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Pregnancy can be defined as a “permissible” process, where a semi-allogeneic fetus and
placenta are allowed to grow and survive within the mother. Similarly, in tumor growth,
antigen-specific malignant cells proliferate and evade into normal tissues of the host. The
microenvironments of the placenta and tumors are amazingly comparable, sharing similar
mechanisms exploited by fetal or cancer cells with regard to surviving in a hypoxic microen-
vironment, invading tissues via degradation and vasculogenesis, and escaping host attack
through immune privilege. Heme oxygease-1 (HO-1) is a stress-response protein that has
antioxidative, anti-apoptotic, pro-angiogenic, and anti-inflammatory properties. Although a
large volume of research has been published in recent years investigating the possible
role(s) of HO-1 in pregnancy and in cancer development, the molecular mechanisms
that regulate these “yin-yang” processes have still not been fully elucidated. Here, we
summarize and compare pregnancy and cancer development, focusing primarily on the
function of HO-1 in cellular invasion, cytoprotection, angiogenesis, and immunomodulation.
Due to the similarities of both processes, a thorough understanding of the molecular
mechanisms of each process may reveal and guide the development of new approaches
to prevent not only pregnancy disorders; but also, to study cancer.
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alternatively activated macrophage (M2)

INTRODUCTION
The development of the placenta is a highly regulated and complex
physiologic process that is required to ensure proper fetal develop-
ment, and the creation of life. In contrast, the formation of cancer
is a pathologic process, characterized by uncontrolled growth of
malignant cells that may ultimately lead to death. Even with
these obvious differences, in some aspects, these two “yin-yang”
processes actually are very similar, incorporating comparable
mechanisms regulating cell growth, cell invasion, neovasculariza-
tion, and immunotolerance (Holtan et al., 2009; Figure 1). In
early placental development, trophoblast cells, originating from
the developing embryo, implant in the uterine wall and encounter
extremely harsh conditions, such as extreme hypoxia (∼1–2% oxy-
gen), lack of a vasculature supply, and potential immune attacks
from the maternal immune system. Interestingly, this environment
is similar to that for an invading tumor. Malignant cells must also
aggressively invade into normal tissue, establish a vasculature sys-
tem, and defend against a host’s immune response. Somehow, both
trophoblast, and malignant cells are able to successfully survive
and grow (Holtan et al., 2009).

Heme oxygenase (HO) is a gene that is conserved across
all biological kingdoms (animals, plants, and bacteria), and
its role in heme degradation has been well understood. There
are 3 known isoforms: the inducible HO-1, the constitu-
tively expressed HO-2, and the pseudogene HO-3 (Cruse and
Maines, 1988; Maines, 1988, 1997; McCoubrey et al., 1997).

HO-1 can be upregulated by its substrate heme and also by
heat shock, heavy metals, endotoxin, prostaglandins, inflam-
matory cytokines, etc. Therefore, it is referred to as a stress-
response protein. HO-1 is ubiquitously expressed, however, its
expression level and the associated functions vary from cell
type to cell type. HO and its metabolites, carbon monoxide
(CO), iron, and bilirubin, also exhibit significant antioxidative,
cytoprotective, pro-angiogenic, neurotransmitting, and anti-
inflammatory properties (Abraham et al., 1988; Marks et al., 1991;
Choi and Alam, 1996). Its beneficial effects have been observed
in atherosclerosis, diabetes, ischemia/reperfusion injury, as well
as in organ transplantation (Shibahara et al., 2003; Exner et al.,
2004).

The HO/CO system is believed to be important in the mainte-
nance of a healthy pregnancy. Several investigators have reported
an association between a low expression of HO-1 with pregnancy
disorders. For example, immunohistochemical staining of HO-1
in human placentas was lower in pre-eclamptic patients compared
to pregnant controls (Ahmed et al., 2000). End-tidal breath CO
levels were lower in hypertensive pregnant women, especially those
with severe pre-eclampsia, than pregnant healthy women (Baum
et al., 2000; Kreiser et al., 2004). Reduced HO-1 expression was also
found in mouse models of spontaneous abortions (Zenclussen
et al., 2002, 2006b).

