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Purpose: To introduce and evaluate the use of stable distributions as a methodology to quantify the
behavior of proton pencil beams in a medium.
Methods: The proton pencil beams of a clinically commissioned proton treatment facility are repli-
cated in a Monte Carlo simulation system (FLUKA). For each available energy, the beam deposition
in water medium is characterized by the dose deposition. Using a stable distribution methodology,
each beam with a nominal energy E is characterized by the lateral spread at depth z: S(z; a, c, E) and
a total energy deposition ID(z, E). The parameter a describes the tailedness of the distributions, while
c is used to scale the size of the function. The beams can then be described completely by a function
of the variation of the parameters with depth.
Results: Quantitatively, the fit of the stable distributions, compared to those implemented in some
standard treatment planning systems, are equivalent for all but the highest energies (i.e.,
230 MeV/u). The decrease in goodness of fit makes this methodology comparable to a double
Gaussian approach. The introduction of restricted linear combinations of stable distributions also
resolves that particular case. More importantly, the meta-parameterization (i.e., the description of
the dose deposition by only providing the fitted parameters) allows for interpolation of nonmea-
sured data. In the case of the clinical commissioning data used in this paper, it was possible to
only commission one out of five nominal energies to obtain a viable dataset, valid for all ener-
gies. An additional parameter b allows to describe asymmetric beam profiles as well.
Conclusions: Stable distributions are intrinsically suited to describe proton pencil beams in a med-
ium and provide a tool to quantify the propagation of proton beams in a medium. © 2018 The
Authors Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of
Physicists in Medicine. [https://doi.org/10.1002/mp.12876]
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1. INTRODUCTION

In proton beam therapy treatment planning, analytical
descriptions of the treatment beams are commonly used to
determine the dose deposited in clinical patient models.
Although Monte Carlo-based methods have become faster
during the last few years, there is still a distinct advantage for
using more efficient analytical models. In particular, if multi-
ple calculations need to be performed, such as in the process
of four-dimensional (4D)-robust-optimization or adaptive
therapy. This advantage is significant in the case of pencil
beam-based proton therapy, where multiple small beams need
to be tracked and calculated. However, the currently imple-
mented analytical algorithms have been shown to be less reli-
able in more complex clinical treatment sites like lung and
breast,1,2 which necessitate a more accurate description of the
dose deposited by a scanned proton beam. Yet, an improved

analytical description of the lateral pencil beam model can
provide a better representation of the macroscopic processes
of a pencil beam in a medium, but still preserving the calcula-
tion speed characteristic of a TPS, nonstochastic, algorithm.

A pencil beam entering a medium will generate secondary
particles, such as scattered neutrons, photons, d-rays, and
large angle scattered protons, producing a nuclear halo of
dose around the central beam axis. The relative contributions
of scattered protons, d-rays, and neutrons change as the beam
penetrates deeper in the medium. Although the contribution
from a single pencil beam is small in a region far away from
the central axis, a complex treatment plan is made of many
pencil beams and the summation of the lateral contributions
could be significant.

The description and treatment of the nuclear halo has been
the focus of research by a number of groups who have pro-
posed various methodologies describing the effects in an
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analytical way. Gottschalk et al. presents an in-depth analysis
of all the physical processes contributing to the beam lateral
profile, subdividing a pencil beam into a combination of four
distinct regions: core, halo, aura, and (possibly) spray.3,4

Such a detailed approach requires up to 25 different physical
parameters to characterize the beam, making it logistically
difficult to implement. Therefore, in most commercially
available implementations, the contribution from the nuclear
halo is quantified by adding different distributions to a central
Gaussian distribution describing the core of the pencil beam.

In a first instance, the lateral scatter behavior as a function
of the radial distance r of proton pencil beams, of energy E,
in air are described by a radially symmetric two-dimensional
(2D) normal distribution:

Sðr;EÞ ¼ 1
2pr2ðEÞ exp � r2

2r2ðEÞ
� �

(1)

with r the variance of the normal distribution. Once a beam
propagates in a solid medium, the halo component becomes
more important. A first proposed solution for the nuclear halo
by Pedroni et al. added another, broader Gaussian to the core;
a methodology which is implemented in the Varian Eclipse
(Varian Medical Systems, Palo Alto, CA) calculation algo-
rithm.5,6 This can be parameterized as follows:

Sðr; z;EÞ ¼ 1� q
2pr21ðz;EÞ

exp � r2

2r21ðz;EÞ
� �

þ ðqÞ
2pr22ðz;EÞ

exp � r2

2r22ðz;EÞ
� � (2)

where z represents the depth in a medium. The same notation
was followed as in Eq. (1), r1 and r2 denoting the different
normal distributions. The parameter q provides the relative
contribution of each Gaussian.

