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Development and validation of a supervised deep learning algorithm for automated
whole-slide programmed death-ligand 1 tumour proportion score assessment in
non-small cell lung cancer

Aims: Immunohistochemical programmed death-
ligand 1 (PD-L1) staining to predict responsiveness to
immunotherapy in patients with advanced non-small
cell lung cancer (NSCLC) has several drawbacks: a
robust gold standard is lacking, and there is substantial
interobserver and intraobserver variance, with up to
20% discordance around cutoff points. The aim of this
study was to develop a new deep learning-based PD-L1
tumour proportion score (TPS) algorithm, trained and
validated on a routine diagnostic dataset of digitised PD-
L1 (22C3, laboratory-developed test)-stained samples.
Methods and results: We designed a fully supervised
deep learning algorithm for whole-slide PD-L1 assess-
ment, consisting of four sequential convolutional neu-
ral networks (CNNs), using AIFORIA CREATE software. We
included 199 whole slide images (WSIs) of ‘routine
diagnostic’ histology samples from stage IV NSCLC

patients, and trained the algorithm by using a training
set of 60 representative cases. We validated the algo-
rithm by comparing the algorithm TPS with the refer-
ence score in a held-out validation set. The algorithm
had similar concordance with the reference score
(79%) as the pathologists had with one another (75%).
The intraclass coefficient was 0.96 and Cohen’s j coef-
ficient was 0.69 for the algorithm. Around the 1% and
50% cutoff points, concordance was also similar
between pathologists and the algorithm.
Conclusions: We designed a new, deep learning-
based PD-L1 TPS algorithm that is similarly able to
assess PD-L1 expression in daily routine diagnostic
cases as pathologists. Successful validation on routine
diagnostic WSIs and detailed visual feedback show
that this algorithm meets the requirements for func-
tioning as a ‘scoring assistant’.

Keywords: artificial intelligence, computational pathology, immunotherapy, non-small cell lung cancer,
programmed death-ligand 1

Introduction

The 5-year survival rate of patients with stage IV
non-small cell lung cancer (NSCLC) is poor, and this,
combined with 2 million new patients annually,
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makes lung cancer the leading cause of cancer deaths
in the world.1,2 Immune checkpoint therapy (immu-
notherapy) targeting the programmed cell death pro-
tein 1/programmed death-ligand 1 (PD-L1) pathway3

has greatly improved survival for NSCLC patients.4–6

However, response varies greatly between NSCLC
patients. Therefore, immunohistochemical PD-L1
expression is currently used as a biomarker to select
patients for immunotherapy.
Pathologists measure PD-L1 expression by estimat-

ing the percentage of tumour cells with membranous
PD-L1 positivity [the tumour proportion score (TPS);
see also Formula 1 in Data S1].7,8 The TPS is a con-
tinuous score between 0% and 100%, and patients
are further divided into three classes, i.e. TPS of <1%,
TPS of 1–49%, and TPS of >50%, as outlined in
Figure 1.5 These classes have different treatment
options, provided that no targetable mutation (EGFR)
or fusion (ALK; ROS1) is detected.9

Unfortunately, this PD-L1 expression scoring sys-
tem has been proven to be imperfect. The study by
Cooper et al. showed that problematic interobserver
and intraobserver discordance exists, with disagree-
ment between pathologists in 15.8% of cases around
the 1% cutoff point (j coefficient: 0.68) and dis-
agreement between pathologists in 18.1% of cases
around the 50% cutoff point (j coefficient: 0.58).
This study points out that individual pathologists
change their assessment in 8–10% of cases and that
1 h of training does not help in improving concor-
dance.10 These data suggest that patients receive
suboptimal treatment due to misclassification, possi-
bly making them suffer from unnecessary side-
effects11,12 or purposelessly increasing the already
substantial costs of advanced NSCLC treatment. PD-
L1 TPS assessment could therefore benefit from
computational analysis, which eradicates intraobser-
ver variance and has the potential to eliminate some

of the human factors that lead to the high rate of
interobserver discordance.
Three computational PD-L1 TPS scoring methods