Similarly, HO-1 has been linked with tumor induction, growth,
and metastasis. Induction of HO-1 expression has been observed
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FIGURE 1 | Similarities between the fetomaternal interface and tumor microenvironment. VM, vasculogenic mimicry. Reprinted with permission from
Holtan et al. (2009) ©2009 Mayo Foundation for Medical Education and Research.

in tumors, such as lymphosarcomas, prostatic cancers, glioblas-
tomas, hepatomas, melanomas, pancreatic cancers, and chronic
myeloid leukemias (Was et al., 2010). Tumors exhibit strong neo-
vascularization and massive hemorrhaging, and therefore can
release significant amounts of heme, which can then directly
induce HO-1 expression and confer cytoprotection from oxida-
tive injury. HO-1 is also involved in tumor angiogenesis and
stimulating tumor-associated macrophages (TAMs; Was et al.,
2006). Therefore, HO-1 may be involved in tumor survival and
progression.

This review summarizes the common properties shared by the
processes of placental and cancer development, emphasizing the
role of HO-1 on cytoprotection, angiogenesis, and immune priv-
ilege. Mechanisms used by malignant cells to proliferate, invade,
and immunosuppress may also apply to those used by trophoblast
cells in the development of the fetomaternal interface. The under-
standing of these two clinically different, yet biologically similar,
processes may lead us to develop new approaches to prevent
pregnancy disorders related to placental disorders.

HO-1 EXPRESSION AND INVASIVENESS OF TROPHOBLAST
AND TUMOR CELLS
HO-1 expression has been studied in both human and mouse
placentas. In human placental tissue, the results have been

inconsistent (Lyall et al., 2000; McLean et al., 2000; Yoshiki et al.,
2000; McLaughlin et al., 2003; Bilban et al., 2009), very likely
due to the intra- and inter-tissue heterogeneity and different ges-
tational ages studied. Due to the difficulties of human sample
collection, most studies were performed using either term or
preterm-delivered placentas. In addition, for most cases, the tissue
collected was only from the placenta and without the placental
bed, and used only for immunohistochemical studies.

To date, the most systematic study is from Lyall et al. (2000),
who collected both the placenta and placental bed tissues from
biopsies done in first two trimesters (8 and 19 weeks) as well as
at term using a transcervical sampling technique. They found that
in villous tissue (placenta), HO-1 was low and was not gestational
age-dependent, while HO-2 displayed a spatial and temporal pat-
tern of expression: HO-2 was predominant in syncytiotrophoblast
in the first trimester and decreased at term, while endothelial
immunostaining was weak in the first trimester, but increased by
term. However, within the placental bed, both HO-1 and HO-2
were intensely expressed in extravillous trophoblasts (EVTs, with
high invasiveness), but absent from the proximal cytotrophoblast
(CTBs, with less invasiveness) layers of cell column (Lyall et al.,
2000). EVTs are highly proliferative and invasive in nature. They
are involved in the attachment of the placenta to the decidua
(uterine wall) by migrating through the syncytiotrophoblast and
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also in the modification of the spiral arteries. The authors believe
that since HO-1 and HO-2 is highly expressed in EVTs, HO
plays a role in trophoblast invasion and transformation of spiral
arteries.

However, Bilban et al. (2009) also collected first trimester
human placental tissues and compared the mRNA expression pro-
files of EVTs to the less invasive CTBs. They found that HO-1
was actually downregulated in EVTs. In addition, a high expres-
sion of HO-1 in the proliferative, Ki67-positive cell column was
detected, in contrast to the low levels observed in non-cycling,
Ki67-negative, invasive EVTs. They further showed that HO-1
can negatively regulate the motility of trophoblasts by acting via
the nuclear hormone peroxisome proliferator-activated receptor
(PPAR)-γ. The contradictory results from the two groups may
be due to the time of placental bed sample collection. During
the first 10–12 weeks of gestation, EVTs form “plugs” that can
prevent maternal blood flow into the intervillous space and cre-
ating a hypoxic environment. During their migration away from
the villi, EVTs differentiate into an invasive phenotype. Dynamic
changes of oxygen level, availability of heme, and variations in
tissue sampling may affect downstream results and account for
the conflicting findings. Despite this, HO-1 is still believed to be
critically involved in mediating the differentiation, invasion, and
motility of EVTs during the first trimester of pregnancy.