Another clinically used algorithm for pencil beam calcula-
tion is implemented in RayStationTM TPS (RaySearch Labo-
ratories, Stockholm, Sweden). In this system, the lateral dose
is modelled as a superposition of 19 Gaussian distributions
(19 subspots: 1 at the center, and 6 and 12 positioned at two
concentric circles around the center).7

In further refinements of this approach, other groups
attempted combinations of Gaussian, Lorentz (also known as
Cauchy), and L�evy distribution functions,8 increasing the
complexity of the fitting procedure and necessitating look-up
tables for the various parameters. It is interesting to note that
a number of the more successful methods combine two or
more stable functions in their analytical representation. How-
ever, when having so many parameters, one could question
whether it would not be more advantageous and correct to
use the approach proposed by Gottschalk (i.e., modeling the
physical parameters) or alternatively, applying a spline fit to
measured data, to describe the pencil beam.

In this paper, we review the concept of stable distributions
and show that they can be used to represent the evolution of a
proton pencil beam in a medium. Indeed, the notion of a
stable distribution allows to describe combinations of differ-
ent distributions. These uni-modal distributions can not only

have variable width but also different contributions in their
tails, both of which can be quantified by the parameters c and
a, respectively. Moreover, the fact that stable distributions
represent an infinity of distribution types, allows a descrip-
tion of how such a distribution, quantified by its parameters,
changes over time, or in this case as a pencil beam penetrates
deeper in a medium.

While there is no direct mechanistic basis to this descrip-
tion, the tailedness (a) of the distribution is mainly influenced
by the halo, while the overall broadness (c) is governed by the
beam divergence combined with primary scatter processes.

We demonstrate that this approach provides an accurate
description of the pencil beam when compared to published
measured data and geometrically extended Monte Carlo sim-
ulations. In addition, we investigate the behavior at higher
energies and show that a more complex methodology is
needed. Finally, we show that the description of the pencil
beam behavior as a function of depth in the medium can be
investigated by a parametric approach, whereby the parame-
ters are a well-behaved function of penetration depth. This
can lead to further research in quantifying these parameters
in nonhomogeneous media as well as characterizing the med-
ium traversed expressed as changes in these parameters.

2. MATERIALS AND METHODS

2.A. Stable distributions

Stable distributions are a class of distributions which gener-
alize a property of the normal distribution. Namely, they
extend the central limit theorem which states that if the num-
ber of samples drawn from random variables, with or without
finite variance, tends to infinity, then the measured distribution
tends to a stable distribution. If the variance is finite, the resul-
tant distribution tends toward the normal distribution, a mem-
ber of the class of stable distributions. A good introduction to
this subject can be found in work by Nolan et al.9 A more
extensive review is available by Uchaikin and Zolotarev.10

Other than for specific cases, these distributions do not
possess an analytical representation. It is, therefore, necessary
to describe them in terms of their characteristic function
which always exists for a given stable distribution.

More generally, the characteristic function, φ(t), of a distri-
bution is the Fourier transform of the probability density
function, f(x), of that distribution, for example,

uðtÞ ¼ 1
2p

Z 1

�1
f ðxÞe�ixtdx (3)

It can be shown that all stable distributions have an identical
characteristic function, φ(t), barring a change in the parame-
ters (a, b, c, d):

uðt; a; b; c; dÞ ¼ exp½itd� jctjað1� ibsgnðtÞ/ðtÞÞ� (4)

with /(t) = tan (pa/2) except for a = 1, in which case
/ðtÞ ¼ � 2

p logðtÞ. The parameter a 2 [0, 2] determines the
shape of the distribution, b 2 [�1, 1] is a measure for sym-
metry, c 2 [0, +∞] is a scale factor and d a position, or the
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most probable value.10 For a symmetric, zero-centered distri-
bution, the Eq. (4) reduces to:

uðt; a; cÞ ¼ expð�jctjaÞ (5)

In the supporting material of this paper we show from first
principles that this equation represents all symmetric zero-
centered distributions that follow the central limit theorem.

