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A computational study on the influence of insect wing geometry
on bee flight mechanics
Jeffrey Feaster, Francine Battaglia* and Javid Bayandor

ABSTRACT
Two-dimensional computational fluid dynamics (CFD) is applied to
better understand the effects of wing cross-sectional morphology on
flow field and force production. This study investigates the influence of
wing cross-section on insect scale flapping flight performance, for the
first time, using a morphologically representative model of a bee
(Bombus pensylvanicus) wing. The bee wing cross-section was
determined using a micro-computed tomography scanner. The results
of the bee wing are compared with flat and elliptical cross-sections,
representative of those used in modern literature, to determine the
impact of profile variation on aerodynamic performance. The flow field
surrounding each cross-section and the resulting forces are resolved
usingCFD for a flight speed range of 1 to 5 m/s. A significant variation in
vortex formation is found when comparing the ellipse and flat plate with
the true bee wing. During the upstroke, the bee and approximate wing
cross-sections have amuch shorter wake structure than the flat plate or
ellipse. During the downstroke, the flat plate and elliptical cross-sections
generate a single leading edge vortex, while the approximate and bee
wings generate numerous, smaller structures that are shed throughout
the stroke. Comparing the instantaneous aerodynamic forces on the
wing, the ellipse and flat plate sections deviate progressively with
velocity from the true bee wing. Based on the present findings, a
simplified cross-section of an insect wing canmisrepresent the flow field
and force production. We present the first aerodynamic study using a
true insect wing cross-section and show that the wing corrugation
increases the leading edge vortex formation frequency for a given set of
kinematics.

KEYWORDS: Insect flight, Wing cross-section, Bee, Aerodynamics,
Morphological accuracy

INTRODUCTION
Biological flapping flight is an extraordinarily complex phenomenon,
which occurs across multiple phylums of the animal kingdom, with
wide disparities in the balance between aerodynamic performance
and efficiency (Ellington, 1985; Walker et al., 2014; Mao and Gang,
2003; Miyake, 2008). The powered flight of insects is inherently
unique for its combination of mechanical simplicity and high
flapping frequency, resulting in a complicated vortical flow field.
These flight characteristics result in agile and maneuverable flight

capabilities superior to fixed wing flight such as aircraft (Taylor et al.,
2003). Bees are of particular interest because of the utilization of
humuli to attach their front and hind wings together during flight,
causing the front and hind wings to move as one body (Basibuyuk
andQuicke, 1997). Additionally, a bee can carry an additional 80% of
its own body weight for miles (Winston, 1991). Bee aerodynamics is
uniquely applicable to the future direction of micro-air vehicle
(MAV) research as another possible solution to low velocity, low
Reynolds number, large payload flight (Ma et al., 2012; Yan et al.,
2001; Bai et al., 2007).

To support the creation of more effective MAV systems, it is
critical that the current understanding of insect flapping flight is
expanded. The first modern explorations into the fluid dynamics of
insect flight were experiments utilizing particle image velocimetry
(PIV) and other visualization methods (Ellington, 1984; Casey et al.,
1985; Mazaheri and Ebrahimi, 2010; Carr and Ringuette, 2014). An
experiment by Morse and Liburdy (2009) at low Reynolds number
characterized the vortex field around a static wing at high angles of
attack for flow over a flat plate. Insect flight is progressively becoming
a focus area for fluid and structural researchers alike as computational
capabilities improve. The dual improvement of numeric modeling
methodologies and computing power is allowing for progressively
more accurate and refined computational models of flapping flight
(Hu and Xiao, 2014; Nakata and Liu, 2012; Aono et al., 2008). The
advances in computational modeling and resulting aerodynamic
understanding of complex flight phenomenon is directly aiding the
development of robotic MAV systems (Wood et al., 2013). There
have been multiple attempts to create low-order models
approximating more complex computational fluid dynamics (CFD)
results, which could be implemented into various control schemes
(Amiralaei et al., 2012; Singh et al., 2004; Taha et al., 2014; Bayandor
et al., 2013; Dadashi et al., 2016).

Numerous experimental and computational studies have
investigated insect flapping flight (for a thorough review of these
topics see Ansari et al., 2006; Saha and Celata, 2011; Shyy et al.,
2010). These investigations focused on one of four insect flight
strategies: fruit flies (Drosophila), which utilize a single pair of
wings to flap at high frequency; dragonflies (Sympetrum), which
move four wings independently at high frequency; hawkmoths
(Sphingidae), which utilize four wings flapping in synchrony at low
frequency; and bees (Apoidea), which utilize four wings flapping at
high frequency (Miyake, 2008; Shyy et al., 2010).