have been proposed in the literature so far,13 all of
which produce high rates of concordance with the
reference scores and therefore constitute a relevant
proof of concept that computer-aided PD-L1 scoring is
possible. However, the proposed algorithms all have
similar limitations hampering their performance (and
therefore their implementation in clinical practice)
beyond the research domain. The limitations include:
the use of tissue microarrays (TMAs) [making them
not applicable to whole slide images (WSIs) with
benign tissue backgrounds], the use of trial material
instead of clinical material (resulting in only easy-to-
score material being present in the validation set), a
limited number of observers for the ground truth
score, a lack of precise predictions (undermining the
algorithm’s explainability for clinicians), requiring
manual annotations for each scoring area (resulting
in a very labour-intensive process and potential sam-
pling error), and being thresholding-dependent (mak-
ing them not transferable to a clinical setting, in
which staining intensity varies over time). For all of
these algorithms, the question is whether they are
reliable in a clinical setting. Detailed descriptions of
the different study setups and potential limitations
are included in Table S1.14–16

Materials and methods

To summarise, the perfect PD-L1 algorithm does not
yet exist. A good, practically usable PD-L1 algorithm
should be trained and validated on WSIs that origi-
nate from routine diagnostics. In order to correctly
assess the PD-L1 TPS within the wide variety of tis-
sue contexts from which NSCLC stage IV biopsies

A B

100 um 100 um 100 um

C

Figure 1. Categories of programmed death-ligand 1 (PD-L1) expression, measured as the tumour proportion score (TPS) (Formula 1 in Data

S1). Blue staining: haematoxylin. Brown staining: PD-L1. A, TPS of 50–100%. B, TPS of 1–49%. C, TPS of <1%.
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originate (benign bronchial epithelium, lymph nodes,
adrenal gland, bone and cartilage, skin, liver, kidney,
etc.), and also to correctly neglect positive immune
cells such as macrophages, a deep learning-based
approach is required. Additionally, because of the
high interobserver variance in PD-L1 scoring that the
algorithm is intended to overcome, the reference
scores should be acquired from multiple observers
rather than just one. Finally, the algorithm should
provide visual feedback at a microscopic level, in
order to make algorithm scores interpretable for
pathologists and pulmonologists. These criteria are
outlined in Table 1. In this article, we therefore pre-
sent the first fully supervised deep learning PD-L1
TPS algorithm, based on a cohort from routine diag-
nostics with robust reference scores generated by
three experienced thoracic pathologists.

C A S E S E L E C T I O N

One hundred and ninety-nine consecutive NSCLC
specimens from routine diagnostics at the Leiden Uni-
versity Medical Centre, for which PD-L1 staining had
been performed for routine diagnostics and the TPS
was registered in the pathology report, were included.
Cases were excluded if the patient (at the time of the
biopsy) did not give permission for the use of leftover
tissue for research purposes, if a small-cell or neuro-
endocrine morphology was described, or if the biopsy
contained <100 tumour cells.
The samples originated from both in-house and refer-

ral cases. Three cytology cases with large tumour
islands resembling histology specimens were included;
all other cytology cases (including all endobronchial
ultrasound-guided transbronchial needle aspiration spec-
imens) were excluded. Patients with a second primary
NSCLC on which PD-L1 staining had also been

performed were included twice (both tumours once).
Both metastasis biopsies and primary tumours were
included. All samples were irreversibly anonymised after
inclusion, by use of a unique four-digit random number.

P D - L 1 S T A I N I N G M E T H O D S

Slides were stained for routine diagnostics, over a
period of several years. Formalin-fixed paraffin-
embedded blocks were cut into 3-µm sections with a
Leica RM2255 Automated Microtome (Leica Biosys-
tems B.V., Amsterdam, the Netherlands). Sections
were placed on microscope slides and dried at either
60°C for 30 min to 16 h, or at 37°C for 72 h. After
being dried, the slides were deparaffinised, and anti-
gen retrieval was performed in citrate buffer (Target
Retrieval Solution, pH 6) for 40 min. Immunohisto-
chemistry (IHC) was performed according to a
laboratory-developed test protocol. Slides were stained
with the Dako Omnis immunostainer and Dako EnVi-
sion Flex+ reagents and 1:20 dilution of PD-L1 clone
22C3 (Dako Omnis, Dako Agilent Technologies, Leu-
ven, Belgium). The IHC slides were then counter-
stained with haematoxylin, and coverslips were
applied. Tonsil and placental tissue were used as posi-
tive controls for PD-L1 expression.