As a and c can vary continuously there are an infinite
number of stable distributions, most of which do not have an
analytical representation in real space. Indeed, only for
a = 2, 1, and 0.5 (b = 1) a closed analytical form is known.
These correspond to the Gauss, Lorenz, and L�evy distribu-
tions, respectively.

Using this generalization it is possible to define a class of
unimodal distributions whose properties can be exploited to
describe physical random walk processes which combine dif-
ferent physical properties.11

In the remainder of the paper, we will denote a stable dis-
tribution related to a pencil beam of energy E with a variable
r and the parameters a, b, c, and d by

Sðr; z;E; aðz;EÞ; bðz;EÞ; cðz;EÞ; dðz;EÞÞ (6)

The parameters depend on the depth z along the central axis,
which is denoted by writing the parameters as a function of z.
In the special case of a symmetric zero-centered distribution
(i.e., b = d = 0) we denote S(r; z, E, a(z; E), c(z; E)). For
brevity and readability we will forego the explicit mention of
the depth z and beam energy E, in the parameters using S
(r; z, E, a, c).

2.B. Measured data

To test the stable distribution approach we used data pre-
sented in an article by Bellinzona and colleagues,8 attached
to the CNAO (Centro Nazionale di Adroterapia Oncologica)
Pavia, Italy. They graciously provided the raw data from their
experiments. Measured data are available from a syn-
chrotron-based proton facility down to a level of 5 9 10�3 of
the maximal dose, where the measurement error was esti-
mated to be of the order of 0.5%. The measured data were
acquired using a pin-point chamber from 2.5 to 4.5 cm dis-
tance from the central axis (CAX), depending on the energy
of the proton beam. The data are normalized to the CAX
measurement. In the article, they also show good to reason-
able agreement (v2/NDF ≃ 1�3) with FLUKA-based Monte
Carlo simulations, albeit still for a limited distance from the
CAX (< 5 cm). The data in the article are for proton beams
of energy 117.75 and 154.4 MeV only. Two phantom dis-
tances were investigated: for the lowest energy at 2.5 cm and
8 cm depth, and for the highest energy at 10 and 15.2 cm. As
a comparison these data are presented here. The data pro-
vided by the Bellinzona group were more extensive than the
one presented in their publication, and included data from
proton pencil beams with energies up to 174 MeV. All data
available from CNAO have been fit using stable distributions.
These more extensive results are tabulated in the supplemen-
tary data section. In the main part of this article, we only

report on the energies and distances available in the article
published by Bellinzona et al.

2.C. Monte Carlo simulations

The data presented by CNAO are limited in lateral range
and are reliable only up to three orders of magnitude from the
maximum and no more than 4.5 cm off-axis. Data on beam
energies higher than 174 MeV were not available. We
expanded the simulation dataset in lateral range and available
energies. This is to better evaluate the parameterization. The
Monte Carlo-simulated data were generated for another pro-
ton center: the ProVision Center for Proton Therapy in Knox-
ville, Tennessee, US. This center is currently operational
using an IBA cyclotron which provides proton beam scanning
technique up to a maximum energy of 230 MeV. The device
can generate beam energies at given discrete energy levels,
which we label as the nominal energy. The latter is defined as
the energy of a mono-energetic beam having the same range
as the position of the 90% beam maximum (at the Bragg
peak) of the physical beam in water. For this work, the ProVi-
sion beams from 98 to 230 MeV were reproduced with the
Monte Carlo code FLUKA,12,13 by adapting the simulated
beams to the commissioning experimental beam data.14 At
each energy, the beam is defined at the surface of the
phantom by a 2D normal distribution characterized by
position and standard deviation, r. Using FLUKA, the dose
distribution in medium (water) is calculated in a
200 9 200 9 350 mm3 cube with 1 mm3 voxels. The calcu-
lated dose distribution in each 200 9 200 slice perpendicular
to the beam axis is then considered to be a two-dimensional
dose distribution. Generation of secondary particles under
the form of high-energy photons (i.e., photons energetic
enough to produce ionization), neutrons, and d-rays was
enabled explicitly, while the contribution of large angled scat-
tered protons is automatically tallied.