Three-dimensional (3D) CFD investigations into insect flight
have been performed by numerous groups. Ramamurti and
Sandberg (2002) computationally investigated the unsteady flow
over a fruit fly and successfully compared it to the experimental
results quantified by Dickinson et al. (1999). Additional 3D CFD
investigations of a fruit fly have been performed by Walker (2002)
utilizing an unsteady blade element model, and Aono et al. (Aono
and Liu, 2008; Aono et al., 2008) utilizing an incompressible,
unsteady form of the Navier-Stokes equations. The hovering andReceived 4 February 2017; Accepted 9 October 2017
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forward flight of a wide range of insects, including bees, have been
analyzed three-dimensionally for both force production and
aerodynamic efficiency by Du and Sun (2008, 2012). Du and Sun
also reported that a simplified form of the naturally occurring wing
corrugation had minimal impact when compared to a flat plate
undergoing the same kinematics (Du and Sun, 2012). In addition
to the previously discussed 3D simulations, numerous two-
dimensional (2D), unsteady computational analyses have been
performed by various groups. Wang (Wang, 2000; Wang et al.,
2004) studied hoverfly hovering, Lu and Liao (2006) explored the
effects of vertical undulation of a rigid ellipse, Ishihara et al. (2009)
evaluated the characteristics of passive pitching of a hoverfly
undergoing hovering and Kolomenskiy et al. (2011)
computationally modeled the differences between 2D and 3D for
a generalized flapping system. In addition to their respective
insights, each group found good agreement with 3D computational
and experimental models of various flapping flight phenomenon.
At present, of the papers directly dealing with computational or

experimental studies on insect flight mechanics published since
1998, five papers implement a triangular corrugated cross-section
(Meng and Sun, 2011; Du and Sun, 2012; Khurana and Chahl,
2014; New et al., 2014), six papers have used a NACA0012 airfoil
(Amiralaei et al., 2009; Chandar and Damodaran, 2008, 2010;
Amiralaei et al., 2010; Tian et al., 2014), 10 use an elliptic cross-
section (Wang, 2000; Mao and Gang, 2003; Lu and Liao, 2006;
Berman and Wang, 2007; Kim and Choi, 2007; Hamdani and
Naqvi, 2011; Amiralaei et al., 2011; Zhu and Zhou, 2014; Hu and
Xiao, 2014; Du and Sun, 2015), and 23 utilize a flat plate (Liu et al.,
1998; Ramamurti and Sandberg, 2002; Sun and Lan, 2004; Wang
et al., 2004; Wu and Shao, 2004; Saputra et al., 2006; Huang et al.,
2007; Zuo et al., 2007; Aono et al., 2008; Aono and Liu, 2008; Liu,
2009; Ishihara et al., 2009; Senda et al., 2010; Yin and Luo, 2010;
Sudhakar and Vengadesan, 2010; Kolomenskiy et al., 2011; Lee
et al., 2008, 2011; Nakata et al., 2011; Nakata and Liu, 2012;
Ishihara et al., 2014; Shen and Sun, 2015; Erzincanli and Sahin,
2015). Of these papers, seven (Zuo et al., 2007; Meng and Sun,
2011; Luo and Sun, 2005;Mao and Gang, 2003; Berman andWang,
2007; Liu, 2009; Wu and Sun, 2005) investigate the aerodynamics
associated with bee aerodynamics in either hovering or forward
flight. Although the aerodynamic effects of a basic corrugation have
been determined to be negligible (Meng and Sun, 2011; Meng et al.,
2011), the effects of more extreme corrugation associated with
biologically accurate wing cross-sections remain unexplored.
To this end, the aerodynamic effects of cross-sectional geometry for

a bee over the natural velocity range of bee flight is studied numerically
using the unsteady, incompressible form of the Navier-Stokes
equations in two dimensions. The goals of the present study are
twofold. The first is to determine if misrepresentation of wing cross-
section in insect flight adversely influences observed force and flow
phenomenon. The second is to determine how the results of commonly
used cross-sections compare with those using morphologically
accurate venation. Transient and average coefficients of lift and drag
are compared in depth to improve the understanding of the possible
aerodynamic differences due to wing cross-section. The wing
kinematics are based on high speed videography by Ellington and
Dudley (1990) and are used as a basis for equations of motion to
approximate the insect wing path. This work is the first computational,
morphologically accurate analysis of a bee wing cross-section with
direct comparisons to common cross-sectional geometries presented in
the literature. The underlying fluid mechanics caused by the wing
cross-sectional geometry can manifest in extreme variations in thrust,
lift, and vortex development for different cross-sections undergoing

the same kinematics. The results presented will determine whether the
complexity of a bee wing cross-section can be simplified for further
modeling and will establish the necessity of morphologically accurate
models of wing geometry to predict representative aerodynamic forces
for bee flight, and further, may yield additional passive methods to
control vortex formation during flight that have not been studied
previously.

RESULTS
Flow characteristics
The flow fields at τ=11.25 (τ=0.25 in Fig. S2) and 11.68 (between
τ=0.5 and τ=0.75 in Fig. S2) are shown in Figs 1 and 2, respectively,
to gain insight into the underlying aerodynamics that manifests as
differences in lift and drag. The parameter tau is normalized by the
flap period. Parts A and B of both figures show the pressure and
vorticity distributions with streamlines, respectively, in a portion of
the flow field directly around the wing. The wing cross-sections are
organized in descending order from most (bee cross-section) to least
geometrically complex (flat plate), as shown in Fig. 3.