S C O R I N G

All of the 199 included samples were independently
scored (TPS; Data S1, Formula 1) by three trained
pulmonary pathologists (D.C., J.T., and V.S.). The
pathologists were blinded to each other’s scores. The
continuous TPS was divided into three categories
(<1%, 1–49%, and 50–100%) for part of the ana-
lyses. The level of concordance between the patholo-
gists was calculated by making 597 pairwise
comparisons from the 199 scored cases. If the paired
pathologists scored in the same category (<1%, 1–
49%, and 50–100%), the case was considered to be
‘concordant’. For comparison with algorithm perfor-
mance, we calculated the mean of the three patholo-
gists’ continuous TPSs and used that as the reference
score for the algorithm (Formula 2 in Data S1).

S C A N N I N G

We anonymised glass slides before scanning, by gener-
ating random barcodes for each slide. Digital WSIs
were acquired with Nanozoomer 2.0-HT (Hamamatsu
Photonics, Hamamatsu City, Japan) scanners at a reso-
lution of 0.23 µm/pixel. The WSI metadata did not
contain any personal data. WSIs were uploaded to the

Table 1. Criteria for algorithm applicability to clinical
diagnostics

Study setup
feature Criterion for applicability to clinical diagnostics

Case selection Routine diagnostic cases, including ‘difficult’
features, e.g. metastasis tissue background
or artefacts

Ground truth As robust as possible: multiple expert observers
or response data

Validation Validation at the whole slide level

Algorithm
feedback

Easily interpretable, detailed visual feedback

© 2021 The Authors. Histopathology published by John Wiley & Sons Ltd, Histopathology, 80, 635–647.
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Aiforia Hub platform (Aiforia Technologies, Helsinki,
Finland) as.ndpi files without additional processing.

T R A I N I N G A N D V A L I D A T I O N S E T

A training set of 60 samples was selected from the
199 included cases. In the training set, there was vari-
ance in tumour type, biopsy site, tissue size (tumour
resection or small core needle biopsy), and the TPS.
We included extra lymph node biopsies and squamous
cell carcinomas in the training set, because only a
handful of these cases were included in the training
set when we selected randomly. All remaining samples
were included in the validation set, which resulted in
a held-out validation set of 139 cases.

A L G O R I T H M S E T U P

The algorithm consists of four separate convolutional
neural networks (CNNs) (Figure 2) and is programmed
in C++. The first three CNNs are binary semantic seg-
mentation models. The first CNN segments high-
quality tissue versus background or low-quality tissue.
The class ‘low-quality tissue’ includes white back-
ground, out-of-focus tissue, folding artefacts, air bub-
bles, glass edges, and other tissue that is of too low
quality to be used for scoring. As the PD-L1 TPS score
must score only tumour cells and neglect immune
cells, such as macrophages, the second and third CNNs
both segment neoplastic tissue versus all other high-
quality tissues. Both CNNs use precisely the same
annotations, but the second CNN utilises a larger tile
size (200 µm)—which results in coarse segmentation
—whereas the third model uses smaller tiles (50 µm)
and is used to refine the predictions of the second
CNN. This method of refining segmentation predictions
enabled more precise prediction of neoplastic cells and
islets, and has not been described before for pathology
image analysis. The fourth CNN is an object detection
model with two classes: PD-L1-positive cells and PD-
L1-negative cells. Each CNN is used only within the
segmented area of the previous CNN, which, for exam-
ple, results in the ignoring of PD-L1-positive and PD-
L1-negative immune cells outside of the neoplastic
areas. The four-CNN setup was chosen in order to
mimic human scoring, and to enhance explainability
to clinicians and patients.

A N N O T A T I O N S

All annotations were placed by the same trained
annotator (L.H.), under the supervision of thoracic
pathologists D.C. and J.T., in regions of interest (ROIs)

in the training set (60 WSIs). Examples of annota-
tions are shown in Figure 2 and Figure S1. In order
to speed up the last part of the annotation process,
we used an adaptation of the human in the artificial
intelligence (AI) loop (HAIL) method, as outlined in
Figure 3.17 In this method, the preliminary AI model
proposes annotations that can be approved, edited or
rejected by the annotator. This process substantially
speeds up annotating, as previously described in the
literature,17 and enables screening for ‘difficult’ fea-
tures early in the algorithm development process. All
annotations were placed in the training set (n = 60),
which was not used for validation.