To evaluate the parameterization, three energies (low, mid-
dle, and high) were chosen and the lateral dose deposition
was calculated up to 10 cm from the CAX. Both the highest
energy and the CAX distance are larger compared to the data
obtained from Bellinzona and colleagues.

2.D. Fitting procedures

Because the majority of stable distributions do not possess
an analytic form, it is difficult to use the classical approach to
fit the data to a curve representing a pencil beam. Indeed, the
fitting of stable distributions is the subject of scientific
research by itself. We opted to use a maximum likelihood
estimation based on precomputed spline approximations.9 In
essence, it selects the parameters of precomputed stable dis-
tributions to best match the distributions which generates the
same probability density function as the calculated lateral
scatter.

Once the parameters are determined, the characteristic
function is calculated in complex space and using a numeri-
cally calculated inverse Fourier transform the actual stable
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distribution was generated. A straightforward methodology
also proposed by Mittnik et al.15

Calculation of alpha-stable distributions is performed
using a fast, parallel, high-precision C/C++ library,
libstable.16

2.E. Goodness of fit

Once the parameterization is known at every given depth,
it is necessary to provide an estimate of the goodness of fit of
the model to the measured data. Classically, this is done
using a reduced v2-analysis, where v2 is defined by Eq. (7).

v2 ¼
XN
i¼1

Si � Si
ri

� �2

(7)

where Si is the reference value determined with an associated
error estimate ri. This is compared to the expressions derived
by the model Si. The reduced v2 is obtained by dividing the
resulting sum by the degrees of freedom of the whole system:
that is, the number of measured points minus the number of
parameters in the model. As a rule of thumb a reduced v2-
value of 1 indicates a good fit as overall the value of the error
is comparable to the measurement error. A higher value indi-
cates that the model does not represent the data well and a
lower value could be an indication that the model overfits the
data, or that the error estimate is too large.

WhilE the reduced-v2 approach is standard practice it does
not provide good results in cases where the model under con-
sideration is highly nonlinear, as is the case here. By highly
nonlinear we mean that there are parts within the function
that differ by orders of magnitude. To be specific, a major
factor in this case lies in the quantification of the tail of the
distribution making a standard reduced v2-analysis unsuitable.
To provide a more valid analysis, it is necessary to analyze
the log 10 transformation of the data. Under these conditions,
the error estimate for the transformed measured data needs to
be used. This can be found through error propagation:

rlog10ðXÞ ¼ rX
@ log10ðXÞ

@x

¼ rX
1

lnð10Þ
@ lnðXÞ
@x

¼ 0:434
rX
X

(8)

It is now possible to calculate the v2 value as follows:

v2 ¼
XN
i¼1

�
log10ðSiÞ � log10ðSiÞ

0:434ri=Si

�2

(9)

It is this expression [Eq. (9)] which was used to calculate the
goodness of fit for the measured data. This methodology is
suited to calculate the goodness of fit for the measured data
provided by CNAO, as the measurement errors are known.
An added complication in the case of Monte Carlo simula-
tions is that the error on the simulated measurement data
change with the amount of energy deposited. This results in
very small errors in high-dose regions and very large error
estimates in low-dose regions. In the v2 expression, the differ-
ence between measured and predicted value is weighted by

the inverse of the error, making the value of v2 dominated by
the peak values rather than the tails which are of importance
here. To deal with this and provide meaningful v2-values, we
introduce a minimal error in the Monte Carlo simulation data.
The exact minimal error used is not critical for reasonable
estimates of the error (data not shown) and we chose the
value to be the same as the error value provided in the CNAO
data (i.e., 5%). While this methodology cannot be used to
obtain an absolute value of the goodness of fit, it allows rela-
tive assessment of the model to the measured data.17

Using this approach, the goodness of fit of the stable dis-
tribution model is calculated at all depths for three nominal
energies (100.32, 176.18, and 226.08 MeV).

2.F. Reference data

Purely as a comparative tool we generated double
Gaussian fits to our data in some of the cases. This uses a
standard Levenberg–Marquardt minimization18,19 of
Expression (2).