Beginning with Fig. 1 (τ=11.25), a leading edge vortex (LEV) is
already in the process of shedding from the hind wing section (lowest
pressures), while the front bee wing section shows the initial
formation of an LEV for both the bee and approximated wing cross-
sections. The trailing edge vortex (TEV) is almost fully detached from
the bee cross-section, visible in the location of the low pressure region
on the upper portion of the wing, with distinct lack of vorticity in the
same region. The LEVon the approximated wing section is still in the
process of detaching from the wing. The bee cross-section sheds the
hindwing LEV earlier in the stroke than the approximate section. The
postponement of vortical shedding increases the area and pressure
gradient of the vortex for the approximate cross-section, increasing
lift generation. Both the ellipse and flat plate cross-sections are still in
the process of forming an LEV on the front of the wing. The
underside of the ellipsewing exhibits a small low pressure region near
the trailing edge, transitioning to a high pressure region towards the
leading edge. The transition from high to low pressure is similar to
what is seen in the bee and approximated sections, where the pressure
transitions from high to low to high, with the high pressure regions
caused by stagnation points on the cross-section. Conversely, the flat
plate section has low pressure on the upper and high pressure on the
lower surfaces of the wing. These variations in pressure are caused by
differences in the vortex generation and shedding capabilities of the
cross-sectional geometry of the wing.

Examining Fig. 2, the flow field surrounding the four cross-sections
are compared at τ=11.68. The bee and approximate cross-sections both
exhibit multiple vortices shed from both the leading and trailing edges.
The bee and approximatewing cross-sections have two attached vortex
structures (LEV and TEV) on the upper portion of the wing. The bee
cross-section exhibits a second set of vortices located further
downstream which are not present in the approximate section. The
ellipse and flat plate sections show progressively differing flow
structures. The ellipse cross-section exhibits attached TEV and LEV
similar to those seen in the approximated and bee sections, with a
higher vorticity magnitude. The ellipse cross-section only shows a
single remnant LEV entrained in the flow. Although the number of
vortex structures immediately surrounding the ellipse are similar to
those seen by the approximate and bee cross-sections, the overall
locations of the vortices are different. The difference in vortex locations
relative to the wing itself drastically changes the distribution of
pressures along the wing, moving the low pressure region associated
with the LEV towards the cross-sectional center. Comparing the bee,
approximate and ellipse cross-sections with the flat plate, there is a
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distinct reduction observed in flow complexity with the flat plate,
which generates a large single LEV.

DISCUSSION
The goal of the present study is to establish the aerodynamic
differences among wing cross-sections by comparing biologically
accurate wing sections with cross-sections commonly used in the
computational literature. In order to establish the effects of biologically
accurate wing cross-section on bee flight aerodynamics, the wing
kinematics outlined in section are applied to all four cross-sections
shown in Fig. 3. The induced fluid mechanics are compared using
vorticity and pressure contours with the resulting forces compared
from both an instantaneous and time averaged perspective.
Owing to the identical nature of the kinematics, differences in the

flow field and resulting forces will be considered to be caused by the
cross-sectional variation. Throughout the discussion, τ will be used
to define the phase of the wing flap stroke. The discussion will refer

to a given phase after a number of flap cycles as τ=11.25, where the
solution is 0.25 τ after 11 strokes. The relative position of τ is shown
in Fig. S2.

Variations in lift coefficient
Fig. 4 presents the CL data for four flap cycles comparing the flat
plate, ellipse, approximate and bee wing cross-sections at τ at V∞=1
−5 m/s. At all speeds, the bee and approximate wings exhibit two
distinct peaks in CL, which correlate with LEV shedding at
approximately τ=11.75 (the midpoint of the upstroke) and TEV
shedding at τ=11.75 (midpoint of the downstroke). At 1 m/s, all
cross-sections produce a very similar transient CL. At 2 m/s the flow
field of the flat plate begins to differ from the other three cross-
sections such that the LEV structure does not shed at the stroke
transition, causing a more gradual drop in lift production. The
difference in aerodynamic forces become more notable at 3 m/s
where the flat plate and, to a lesser degree, the ellipse do not exhibit