A L G O R I T H M T R A I N I N G A N D V A L I D A T I O N

Algorithm training and validation were performed
with AIFORIA v4.6, as previously published.18,19 The
error against annotated training data was used as an
evaluation metric for each CNN separately. The loss
function for semantic segmentation networks was mul-
ticlass logistic regression. For the object detection net-
work, a custom-built loss function was used within
the AIFORIA panel. For each CNN, augmented tiles (the
augmentation settings are outlined in Figure S2) were
used: CNN1, 8 052 800 tiles; CNN2, 5 860 000 tiles;
CNN3, 6 472 800 tiles; and CNN4, 58 201 600 tiles.
For validation, the algorithm was applied to all

WSIs in the validation set. The algorithm TPS for
each WSI was acquired and compared with the
whole-slide reference score from the pathologists.
Cases were considered to be ‘concordant’ when the
algorithm score and the reference score were in the
same category: TPS of <1%, 1–49%, or ≥50%. Cases
were considered to be ‘not scorable’ when the algo-
rithm detected <100 neoplastic cells in the WSI.
Cases were considered to be either ‘around the 1%
cutoff point’ (reference score of <25%) or ‘around the
50% cutoff point’ (reference score of ≥25%).

Results

One hundred and ninety-nine NSCLC histology cases were
included in the study. We compared our algorithm-
derived PD-L1 TPS (algorithm score) with the mean of
three scores of specialised pathologists (reference score).

P A T I E N T S A N D C A S E S

The characteristics of the training and validation set
are shown in Table 2. The two groups are slightly
different, which is a result of enriching the training
set for lymph node biopsies and squamous cell

© 2021 The Authors. Histopathology published by John Wiley & Sons Ltd, Histopathology, 80, 635–647.
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carcinomas, as only a handful of those cases were
included in the training set by random selection.

I N T E R O B S E R V E R V A R I A B I L I T Y B E T W E E N

P A T H O L O G I S T S

The three pathologists were in complete agreement in
124 of 199 cases (62%). In pairwise comparisons
(n = 597; Figure 4), the overall concordance between

any two pathologists was 75%. Around the 1% cutoff
(136 cases), all three pathologists agreed in 83 cases
(61%). There were 408 pairwise comparisons around
1%, resulting in an overall concordance of 74%.
Around the 50% cutoff (63 cases), all three patholo-
gists agreed in 41 cases (65%). Between any two
pathologists in the 189 pairwise comparisons around
50%, the concordance was 77%. The Fleiss j coeffi-
cient was 0.61 overall (substantial agreement; 95%

CNN1
High-quality Tissue

Segmentation

B

C D

E

100 um 100 um

100 um

100 um

A

High-quality tissue

CNN2 and CNN3
Tumor

Segmentation

Tumor area

CNN4
Tumor Cell
Counting

PD-L1 positive
tumor cells

PD-L1 negative
tumor cells

Tumor proportion
score (TPS)

Benign area

Low-quality tissue
and background

Figure 2. Algorithm setup and annotations. A, Schematic algorithm setup with four convolutional neural networks (CNNs) to calculate the

programmed death-ligand 1 (PD-L1) tumour proportion score (TPS). B, Annotations for high-quality tissue segmentation (CNN1). Green

annotated: high-quality tissue that is in focus and does not contain artefacts. Black: annotated region of interest (ROI), and non-annotated

area within the ROI: the tissue is of low quality in this example, because of air bubbles. C, Annotations for tumour segmentation (CNN2

and CNN3). Red annotated: tumour. Black: annotated ROI, and non-annotated area within the ROI: non-neoplastic tissue. D,E, Annotations

for tumour cell counting (CNN4). Green: annotated PD-L1-positive nuclei. Red: annotated PD-L1-negative nuclei. Black: annotated ROI. The

TPS can be calculated from the number of PD-L1-positive tumour cells and the number of PD-L1-negative tumour cells (Formula 1 in

Data S1). All annotations were placed in the training set (n = 60), which was withheld from validation.
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confidence interval 0.612–0.616). The mean absolute
difference between the pathologists’ assessments was
8%. These data are similar to the concordance rates
described in the literature.10,20–26

A L G O R I T H M T R A I N I N G A N D M E T R I C S

We trained the four CNNs separately. For each CNN,
the training settings and output (tile size, amount of
training data annotated, epochs trained, and error
against training data) are summarised in Table 3. Error
against training data was calculated with Formula 1
for semantic CNNs (CNN1, CNN2, and CNN3), and
with Formula 2 for object detection CNN (CNN4). We
used an early stopping mechanism, which ended the
training after ⁓18 h when there was no progress in
the loss function output over a set amount of epochs.
Formula 1: Error formula for segmentation CNNs