2.G. Parameterization and scaling

For all pencil beams, as commissioned in the Knoxville
treatment facility, with nominal energy (En), we extracted the
centrally located transverse distribution at all available depths
(z). From now on, by denoting the radial variable of this
extraction as r instead of x or y, we imply that the beam is
considered to be radially symmetric. Calculating the dose and
normalizing this in a plane perpendicular to the beam direc-
tion, yields the laterally scattered dose S(r; En, z). Subse-
quently, the normalized stable distribution parameters a
(z; En) and c(z; En) are determined using the above-men-
tioned fitting procedure. This distribution is denoted by S
(r; z, En, a, c). In a first approximation we consider the pen-
cil beams to be radially symmetric. Finally, the total integral
dose at each depth ID(z; En) is also calculated. This proce-
dure yields three parameters which vary as a function of
depth and nominal beam energy allowing us to calculate the
dose distribution at any depth in a homogeneous medium.

Finally, to reconstruct the dose deposition of a given
energy in a homogeneous medium it suffices to multiply the
distribution with the total dose deposited in that plane, which
yields a reconstruction of the dose delivered.

Dðr; z; En; aðzÞ; cðzÞÞ ¼ IDðz; EnÞSðr; z; En;

� aðz; EnÞ; cðz; EnÞÞ
(10)

2.H. Data interpolation

We propose a methodology to determine the beam charac-
teristics of intermediate energies from two provided beam
characterizations.

Conjecture 1 (Intermediate Morphing). Let a(z,Ei), c
(z,Ei), and D(z,Ei) be the parameters fully describing a
proton pencil beam with nominal energy Ei. Then it is
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possible to calculate the parameterization of an inter-
mediate energy Ei by interpolation of the parameteriza-
tion of energies El and Eu, which are respectively lower
and higher compared to Ei. This is irrespective of a scal-
ing in the depth parameter which depends on the range
of the given energy.

Let El < Ei < Eu :

aðzi;EiÞ ¼ aðzl;ElÞ þ Ei � El

Eu � El
ðaðzu;EuÞ � aðzl;ElÞÞ

(11)

cðzi;EiÞ ¼ cðzl;ElÞ þ Ei � El

Eu � El
ðcðzu;EuÞ � cðzl;ElÞÞ (12)

Dðzi;EiÞ ¼ Dðzl;ElÞ þ Ei � El

Eu � El
ðDðzu;EuÞ � Dðzl;ElÞÞ

(13)

where: zi = zlℜ(Ei)/ℜ(El), with ℜ(E) being the range of a
proton in the medium under consideration.

Using the methodology of intermediate morphing, we
determine the minimal amount of beams we need to fully
characterize in order to obtain a full set of data across all
nominal energies. We chose a threshold of 1% error deter-
mining the width of the beam (c) and 3% for the shape
(tailedness) (a). The total deposited energy needs to be cor-
rect to 1% dose and 1 mm position.

3. RESULTS

3.A. Measured data

In Fig. 1 (a), a selection of relevant stable distribution fits
are displayed for the same energies and depths as provided in
the article by the Bellinzona group:8 117.75 MeV at 2.5 cm
and 8 cm depth, and 154.4 MeV at 10 cm and 15.2 cm depth.
Visual inspection of the curves show excellent agreement and
all reduced v2 values are close to 1. With v2 calculated accord-
ing to Eq. (7) as explained above. We repeated this effort using
the full measurement dataset from CNAO. The result of which
can be found in the supplementary dataset.

3.B. Simulations

Figure 2 shows lateral dose depositions for a 100.32 MeV
pencil beam at 2.5 and 5 cm deep, a 176.16 MeV pencil
beam at 10 cm and 20 cm deep, and a 226.08 MeV pencil
beam at 10, 20, and 30 cm deep. It is clear that while the val-
ues for the lower energies provide excellent agreement, the
higher energies are not optimal. Visual inspection of the
curves in Fig. 2 indicates that the tails in the intermediate dis-
tances from the central axis are underestimated by the model.

