56]. Hence, we found herein
a marked loss of adipose tissue mass and liver size, which is concurrent with a strong down-
regulation of a vast array of hepatic lipogenic enzymes, including fatty acid elongases
(ELOVL4, ELOVL5, ELOVL6) and desaturases with Δ6 (FASD2) and Δ9 (SCD1a and SCD1b)
activities [27]. In the present study, additional evidence for all this is supported by the observa-
tion that the expression of COX4 subunit isoforms was dampened by fasting at both the
mRNA and protein level. Fasting or caloric restriction also down-regulate OXPHOS and the
TCA cycle in the liver tissue of pigs [57], mice [58] and chickens [59]. A similar trend was re-
ported for the liver of European eels after exposure to environmental pollutants [16,17], al-
though reliable results were reduced to regulatory enzyme subunits due to the poor
representation of assembly factors and catalytic enzyme subunits of OXPHOS in the arrays
used for the gene expression profiling

In fish, switches in muscle energy demand or oxidative capacities are often related to inten-
sity training [60] or long fasting spawning migrations [18,61]. However, nutrient availability
by itself is a major factor driving switches in muscle protein turnover and mitochondrial activi-
ty as reported earlier in gilthead sea bream [23] by microarray gene expression profiling of gly-
colytic and aerobic muscle tissues in fish fed to maintenance ration. This is consistent with the
up-regulation of OXPHOS in white skeletal muscle and the heart, although both in this and
previous studies in pigs [62] and mice [63] the response of skeletal and cardiac muscle tissues
to food deprivation and/or restriction is not only opposite to, but also weaker than, in the liver.
This notion was substantiated herein by the magnitude of fold-change and the number of dif-
ferentially expressed genes, which was reduced from 72 in the liver to 29 and 10 in skeletal
muscle and cardiac muscle, respectively. Furthermore, it should be noted that the response of
skeletal muscle was mostly mediated by regulatory and assembly factors encoded by mitochon-
drial DNA, whereas that of cardiac muscle was mostly due to catalytic and assembly factors en-
coded by mitochondrial and nuclear DNA. In humans, a differential response of
mitochondrial complexes has also been found with age in skeletal muscle, with a decrease in
gene transcripts for several components of complexes I, IV and V, and no major changes for
complexes II and III [64,65]. The physiological significance of these findings is far from being
fully established, although they can be viewed as a different tissue-metabolic plasticity of glyco-
lytic and highly oxidative muscle tissues, which was encompassed in a complex manner by the
nuclear and mitochondrial genomes. As reported for liver, changes in mRNA gene expression
fit well with the Western blotting of COX4, although further research is needed to assess with
commercial and customized antibodies the concurrent protein changes of the most transcrip-
tionally regulated OXPHOS subunits in front of a wide range of physiological challenges.

Conclusions
The molecular identity of almost all the components of the mitochondrial respiratory chain
has been established for the first time in a non-model fish species. This yielded 97 new gilthead
sea bream sequences, all of them manually curated and uploaded to GeneBank. This allowed
the development of a powerful PCR-array, which has been used with success for the simulta-
neous expression profiling of 88 OXPHOS genes with catalytic, regulatory and assembly prop-
erties. Most of them are becoming highly regulated genes by nutrient deprivation in the liver
tissue, whereas a moderate or low response was found for the glycolytic skeletal muscle and the
highly oxidative cardiac muscle, respectively. The direction of change is also tissue-specific,
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according to the different metabolic capabilities of liver and muscle tissues. These findings con-
tribute to refining the list of candidate genes for phenotyping any metabolic disturbance in
farmed fish and gilthead sea bream in particular. Whether this is fish species-specific remains
to be resolved, although we suspect that it is part of the highly conserved metabolic features
through the evolution of fish and high vertebrate species, which is prone to conserve the com-
plex interactions of mitochondrial and nuclear genomes.
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