(CNN1, CNN2, and CNN3).
Error = [false-positive area (mm2) + false-negative

area (mm2)]/ROI area total (mm2)
Formula 2: Error formula for the object detection

CNN (CNN4).
Error = true-positive area (mm2)/[true-positive area

(mm2) + false-positive area (mm2) + false-negative
area (mm2)]

A L G O R I T H M V A L I D A T I O N

In the validation set, as outlined in Figure 5, the
concordance between the reference score and the

algorithm score was 79% overall, whereas any two
pathologists agreed with each other in only 75% of
the cases. The algorithm concordance was also 79%
around the 1% and 50% cutoff points, whereas any
two pathologists agreed with each other in 74% and
77% of the cases around these cutoff points. The
average difference between any two pathologists was
8%, and the average difference between the algo-
rithm score and the reference score was 5%, which
is significantly lower (P = 0.01, unpaired t-test). The
intraclass coefficient (with a consistency definition)
was 0.96 [95% confidence interval (CI) 0.94–0.97],
when the continuous algorithm score was compared
with the continuous reference score. The algorithm
identified 39 359 neoplastic cells per slide on aver-
age (range, 188–749 558 cells). Cohen’s j coeffi-
cient for the algorithm was 0.68. This is similar to
the Fleiss j coefficient calculated for the pathologists
(0.61).
Nineteen cases were registered as ‘unscorable’ by

the algorithm. In 11 cases, this was due to poor scan-
ning quality and the WSI being out of focus (partly
or completely). In five cases, there were severe arte-
facts, which had not been included in the training set
and made the WSI difficult to score for the algorithm
(Figure S3A) In both of the two remaining slides, the
tumour was strongly discohesive, falling apart in
such small parts that it resembled cytology, which
was not included in the training set. In these cases,
the algorithm did not correctly identify all of the
tumour cells and counted <100 tumour cells

Manual annotation
editing

Proposed annotation
by algorithm

Annotation approved
200 um

200 um

Algorithm training

Figure 3. Human in the

artificial intelligence loop

(HAIL) annotation method.

Red: neoplastic tissue. Black:

region of interest. The

preliminary algorithm proposes

annotations, which can be

approved, edited or rejected by

the annotator. This process

speeds up annotating and

enables screening for ‘difficult’

features early in the algorithm

development process. In each

HAIL cycle, multiple

annotations are proposed,

edited, and accepted. [Colour

figure can be viewed at

wileyonlinelibrary.com]
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(Figure S3B). One hundred and twenty cases
remained for algorithm validation.
For cases scored <0.5% by the algorithm (n = 32),

the concordance with the reference score was 94%.
For cases scored >60% by the algorithm (n = 20),
the concordance with the reference score was 100%.
The cases with scores of <0.5% and >60% constituted
43% of the validation set (n = 52). Examples of algo-
rithm applicability for both the ‘difficult’ cases (TPS of
0.5–60%) and the ‘easy’ cases are provided in
Figure 7 and Figures S4–S6.

E X P L A I N I N G D I S C O R D A N C E

On closer examination of the cases that were misclassi-
fied by the algorithm (orange dots; Figure 5B), it is clear

that, in 20 of 25 misclassified cases (80%), the patholo-
gists were also in disagreement, meaning that one of the
pathologists scored the case in a different treatment cat-
egory. This occurred significantly more frequently than
in the cases that were correctly classified by the algo-
rithm (27%, P = 0.000003, Fisher’s exact test), which
suggests that these cases were more difficult to score for
both human andmachine. Common features in the mis-
classified cases included the following:
1. The reference score was close to the 1% or 50%

cutoff point.
2. Neoplastic tissue was surrounded or infiltrated by

PD-L1-positive immune cells (Figure 6A,D.)
3. Neoplastic cells stained for PD-L1, but the staining

was non-membranous (Figure 6B).
4. Neoplastic cells stained for PD-L1, but the entire

membrane did not stain positively (incomplete
staining) (Figure 6C).

5. Neoplastic cells stained for PD-L1, but with low
intensity (Figure 6C).

6. There were severe artefacts, including anthracosis,
folds, ink, degeneration, preservation-related
issues, and scanning-related issues (Figure 6B).