As shown in Fig. 3, the goodness of fit deteriorates with
the depth, the v2/NDF reaches maximum values close to the
Bragg peak. However, this is not the case for the highest con-
sidered energy (226 MeV) where the v2/NDF is up to the
order of 10 also for intermediate depths.
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FIG. 1. Lateral dose deposition for energies 117.75 and 154.4 MeV, recreated from measurements at CNAO (Bellinzona et al.8 (circles) and compared to stable
distributions (solid line)). [Color figure can be viewed at wileyonlinelibrary.com]
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In a further effort to provide better agreement we can add
a Gaussian background to the expression. Mathematically,
the calculation does not become much more complex. How-
ever, some of the advantages of the stable distribution will be
lost, as we start to over parameterize the problem. Two addi-
tional parameters are needed: firstly, a spread factor r and
secondly, a relative contribution, denoted q. Let S(r; z, a
(z), c1(z)) be the stable distribution at depth z. We define N
(r; z, r) to be the normally distributed background. The full
expression now becomes:

ð1� qÞSðr; z; aðzÞ; c1ðzÞ þ qNðr; z; rÞ (14)

Taking into account that a normal distribution is a stable dis-
tribution with a = 2 and c2 ¼ r=

ffiffiffi
2

p
. It becomes clear that

the characteristic function of the new expression is:

uðtÞ ¼ ð1� qÞ expð�jc1tjaÞ þ q expð�jc2tj2Þ (15)

where q has the same role as in the double Gaussian expres-
sion. This new expression can be evaluated in the same

manner as the regular stable distribution expression with a
small computational penalty. Using an iterative approach, an
optimal addition of an analytical normal distribution was
found, using a Levenberg–Marquardt minimization procedure
with relative contribution (q) and spread (r) as parameters in
the fitting procedure at each depth (z). Figure 4 shows the
representation at 10 cm deep for a 226 MeV beam after an
iterative procedure where the original stable distribution is
used as a starting point. The normal distribution is then fit,
after which the stable distribution is determined again based
on the original minus the fitted normal distribution. Finally,
the normal distribution is fit again. This results in a v2/
NDF = 1.04 using the Levenberg–Marquardt fit for the
Gaussian component alone and v2/NDF = 5.18 using Eq. (9),
the latter is compared to a value of v2/NDF = 9.25 for the
stable distribution alone and v2/NDF = 18.87 for a double
Gaussian. Also of note is that in the latter case the values of
the parameters depend heavily on the distance from the cen-
tral axis taken into account during the fit process. The stable
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distribution approach, even without an added Gaussian shows
almost no dependency on the width used to assess the lateral
scatter. Table I provides the data to support this statement.
Both the width parameters (r1 and r2) show high variability
with the range. In practice this implies that the size of a detec-
tor (i.e., a film or a flat panel) used to measure the scatter will
affect the values of a double Gaussian fit. This is much less
the case when using the stable distribution formalism.

3.C. Parameterization

The behavior of a proton pencil beam, as commissioned at
the ProVision facility can be parameterized at a given depth

and for a specific nominal energy using two parameters from
the stable distribution fit: a, describing the tail of the distribu-
tion and c providing the width. These parameters provide a
normalized distribution. A final parameter is the integral dose
ID deposited at that depth [Fig. 5(c)]. The a parameter reflects
the increasing contribution of interactions with longer range,
most likely from scattered protons. The contribution dimin-
ishes due to two factors: (a) The decrease of generated sec-
ondary protons due to the lower energy of the primary
protons, and (b) the decrease in energy of the secondary
protons.

3.D. Interpolation of data

Figure 6 shows the methodology interpolating the data
from two energies to generate data for a third energy beamlet.
We found the maximally allowed difference (i.e., c < 1 mm,
a < 3%) between interpolated and measured parametric rep-
resentation. Due to the nonlinearity of the parameters’ behav-
ior as a function of energy we expect that linear interpolation
is useful only in a limited energy range. Indeed, it was shown
that the parameter c is the most sensitive and deviates to more
than 1% if the interpolated energies are more than 20 MeV
apart in nominal energy. The a parameter is not very sensitive
to interpolating distance as the curve is relatively noisy.

Figure 6 illustrates the high level of agreement of the lat-
eral scatter as calculated starting from a fitted stable distribu-
tion, compared to one obtained from interpolated a, c, and ID
values. The comparison is almost perfect. The lateral scatter
profile presented here is estimated at a depth of 200 mm.
Plots at 50, 100, 150, and 240 mm, were also obtained with
comparable results (data not shown).

3.E. Implementation in matRad

To allow testing of our parameterized beam model with
clinical patient plans, we implemented the stable distribution
dose calculation in an open source treatment planning sys-
tem, matRad (DKFZ, Heidelberg, DE). matRad20,21 is written
in MATLAB (MathWorks, Natick, MA) and provides func-
tionality for importing patient data, ray tracing, inverse plan-
ning, and treatment plan visualization. The proton dose
calculation component was extended to support a beam
model described by a stable distribution, in addition to the
existing single and double Gaussian models.