Fig. 1. Pressure and vorticity contours at τ=11.25 for the four wing cross-sections at 5 m/s. Pressure (left column) and streamlines with vorticity (right
column) contours at τ=11.25 are shown in the (A) bee, (B) approximated, (C) ellipse and (D) flat plate cross-sections.
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the reduction inCL at τ=11.5. As V∞ increases to 5 m/s, the elliptical
wing profile predicts similar CL to the bee and approximate wings.
Meanwhile the flat plate profile continues to produce very high lift,
more than double the peak force experienced by the bee cross-
section. The trends at 4 m/s remain consistent with those observed at
3 m/s, with a progressively different shedding pattern as wing cross-
sectional geometry differs from the biological model. At 5 m/s, CL

for the bee wing and the approximate wing remains in good
agreement. The peak CL is substantially higher for the flat plate and
the minimum CL is significantly lower for both the ellipse and flat
plate cross-sections. The difference in lift generation indicates
that a simplified wing cross-sections will not necessarily yield
biologically representative CL.
Comparing time-averaged CL, in Table 1, all cross-sections except

for the elliptic one exhibit a significant increase in CL at 2 m/s. After
2 m/s, the CL for the bee, approximate and ellipse cross-sections

decrease steadily, with the exception of 5 m/s for the approximate
cross-section, which increases to 0.1. The flat plate exhibits a
consistent CL from 2 to 5 m/s, while the other cross-sections display a
progressive decrease. The approximate cross-sectionCL is consistently
closest to the bee results, with a maximum difference of 0.03.

The root mean squared difference (RMSD) will be used to
quantify the transient fluctuations from the biologically accurate
cross-section present in the instantaneous data. Investigating
both time-averaged force results and RMSD allows for the
quantification of both instantaneous and average error.

TheCL rootmean square difference ðRMSDCL
Þ for each of the cross-

sections is compared to the bee, where the RMSDCL
is calculated as

RMSDCL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1 ðCL � CL;BeeÞ2

n

s
ð1Þ

Fig. 2. Pressure and vorticity contours at τ=11.68 for the four wing cross-sections at 5 m/s. Pressure (left column) and streamlines with vorticity (right
column) contours at τ=11.68 are shown in the (A) bee, (B) approximated, (C) ellipse and (D) flat plate cross-sections.
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and n is the number of time steps analyzed over 1600 time steps from
τ=3–15. TheRMSDCL

is proportional to the instantaneous difference in
CL from the bee cross-section; the larger the value, the more disparate
the instantaneous forces. Table 1 shows the RMSDCL

of each of the
cross-sections relative to the bee. At 1 m/s the ellipse RMSDCLwas the
closest to the bee. Once the velocity increases to 2 m/s, the ellipse and
flat plate average CL begin to differ significantly from the bee results
while the RMSDCL

remains consistent. Increasing velocity from 2 m/s
to 3 m/s, the RMSDCL

of the approximate cross-section decreases by
∼50% while the flat plate remains consistently high. For velocities
between 3 and 5 m/s, the RMSDCL

for each of the cross-sections
remains the samewith the approximate section consistently exhibiting
the closest similarity, followed by the ellipse and flat plate cross-
sections.

Variations in drag coefficient
Fig. 5 presents the CD data for four flap cycles comparing each wing
cross-section versus τ at V∞=1−5 m/s. The CD values at 1 m/s agree
well between all four cross-sections. Each cross-section exhibits an
initial peak at the start of the upstroke, before dropping to the
minimum CD at τ=11.2. After τ=11.2, CD increases steadily to the
maximum around τ=11.7. After the maximum at τ=11.7, there is
another drop in CD at τ=11.9. From τ=11.9 to τ=12, CD increases
again, peaking immediately after transitioning back to the upstroke.
At 3 m/s, the CD of the ellipse and flat plate cross-sections begin

to shift from the approximate and bee wings. All four cross-sections
still follow the same CD trends discussed with 1 m/s, with a number
of minor variations. The peak at τ=11 is significantly higher for both
the flat plate and ellipse sections, which agreewell with one another,
unlike the CD for the approximate and true bee wing. The minimum
CD at τ=0.2 is significantly lower for the flat platewith a phase offset
of 0.1τ, while the minima for the ellipse, approximate and flat plate
agree well in both phase and magnitude.
Comparing the time-averagedCD values in Table 1, the differences

in average CD are small between the four cross-sections for all of the
flight velocities. The airfoils develop thrust at 1 and 2 m/s, but
experience a net drag at higher velocities. The approximate section is

closest to the beeCD for all simulations except 1 m/s. At 2 m/s the flat
plate cross-section transitions from generating thrust to net drag
production slightly sooner than the other cross-sections. The CD root
mean square difference ðRMSDCD

Þ for each of the cross-sections is
compared to the bee, where the RMSDCD

is calculated as

RMSDCD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1 ðCD � CD;BeeÞ2

n

s
ð2Þ

The RMSDCD
for each cross-section relative to the bee is shown in

Table 1. The ellipse section had the lowest RMSDCD
at 1 m/s.

Increasing the velocity to 2 m/s, the approximate section increases in
accuracywhile the elliptical and flat plate decrease, counter towhat was
seen with RMSDCL

. From 3 to 5 m/s, the RMSDCD
remains relatively

consistent for the approximate wing and decreases consistently for the
ellipse and flat plate. At 5 m/s, the approximate cross-section remains
the closest to the bee, with the ellipse and flat plate being roughly two
and three times the approximate RMSDCD

, respectively.
The similarity in the vorticity and pressure contours manifest in

the similarities in CL and CD as previously discussed, both average
and RMSD. Evidenced by both instantaneous forces and the flow
field in Fig. 1, the wing cross-sectional complexity coincides with
distinctive changes in vortical shedding, pressure distribution over
the wing, and force production at τ=11.25. Conversely, while the
four cross-sections exhibit very similar instantaneous CL and CD at
τ=11.68, it is clear that there can still be large disparities in the
respective flow fields evidenced by the extreme variation in pressure
and vorticity distribution at that instant.