7. A small number (<250) of neoplastic cells were
available for scoring.
The misclassified cases were not significantly differ-

ent from the correctly classified cases with regard to
tumour type (P = 0.5, chi-squared test), biopsy site
(P = 0.4, chi-squared test), or PD-L1 TPS category
(P = 1.0, chi-squared test).

Table 2. Case characteristics

Characteristic

Training
set
(N = 60)

Validation
set
(N = 139) P-value

Age (years) (range) 69 (45–86) 68 (48–90) 0.7*

Sex, n (%) 1.0†

Male 35 (58) 81 (58)

Female 25 (42) 58 (42)

Tumour type, n (%) 0.03‡

Adenocarcinoma 44 (73) 117 (84)

Squamous cell carcinoma 16 (27) 18 (13)

Adenosquamous carcinoma 0 4 (3)

Biopsy site, n (%) 0.01‡

Lung 30 (50) 89 (64)

Lymph node 14 (23) 11 (8)

Distant metastasis 16 (27) 39 (28)

PD-L1 in report, n (%) 0.53‡

Negative (<1%) 28 (47) 69 (50)

Low positive (1–49%) 20 (33) 36 (26)

High positive (50–100%) 12 (20) 34 (24)

PD-L1, programmed death-ligand 1.

Significant difference are due to enriching the training set for

lymph node biopsies and squamous cell morphology, as only a few

of those were included when we selected the training set

randomly.

*Unpaired t-test.
†Fisher’s exact test.
‡Chi-squared test.

<1%

1-50%

50-100%

<1% 1-50% 50-100%

67 136 23

193 37 0

2 21 118

Figure 4. Confusion matrix for interobserver variance between

pathologists. The confusion matrix is based on three observers and

199 cases, constituting 597 pairwise comparisons. One of the paired

observers is plotted on the x-axis and the other observer is plotted on

the y-axis. [Colour figure can be viewed at wileyonlinelibrary.com]
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V I S U A L A L G O R I T H M F E E D B A C K

The algorithm provides detailed visual feedback of
predictions, at both the whole slide level and the
microscopic level. The cell counting aspect of the

algorithm enables exact approximation of the TPS,
whereas, obviously, pathologists can only give a
rough estimate. A case example is shown in
Figure 7. Additional case examples are shown in
Figures S4–S6.

Table 3. Training parameters per convolutional neural network (CNN)

CNN
Tile size
(µm)

Resolution
()µm/pixel

Annotated
data

No. of CNN
layers

Epochs
trained

Error against
training data (%)

CNN1: High-quality tissue 50 1.61 517 mm2 8 5033 0.12

CNN2: Neoplastic tissue (coarse) 200 1.57 960 mm2 12 14 650 0.49

CNN3: Neoplastic tissue (refinement) 50 0.39 960 mm2 12 16 182 0.15

CNN4: Cell detection 86 0.44 5159 objects 6 18188 9.1

Training parameters for each CNN included tile size, resolution, the amount of annotated training data, the number of convolutional layers

per CNN, epochs trained, and error against the training data. Error formulas are provided in Formulas 1 and 2.
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Figure 5. Algorithm validation set results. A, Flowchart for the validation process. B, Scatterplot for the mean of the three pathologists’ con-

tinuous tumour proportion scores (TPSs): the reference score (Formula 2 in Data S1) is on the y-axis, and the continuous algorithm score is

on the x-axis. C, Confusion matrix for categorical TPSs (<1%, 1–49%, and 50–100%): the reference score categories are on the y-axis, and

the algorithm score categories are on the x-axis. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2021 The Authors. Histopathology published by John Wiley & Sons Ltd, Histopathology, 80, 635–647.