Within matRad, for particle dose calculations, the dose to
a voxel di from a pencil beam of energy E is the product of a
depth-dependent part and a lateral part. Firstly, the water-
equivalent path length, z, along the central beam axis to the
depth of the voxel di is calculated. This value is used to inter-
polate tabulated depth dose data to determine the integral
dose at depth z. Secondly, the off-axis distance, x, to the point
of interest is calculated. For the lateral beam broadening,
matRad uses a set of depth-dependent parameters for the
required parameterized, (r) for a single Gaussian or (r1, r2)
for a double Gaussian. The lateral component is calculated as
the value of the distribution at distance x. The distribution is
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normalized such that the integral over two dimensions is
unity.

To implement our parameterization, we created tabulated
depth dose curves from our FLUKA simulations to allow cal-
culation of the integral dose at depth z. For the lateral broad-
ening of the beam, we tabulated a and c against depth for
each proton energy. We extended matRad to include calcula-
tion of the stable distribution for beam broadening with the
parameters.

To provide a radially symmetric beam, a 2D normalization
is required when computing the lateral profile in a plane of
distance z into a medium. As we assume radial symmetry, we
denote this by using r as a variable in the stable distribution
expression rather than x. If S(r; z, a, c) is the value of the
stable distribution that describes the 1D beam profile at a dis-
tance r from the central axis, the 2D beam profile is
described by:

L ¼ 1
V
Sðr; z; En; aðz;EnÞ; cðz;EnÞÞ (16)

where r is the distance from the pencil beam central axis and
a and c are the parameterization at depth z. V is the normal-
ization required such that the volume under the 2D distribu-
tion is unity and is calculated using the shell formula as:

V ¼ 2p
Z 1

0
rSðr; z; En; a; cÞdr (17)

Numerical computation of this integral is performed to pro-
vide the normalization. In our implementation we precalcu-
lated V for each combination of a and c in the discrete beam
parameterization and interpolated it as required within the
dose calculation engine. V is shown to vary smoothly within
the relevant range of parameter space.

The parameters required to fully characterize the Knox-
ville treatment machine at all energies were implemented in
matRad: namely, a, c, V and the integrated dose at a distance
z along the beam path. Figure 7 compares a matRad-calcu-
lated beam with a fully commissioned Raysearch planning
system.

4. DISCUSSION

The use of stable distributions provides a way of calculat-
ing the dose in a medium in a scanned pencil beam proton

therapy machine that lends itself to implementation on GPU-
type architectures. The calculation in the Fourier space can

TABLE I. The parameters estimated in the case of the double Gaussian (first
two rows) are highly dependent on the range used to estimate the lateral scat-
ter. In the case of stable distributions, the variation in the c parameter is of
the order of hundreds to thousands of a millimeter. The a parameter is not
only slightly more susceptible to changes but also has a small impact on the
shape of the curve.

Parameter 10 cm 15 cm 20 cm

r1 3.99 mm 4.17 mm 4.33 mm

r2 22.46 mm 28.51 mm 32.18 mm

a 1.803 1.806 1.821

c 2.663 mm 2.666 mm 2.673 mm
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be done fast and libraries that perform fast Fourier transforms
on such processors, are readily available. Alternatively, it is
possible to directly estimate the integral provided by the
inverse transform yielding:

f ðxÞ ¼
Z 1

0
expð�jctjaÞ cosðxtÞdt (18)

This can be numerically evaluated using a Gaussian
Quadrature method, which is computationally faster than a
fast Fourier transform22. Although Monte Carlo simula-
tion-type dose calculators are becoming increasingly avail-
able, the use of an analytical alternative is interesting
when many recalculations of treatment plans are needed.
To note, this is important in cases where either fast calcu-
lations are needed (adaptive treatment) or multiple scenar-
ios need to be evaluated (4D-planning and/or 4D-robust-
optimization).