The findings presented demonstrate the effects of wing profile on
both the immediate flow field and the resulting aerodynamics. The
approximated wing profile that represents a streamlined bee cross-
section produced the most consistent similarity with the results of the
bee cross-section across all metrics. The ellipse profilewas the second
best at representing the aerodynamics associated with the bee cross-
section, capturing the underlying physics more consistently than the
flat plate. However at low velocities, the profile thickness of the
ellipse changed the underlying vortex dynamics. The flat plate
generally captured the aerodynamics associated with the bee-profile
the least, with a large LEV consistently forming and not detaching
until well into the downstroke. The large LEV formation and
shedding experienced by both the flat plate and ellipse, caused by the
transition from the up to the downstroke (τ=0.5), does not fully shed
from the wing until τ=0.6-0.7. This is earlier than the vortex structure
shedding for the bee and approximate cross-sections, which is much
closer to τ=0.5. The large LEV structure creates a larger net lift,
consistently increasing both the average and RMSDCL

. Finally, the
present study shows that neglecting the intricacies of a highly
complex wing geometry can produce results that, while physical, do
not properly capture the surrounding flow field or resulting forces
experienced by the biological system. The difference in performance
of the bee versus the approximated, ellipse and flat plate wing cross-
sections highlights the importance of high resolution modeling of
insect wings, both to properly capture the underlying physics using
CFD, and to maximize the effectiveness of insect-based MAV
applications.

Summary
The influence of wing cross-section on aerodynamic performance
was investigated using flight velocities and flapping kinematics for a
bee. Four different representations of an insect wing cross-section
were compared using the cross-section from a micro-computed
tomography scan of an actual bee wing and an approximation of that

Fig. 3. The cross-sections used in the present analysis. (A) Bee, (B)
approximated, (C) ellipse and (D) flat plate.
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beewing cross-section. Two other cross-sections were also compared
based on the most prevalent in the literature: an ellipse, the second
most prevalent, and a flat plate cross-section, the most prevalent. Each

wing cross-section was simulated using the same mesh density, flight
speed, and kinematics. Each wing profile was compared using the
surrounding flow field, instantaneous CL and CD, time-averaged CL

Fig. 4. The time history ofCL for the bee, approximated, elliptic and plate cross sections are shownover four flap periods. Each graph is associatedwith a
different flow velocity beginning at 1 m/s at top left and ending at 5 m/s at the bottom.
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and CD, and RMSD of CL and CD for each cross-section to gain a
more quantitative representation of the instantaneous variation in CD

and CL.

Qualitatively, these kinematic motions exhibited similar vortex
patterns among the four cross-sections, generating LEV-TEV pairs.
Vortex formation differed significantly in the number and timing of

Fig. 5. The time history ofCD for the bee, approximated, elliptic and plate cross sections are shown over four flap periods. Each graph is associated with
a different flow velocity beginning at 1 m/s at top left and ending at 5 m/s at the bottom.
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shedding for each cross-section causing distinctly different resulting
forces. The bee and approximate cross-sections were generally
comparable both qualitatively and quantitatively to one another.
Vortex shedding complexity was shown to increase with wing cross-
section complexity, with the flat plate and elliptical cross-sections
often forming a single LEV structure over a flap periodwhile the more
morphologically accurate model shedded two distinct LEV structures
for the same kinematics. With regards to CD, net thrust was produced
for all wings at low velocities before transitioning to net drag
production at higher velocities. The present study has shown that
cross-sectional morphology can significantly influence the occurrence
and frequency of LEV formation, changing observable flow structures
and aerodynamic performance. This change in vortex formation and
shedding frequency augments the effects of dynamic stall, a major
source of lift production for biological flight. Based on the present
findings, the influence of wing cross-section on aerodynamic
performance cannot be assumed to be consistently negligible at the
insect scale for future computational analysis and MAV applications,
and should be evaluated on a case-by-case basis, with better
understanding of cross-sectional effects yielding an additional
passive mechanism for LEV formation control.