642 L M Hondelink et al.

www.wileyonlinelibrary.com


S E G M E N T A T I O N R E F I N E M E N T

Our algorithm utilises two sequential segmentation
CNNs for neoplastic tissue detection. The first CNN
(coarse CNN) has a tile size of 200 µm, whereas the

subsequent CNN (refinement CNN) has a tile size of
50 µm. An example of this setup is outlined in
Figure 8. Adding the refinement CNN reduces the
error against the training data from 0.49% to 0.15%,

100 um 50 um

100 um50 um

A B

C D

Figure 6. Difficult-to-score

features. A, Neoplastic tissue

surrounded by benign

programmed death-ligand 1

(PD-L1)-positive cells. B, PD-L1

staining in neoplastic cells:

partly nuclear, partly

cytoplasmic, and partly

membranous (anthracosis and

ink). C, Low-intensity PD-L1

staining. D, PD-L1-positive

immune cells infiltrating

neoplastic tissue. [Colour figure

can be viewed at

wileyonlinelibrary.com]

BA

DC
5 mm 5 mm

200 mm 200 mm

Figure 7. Case example algorithm scoring of a ‘difficult’ case close to the 50% cutoff. A, A programmed death-ligand 1 (PD-L1)-stained

lobectomy slide overview of a squamous cell carcinoma. B, Prediction from convolutional neural network (CNN) 3 (neoplastic area segmen-

tation). Red: neoplastic tissue. C, Representative close-up. D, Prediction from CNN4 (cell detection). Red: PD-L1-negative cell. Green: PD-L1-

positive cell. In total, the algorithm counted 98 235 PD-L1-positive cells and 118 604 PD-L1-negative cells in this whole slide image, result-

ing in a tumour proportion score of 45.3%. The pathologists scored this case at 30%, 60%, and 45%, respectively. The reference score was

therefore 45%. [Colour figure can be viewed at wileyonlinelibrary.com]
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which constitutes a 3.3-fold decrease (Table 3). This
approach therefore improves the predictions and
decreases the required amount of annotations, as
both segmentation CNNs utilise the same set of anno-
tations. The added benefit of this approach was espe-
cially clear in cases with small patches of neoplastic
tissue, as shown in Figure 8.

Discussion

The PD-L1 TPS is an established biomarker, with
direct treatment consequences for late-stage NSCLC
patients. However, PD-L1 as a biomarker for
response to immunotherapy has several drawbacks,
the most important being the high interobserver
and intraobserver variance around rigid cutoff
points (at 1% and 50%), and the fact that negative
patients may also respond (and vice versa).
Although a more definitive solution for a more
accurate prediction of response to immunotherapy is
still a subject of research, some of the human fac-
tors leading to high interobserver and intraobserver
variance may be solved by the use of computational
PD-L1 scoring. Several attempts have been made to
create PD-L1 scoring algorithms, but all have

specific limitations that hamper robust translation
into clinical practice.
We therefore developed and validated a fully super-

vised deep learning algorithm for computational PD-
L1 scoring, which gives scores concordant with the
reference score in 79% of cases, whereas any two
pathologists agree with each other in 75% of cases.
Cohen’s j coefficient for the algorithm is 0.68 and
the intraclass coefficient is 0.96; respectively, these
constitute ‘substantial’ to ‘almost perfect’ agreement,
and are close to the agreement rates between the
three experienced thoracic pathologists in this study.
An additional strength of our algorithm is that it

provides detailed visual whole-slide predictions at a
microscopic level, owing to the fully supervised setup
of the model. This feedback increases interpretability
and explainability, which is an important criterion
for algorithms that will be used by pathologists in a
clinical setting.
We believe that—in order to be of value in daily

clinical practice—any algorithm should be designed
with cases derived from routine diagnostic WSIs, as
opposed to ‘perfect’ trial material14,15 or TMAs.16 Our
algorithm is trained and validated on routine diag-
nostic whole slide histological material, including a

PD-L1
close-up

100 um 100 um 100 um

100 um 100 um 100 um

A

B

Coarse CNN
prediction

Refinement CNN
prediction

PD-L1
close-up

Coarse CNN
prediction

Refinement CNN
prediction

Figure 8. Segmentation

refinement examples. Left:

programmed death-ligand 1

(PD-L1)-stained tissue. Middle:

overlay predictions (yellow)

from the first neoplastic

segmentation convolutional

neural network (CNN) (coarse

CNN). Right: overlay

predictions from the first

(yellow) and second (red)

neoplastic segmentation CNNs

(refinement CNNs). In case A

(negative tumour cells with

closely associated positive

immune cells), use of only the

coarse CNN would have

resulted in falsely counting

more PD-L1-positive cells, and

potentially a higher tumour

proportion score (TPS) (false-

positive). In case B (negative

cells in negative stroma), using

only the coarse CNN would

have resulted in falsely

counting more PD-L1-negative

cells, and potentially a lower

TPS (false-negative). [Colour

figure can be viewed at

wileyonlinelibrary.com]

© 2021 The Authors. Histopathology published by John Wiley & Sons Ltd, Histopathology, 80, 635–647.