Providing a parameterization of this type reduces the num-
ber of parameters to a more manageable level. Moreover, the
parameters are well behaved as a function of depth and
energy, allowing a better insight in the physics of proton ther-
apy planning using scanned pencil beams. It becomes clear,
for instance, that the scattering properties of combined
scanned beams are different depending on the depth of the
treated volume. This is described by the parameter a and its
behavior at different depths and nominal energies. Therefore,
different dose characteristics, depending on the combination
of pencil beam energies, can be expected. It also provides a
method to describe issues like changes in medium in terms of
the used parameters. In a forthcoming study, we have already
established that not all parameters behave in the same manner
as a function of depth combined with changes in material
(data not shown). An added advantage of a minimal number
of parameters is the reduction of co-variance of the parame-
ters, leading to a unique description of the evolution of the
dose distribution with depth. A good example for this is the
robustness of the parameters with respect to environment
variables like detector size. This was shown not to be the case
with other approaches like, for instance, the multiple Gaus-
sian approach.

In this current study, we considered the pencil beam to be
radially symmetric. In practice it is possible that this is not
the case depending on the geometric properties of the
machine used to generate the pencil beams. For instance,
many proton therapy facilities will use spatially sequential
magnets to bend the beams in the directions perpendicular to
the beam axis in two perpendicular directions to each other.
This results in an ellipsoid spot size due to a different virtual
source position associated with each scanning direction. It is
also observed that when using gantries, the ellipsoidal nature
of the beam spot can change. The implication is that we have
to find a way to combine different stable distributions. In the
case of the normal distribution this is well understood, that is,
combining the variations depending on the mixing angle.
Combining generalized stable distributions is less straightfor-
ward, but still fairly trivial in the case where the a parameter
is constant. Investigating Eq. (5) shows that the combination
of two distributions with the same a and scale parameters c1,
and c2 yields a new stable distribution with scale parameter c:

c ¼ ðca1 þ ca2Þ
1
a (19)

Fortunately, we have seen that the parameter a depends only
on the amount of material that has been passed. As a result
the value of a is the same in every direction of the plane.
Combining stable distributions with different a is not straight-
forward because as far as we know the resulting distribution
is not stable and is still an area of mathematical research.

We have also limited this study to that of symmetric zero-
centered pencil beams. While the zero-centering is easily
resolved by a well chosen coordinate transformation, the
asymmetry of a pencil beam is not resolvable in an easy way.
Indeed, in some cases the treatment beams are not symmetric,
specifically if collimation is used and pencil beams near the

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 0  50  100  150  200  250  300

α

Depth in water (mm)

E =200MeV
E = 197.18

E = 179,58 MeV
Predicted

(a)

-5

-4

-3

-2

-1

0

1

-100 -80 -60 -40 -20  0  20  40  60  80  100

lo
g 1

0(
R

el
at

iv
e 

do
se

)

Distance from central axis (mm)

Direct fit
Interpolated values

Monte Carlo simulation

(b)

FIG. 6. (a) Predicting the next a graph for a nominal energy of 197.18 MeV,
using two outer source curves, with nominal energies 179.58 and 200 MeV.
The line represents the a values for the interpolated curve, while the points
represent the a values for the original curves. (b) Comparison between the
lateral scatter as predicted by the stable distribution (lower circles) which was
fit directly to the Monte Carlo-simulated scatter (higher circles), with the
stable distribution predicted by interpolation (middle circles). [Color figure
can be viewed at wileyonlinelibrary.com]

2286 Van den Heuvel et al.: Stable distributions for protons 2286

Medical Physics, 45 (5), May 2018



collimator jaws need to be considered. In that case the param-
eter b is not zero and the full expression as outlined in Eq.
(4) needs to be evaluated. This is subject of further research
by our group.

In theory, the methodology we have shown here could be
extended to other charged particles and photons, but this is
yet to be substantiated.

5. CONCLUSION

We have demonstrated that stable distributions are suited
to describe charged particle pencil beams in a medium. For

all energies we found that the agreement expressed as a v2/
NDF was of the order of 1, indicating excellent prediction.
Only for the highest energy (226 MeV) higher values of 10
were seen. This could be resolved by adding another stable
distribution with a = 2 (i.e., a normal distribution). We have
shown how this parameterization of the pencil beam allows
dose distributions from intermediate energies to be interpo-
lated through intermediate morphing and that this yields very
good agreement. The parameters required to fully character-
ize the Knoxville beam at all energies were also implemented
in matRad and the obtained dose depositions were well com-
parable with the results from the Monte Carlo and TPS.
Finally, we showed that the parameterization is robust in
terms of detector size, a property not available in the more
traditional approaches.
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