MATERIALS AND METHODS
Governing equations
The commercial software ANSYS Fluent (v. 15) is used to solve the velocity
and pressure fields around a dynamic 2D wing cross-section. The unsteady,
incompressible Navier-Stokes equations are employed, yielding the
continuity equation

r � v ¼ 0 ð3Þ
where t is time, v is the velocity vector and ρ is the fluid density. Neglecting
gravitational effects, the momentum equations are

r
@ v 
@t
þ v � rð v Þ

� �
¼ �rP þr � t ð4Þ

where P is the pressure and t is the fluid stress tensor.
The segregated pressure-based Navier-Stokes (PBNS) solver is used to

solve the incompressible flow. The SIMPLE algorithm is used to resolve the
pressure-velocity coupling by enforcing mass conservation using a
relationship between element pressure and flux corrections (ANSYS
Incorporated, 2014). The gradients are discretized using the least squares
cell based (LSCB) method, momentum equations are discretized using the
second-order upwind scheme, and time is discretized using a first-order
implicit method. The absolute convergence criteria for the solution variables
are set to 10–7. The time step is determined using a modified version of the
Courant-Fredrichs-Levy (CFL) number to suit the implementation of
kinematic motion:

CFL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
x þ V 2

y

q
Dt

DX
ð5Þ

where Δt is the time step, ΔX is the smallest cell size, and Vx Vy are the
respective kinematic velocities in the x- and y- directions. The maximum
CFL value used in the present simulations is 1 to ensure a stable calculation.

Dynamic remeshing equations
An unstructured finite-volumemesh is generated around the cross-section and
is updated with each time step to allow for proper mesh motion, using a
combination of Laplacian smoothing and remeshing functions to retain mesh
density around the wing at all points in time during the flapping motion. An
unstructured, triangular 2D mesh is created around the wing profile (an
example of the mesh immediately around the bee wing is shown in Fig. S1).
Air enters the computational domain along the right boundary with a uniform
velocity specified. The upper and lower boundaries of the fluid domain use a
slip condition. The left side of the fluid domain is specified as ambient

pressure (0 gauge). It should be noted that the entire domain is 88 mm×44 mm
(22c×11c).

The diffusive smoothing function for the dynamic meshing is defined as

r � ðgrc
 Þ ¼ 0 ð6Þ

where the diffusion coefficient γ defines the degree to which the boundary
motion c

 
propagates through the surrounding fluid mesh. γ is calculated

using the cell distance from the deforming boundary d:

g ¼ 1

da
ð7Þ

Solving Eqn 6 for c
 
, the mesh distribution at the next time step x tþ1 is

solved using c
 
, Δt and the present mesh distribution x t:

x tþ1 ¼ x t þ c
 
Dt ð8Þ

The diffusion parameter (a) was set to 1.75 for the study, and typically
ranges between 0 and 2, where a=1 produces uniform diffusion and values
greater than one cause regions further from the boundary to deform, while
retaining resolution in the immediate vicinity of the moving boundary.

A remeshing function is implemented to resolve the extreme boundary
motions present in flapping flight. A secondary background mesh is used to
retain the consistency of the fluid data during remeshing. The remeshing
function uses the nodal distance from the nearest boundary dmin and the
most remote node from the boundaries dmax to normalize the boundary
distance db:

db ¼ dmin
dmax

ð9Þ

db is then used to determine the cell size at the location of interest (sizei)

sizei ¼ sizeb � G ð10Þ
where Γ is the sizing function factor, defined by the size function variation α
and the size function rate β. Two different equations for Γ are implemented
depending on the sign of α:

G ¼ 1þ ad1þ2bb ;a . 0

G ¼ 1þ ad

1

1� b
b ;a , 0

ð11Þ

Combining Eqns 10 and 11 yields the allowable size of a cell in the fluid
volume. Using the remeshing functions with diffusion smoothing creates a
robust, highly refined mesh.

Grid resolution study
The overall lift and drag coefficients for a wing profile are defined as

CL ¼
Fy

ð1=2ÞrV 2
magA

ð12Þ

CD ¼ Fx

ð1=2ÞrV 2
magA

ð13Þ

where Fy=L is the lift force and Fx=T−D is the force due to the difference
between thrust T and drag D, A is the wing planform area, and Vmag is the
maximum translational velocity magnitude of the wing. A positive CL

means that the wing is producing lift while a positive CD represents the
generation of thrust. Conversely, a negative CD indicates a drag-dominated
horizontal force.

The grid convergence index (GCI) methodology is used to determine the
numerical accuracy of the solution using the difference between
progressively refined meshes (Celik et al., 2008), where the number of
cells N is used to quantify change in resolution. The grid resolution study is
performed using a static mesh but with similar cell distributions as would be
expected in the dynamic mesh simulation. Due to the nature of utilizing a
static wing, Vmag is replaced with the inlet velocity V∞ for calculating Δt
using CFL. The grid resolution study examined steady-state lift and drag
coefficients. The calculated order of accuracy of the simulations was found
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to be third order with a CD at 506k yielding the maximum numeric error,
0.8%. Due to the variable nature of the mesh density when utilizing a
remeshing scheme, the minimum resolution remained higher than 506k cells
for all simulations presented herein (the full GCI results are given in
Table S1).