644 L M Hondelink et al.

www.wileyonlinelibrary.com


wide range of metastatic sites and tissue artefacts.
Because of its deep learning-based nature, the algo-
rithm performs well in the highly heterogeneous tis-
sue backgrounds in WSIs (artefacts, lymph nodes,
bronchial epithelium, adrenal gland, skin, brain,
bone, kidney, etc.), which requires extensive annota-
tions and is not easily achieved with simpler machine
learning approaches.16 For validation, algorithm
scores were compared with the scores of multiple
observers, which is essential because the reference
score needs to be as robust as possible. It must be
noted that our j coefficient for pathologist agreement
is relatively low as compared with those in some PD-
L1 interobserver studies using trial material or
TMAs,14,15 but is in line with those in other studies
with similar broad inclusion criteria.10

Given the described accuracy and clinical applicabil-
ity of our model, one may think of two different areas
of usage: (i) PD-L1 scoring in a (case-by-case) diagnos-
tic setting; and (ii) PD-L1 scoring of trial material and/
or large series in a research environment. In a diag-
nostic setting, we see this algorithm as a potential
‘scoring assistant’ or second-opinion tool, aiding and
saving time for pathologists, especially in difficult
cases. In a situation in which scoring of large series or
trial material is required, this algorithm may stand
alone in the scoring of ‘easy’ cases with <0.5% or
>60% PD-L1 positivity, as the algorithm reaches an
accuracy of 96%. A pathologist could then focus on
the subset of difficult cases with PD-L1 scores between
0.5% and 60%. A second observer pathologist may be
replaced by our algorithm. Overall, our PD-L1 algo-
rithm will function mostly as a scoring assistant or
second observer, thereby saving time and human
effort, while remaining equally accurate.
Although the implementation of this and other

algorithms in daily clinical practice is imminent, the
applicability of this algorithm is likely to be hampered
by domain divergence (different scanners, different
antibodies, different stainers, etc.). When this algo-
rithm is used in a new laboratory, or when labora-
tory circumstances change, ‘domain adaptation’
(adapting the algorithm to the same task but in a
new dataset) is required.
The difficulty of the domain adaption process and

the choice of a method of adapting is heavily depen-
dent on the domain relatedness (or the measure of
domain divergence), which is a subject of ongoing
research in the field of computer vision. Domain
adaptation can be performed in many different ways
(shallow adaptation, deep supervised adaptation,
adversarial adaptation, semisupervised adaptation,
domain matching, etc.).27,28

Histopathology articles describing the process of
domain adaptation in computational pathology are
mostly lacking. We consider this to be a potential
drawback. Clear guidelines for ‘domain adaptation’
and ‘post-implementation monitoring’ will need to be
established in the near future. This issue will there-
fore be the subject of future research, in which we
will use this PD-L1 algorithm for a nationwide PD-L1
domain adaptation study.
Another future research challenge for the field of

PD-L1 assessment and digital pathology is its applica-
tion in cytology. In cytology specimens, there is sub-
stantially less tissue context, and the task of PD-L1
TPS assessment is therefore different and perhaps
more difficult. Despite these challenges, it is often nec-
essary to use cytology material for PD-L1 analysis in
clinical practice when no histology material is avail-
able, which is the case in up to 40% of cases.9 Our
algorithm is not applicable to, and is not easily trans-
ferrable to, cytology specimens; a separate algorithm
would have to be developed for this purpose. This
algorithm would need to take the different cytological
backgrounds and common cell types such as meso-
thelial cells, macrophages and (fragments of) lym-
phoid tissue into account.
In conclusion, we have developed a deep learning

PD-L1 TPS algorithm that is truly applicable to daily
routine whole slide specimens. State-of-the-art com-
putational techniques such as the double segmenta-
tion CNN and the HAIL annotations worked
synergistically with the clinical perspective of highly
experienced thoracic pathologists in this study, and
resulted in the first PD-L1 algorithm that is accurate
on routine diagnostic material, in all tissue contexts,
and on WSIs. In order to create smart pathology-
based deep learning algorithms that are actually
meaningful for the patients and clinicians of tomor-
row, a true alliance of both clinical and computa-
tional experts is crucial.
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