2D validation
The CFDmethodology is validated using digital particle image velocimetry
(DPIV) experimental data reported by Wang et al. (2004) for flow over a
hoverfly wing. The construction of the wing was such that the planform was
the same shape as the hoverfly but with a uniform thickness. Thus, from a
side view, the projected area is a simple rectangular cross-section. The 2D
equivalent to the 3D geometry is analyzed as a flat plate with infinite depth
in the CFD model. In the experiment, a robotic arm with three rotational
degrees of freedom (DOF) and a flat Plexiglas wing with a hoverfly
(Drosophila) planform was actuated in still mineral oil for Reynolds
numbers between 50 and 200. The kinematics used in the in the validation
are based on a fluid density of 880 kg/m3 and a kinematic viscosity of
1.15×10–4 m2/s. The kinematics used in the simulation are f=0.25 Hz,
r=0.1625 m, θ1a=23.5°, θ2a=0°, θ3a=45°, ϕ1=π/2, ϕ2=0 and c=0.02385 m.
All boundaries in the computational domain were modeled as no-slip walls
to replicate the experimental tank. A schematic of the plate geometry
orientation and kinematics are shown in Fig. 6. Fig. 6 and the remaining
discussion utilize nondimensionalized time τ=ft to describe the location of
the kinematics. For example, τ=4.25 coincides with the position τ=0.25 in
Fig. 6 after four complete flap cycles. At τ=10 the flap cycle repeats, passing
through the τ=0.125 location again.

Fig. 7 presents the DPIV data reported by Wang et al. (2004) (left) and the
vorticity of the 2D simulations (right). The data at τ=4.2 (top), τ=4.5 (middle)
and τ=4.7 (bottom) are compared and show good qualitative agreement
between the simulations and the experiment with a very similar vortex
shedding pattern. At τ=4.2, the wing is moving towards the left while rotating
clockwise, causing a counter-clockwise vortex to form at the (lower) trailing
edge and a clockwise vortex to form on the (upper) leading edge, which is
captured in both the simulation and experiment. At τ=4.5, the wing starts
moving to the right and is nearly vertical. The clockwise LEV that formed at
τ=4.2 grows along the right side of the platewhile the counter-clockwise TEV
almost detaches. At τ=4.7 the wing moves further right, rotating clockwise
while doing so. The motion causes a counter-clockwise vortex to form on the
left edge of the plate and the LEV from τ=4.5 completely attaches.

In addition to the DPIV measurements, a 2D force sensor was attached to
the base of the wing to capture the transient CL and CD of the wing (Wang
et al., 2004). The transient simulation results shown in Fig. 7 exhibit close
similarities to both the experimental and computational results reported by
Wang et al. (2004). The largest differences occur at the stroke transition (e.g.
τ=0.55 and 1.05). The variations at stroke transition are due to 3D effects in
the experiment that are not captured in a 2D simulation. Quantitatively, the
predicted time-averaged CL and CD values of 0.82 and 1.33 agree well with
the experimental values given in Wang et al. (2004) of 0.86 and 1.34,
respectively. The validation adds confidence to the 2D computational
modeling to further pursue the wing profile analysis.

Cross-sectional geometries
The cross-sections shown in Fig. 3 are those used in the remainder of the
analysis. In descending order, the wings cross-sections are from a real bee,
an approximation of the bee profile, an ellipse and a flat plate. The profiles in
Fig. 3 are shown with the leading edge at the right and trailing edge at the
left, with a chord length of c=4 mm.

The beewing cross-section (Fig. 3A) used in the analysis is from aworker
bee of the species Bombus pensylvanicus. The bee had died with wings fully
extended, preserving the natural humuli connection between the front and
hind wings. A Skyscan 1172 high resolution micro-computed tomography
scanner with a resolution of 2 μm was used to generate a 3D model of the
wing. The cross-section shown in Fig. 3 is taken at the midpoint of the wing
between the wingtip and joint, capturing the fore and hind wing sections in
addition to the humuli interface.

The approximate wing profile (3b) is based on the bee wing cross-section
using the original point cloud of the beewing, with manually smoothed vein

structures. The removal of the vein structures and smoothing of the overall
profile will help establish whether the irregular corrugation of the real wing
dramatically affects the vorticity development. The ellipse (3c) and flat plate
cross-sections (3d ) are geometric representations commonly implemented
in the literature instead of the biologically accurate insect cross-section.
The elliptical cross-section has a maximum thickness of 0.125c, where
thicknesses between 0.1c and 0.3c (Berman and Wang, 2007; Wu and Sun,
2005) were used in the bee-related literature. The flat plate has a uniform
thickness of 0.0125c, where in the literature thicknesses from 0 to 0.03c
(Zuo et al., 2007; Meng and Sun, 2011) are used.

Wing kinematics
The bee wing path is modeled as three angular velocities around the base of
the wing. The rotational axis used in the present study are yaw (θ1), roll (θ2)
and wing pitch (θ3). The angular velocities θ1, θ2 and θ3 are used to replicate
the wing path during insect flight as a 2D simulation.

Kinematic data by Ellington and Dudley (Ellington, 1984; Ellington and
Dudley, 1990) follow the path of a bee wingtip in forward flight at a variety
of velocities using a high speed camera (Ellington and Dudley, 1990). The
results are approximated as a change in magnitude of the θ2 component
based on flight speed where θ2A is equal to 10°, 15°, 20°, 24° and 26° for
flight speeds from 1 to 5 m/s, respectively. The frequency f and angular
amplitudes θ1A and θ3A are assumed constant at 150 Hz, 110° and 24°,
respectively. The Reynolds number Re is used to nondimensionalize the
flow, where Re=ρ(Vkin+V∞)c/μ. Due to the nature of the problem, two
different velocities are possible: the flow over the wing driven by the
kinematics (Vkin), and the flow over the wing by the freestream velocity
(V∞). For the flight speeds under consideration, the Reynolds number varies
from 987-1672, and is considered laminar flow.

The 3D angular amplitudes (θ1A, θ2A, θ3A) must be translated into a
continuous two-dimensional motion. Of the three amplitudes, θ3 remains in
angular form, as it is the angle of incidence of the wing. The approximated
sinusoidal equation for the angular position is

u3 ¼ u3A
2

sinðvt þ w3Þ ð14Þ

where t is the current time, ω is the angular frequency, and ϕ is the phase shift
of the wing rotation based on the high speed videography performed by
Ellington and Dudley (1990). The remaining two rotations, θ1 and θ2, are
applied as translational motions in the x-and y-directions in 2D space. The

Fig. 6. Schematic of flat platemovingwith validation kinematics over a full
flap cycle. The upstroke is shown at the top with an arrow signifying motion to
the left. The motion reverses for the downstroke (at the bottom) with the wing
translating to the right.
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translational equations are

x ¼ u1A
2

r� sinðvt þ w1Þ ð15Þ

y ¼ u2A
2

r� sinðvt þ w2Þ ð16Þ

where r° is the distance from the wing-base to the midpoint (r°=6.61 mm).

The time derivatives of Eqns 14 and 15 are taken to determine the velocity of
the wing relative to the bee in flight.

These 2D kinematic equations describe the representative up-and-down
strokes shown in Fig. S2, moving from left to right. Starting from 0° angle of
incidence (τ=0), the wing begins its upstroke, decreasing pitch angular
velocity while increasing translational velocity until reaching 24° pitch at the
upstroke midpoint (τ=0.25). For the latter half of the upstroke, the angular
velocity increases while the translational velocity decreases until θ3 returns

Table 1. Average and RMSD CL and CD values for each cross-section at velocities from 1 to 5 m/s. RMSD values, given in parentheses below the
average values, were calculated relative to the bee cross-sectional results

Coefficient Re V∞ (m/s) Bee Approximate (RMSD) Ellipse (RMSD) Flat Plate (RMSD)

CL 987 1 0.182 0.183 (0.107) 0.180 (0.061) 0.190 0.089)
1097 2 0.243 0.245 (0.106) 0.179 (0.232) 0.259 (0.217)
1259 3 0.152 0.159 (0.051) 0.166 (0.146) 0.261 (0.237)
1455 4 0.086 0.093 (0.053) 0.125 (0.119) 0.224 (0.257)
1672 5 0.070 0.100 (0.048) 0.117 (0.107) 0.245 (0.249)

CD 987 1 0.010 0.021 (0.068) 0.012 (0.037) 0.025 (0.059)
1097 2 0.008 0.005 (0.041) 0.012 (0.086) −0.012 (0.092)
1259 3 −0.22 −0.019 (0.019) −0.015 (0.059) −0.030 (0.081)
1455 4 −0.035 −0.034 (0.019) −0.029 (0.049) −0.034 (0.076)
1672 5 −0.038 −0.039 (0.022) −0.046 (0.042) −0.046 (0.066)

Fig. 7. Comparison of vorticities for the experimental and current simulations. Qualitative comparison of vorticities for the (A) DPIV experimental (Wang
et al., 2004) and (B) current simulations, where red signifies counter-clockwise and blue clockwise vortical rotation. The (C) CL and (D) CD versus τ for the
present simulation methodology and the computational and experimental data of Wang et al. (2004) are shown.
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to 0°. At the top of the upstroke (τ=0.5) the wing translational velocities are
zero, while the angular velocity is at the peak. The downstroke reverses the
previous kinematics, returning to the original position at τ=1. The process is
repeated for each beat of the wing.

Domain dependency study
Solution dependency on computational domain size is explored for insect
flight at a flight velocity of 5 m/s for domains of 14c×11c, 22c ×11c and
33c×11c. The bee wing cross-section is used for all analyses. Only the
horizontal domain length is varied in the analysis. The vertical dimension
remains constant because it was shown that a domain height of 10c was
sufficient in previous studies (Kolomenskiy et al., 2011; Ishihara et al., 2014;
Du and Sun, 2015). The instantaneous vorticity in the wing wake is shown in
Fig. S3 and resulting aerodynamic forces (CL and CD) are shown in Fig. S4.
Based on the aerodynamic forces and observed wake structures between the
three computational domains, a domain of 22c ×11c is used for the analysis.
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