Unlike that of the human, invasive trophoblasts in the mouse
placenta have very shallow invasion into the decidua. Therefore,
it is understandable that there is a weaker staining of HO-1 in
the mouse decidua, which is mostly confined to the spongiotro-
phoblast layer in the junction zone, which serves as the interface
between the maternal and embryonic sides of the placenta (Watan-
abe et al., 2004; Zhao et al., 2009). It is not clear if invasive
trophoblasts or functional equivalent cells of human EVTs are
located in the junction zone in the mouse placenta. Using histo-
logical examination as well as 3-D images from casted placentas,
Zhao et al. (2009, 2011), Wong et al. (2012) observed that in HO-
1 heterozygote (Het, HO-1+/−) placentas, there is an increase in
apoptosis that leads to markedly thinner junction zones compared
to those in wild-type (Wt) placentas. Therefore, in the mouse pla-
centa, cells in the junction zone may be interesting candidates
for investigating the function of HO-1 in decidual formation and
spiral artery remodeling.

Interestingly, invasive trophoblast cells are strikingly similar to
cancer cells in their capacities to proliferate, migrate, and die, mak-
ing comparisons to cancer development very compelling. Both
trophoblasts and cancer cells are rapidly dividing cells, where HO-
1 is abundantly expressed. Many human tumors produce HO-1
and its expression is usually higher in cancer cells than in sur-
rounding healthy tissues (Was et al., 2010). HO-1 is localized in
either tumor cells or macrophages or both, but its exact location
in transformed tissues depends on the type of tumor as well as its
stage of development. For example, in human melanomas (Torisu-
Itakura et al., 2000) or gliomas (Deininger et al., 2000), HO-1 was
almost exclusively expressed in macrophages, which accumulated
around the necrotic area. In human pancreatic carcinomas, HO-1
immunoreactivity was found in both cancer and immune cells
(Berberat et al., 2005). In rat hepatomas, HO-1 was found only in
tumor cells (Doi et al., 1999).

In addition, a high expression of HO-1 may be associated with
poor prognosis in patients with non-small cell lung cancers (Tsai
et al., 2012). In contrast, patients with a high expression of HO-1
and colorectal cancers have a favorable prognosis, and those with
oral squamous cell carcinomas have a low risk of lymph node
metastases (Noh et al., 2013). The association of HO-1 and tumor
cell invasion is also inconsistent and appears to vary among tumor
types. For example, HO-1 inhibits invasion of breast cancer by
suppressing the expression of matrix metalloproteinase-9 (MMP-
9; Lin et al., 2008), but promotes gastric cancer invasion via the
sonic hedgehop signaling pathway (Xu et al., 2012). Therefore,
the role of HO-1 in human malignant tumor growth may vary
depending upon tumor type.

EFFECTS OF HO-1 ON CYTOPROTECTION IN THE HYPOXIC
ENVIRONMENT
HO-1 is a well-known strong antioxidant that has been shown
to protect various cell types from oxidative damage and to
reduce the rate of apoptosis. The most convincing data describ-
ing these cytoprotective properties are from studies from Poss
and Tonegawa (1997), who first established the HO-1 knock-
out (HO-1−/−) mouse. Using this mouse model, they showed
that HO-1 deficiency leads to severe oxidative stress with ele-
vated lipid peroxidation, cardiovascular damage, and progres-
sive chronic inflammation in the kidney and liver. Moreover,
fibroblasts isolated from HO-1−/− mice showed increased pro-
duction of reactive oxygen species (ROS) and reduced cell via-
bility when exposed to various oxidants (Poss and Tonegawa,
1997).

In early pregnancy, the fetal environment is extremely
“hypoxic.” From 8 to 10 weeks of gestation, Oxygen (O2) lev-
els in the intervillous space is around 18 mm Hg compared to
40 and 61 mm Hg in the endometrium and at the end of the
third trimester, respectively. From 12 to 13 weeks of gestation,
placental O2 levels increase to levels similar to those measured in
the endometrium (Rodesch et al., 1992; Jaffe et al., 1997; Burton
et al., 1999). In first trimester, an hypoxic environment may be
important in the regulation of trophoblast differentiation that is
mediated through a complex set of interactions between factors
associated with oxidative stress, oxygen-sensing, and the release of
inflammatory cytokine (James et al., 2006). It is currently unclear
whether this increase of ROS production in trophoblasts is a
direct result of hypoxia as these cells have the ability to control
oxidative stress using several different pathways. Genes respon-
sive to hypoxia are those that enhance O2 delivery, decrease O2

consumption, or regulate cellular metabolism.
The response of HO-1 to hypoxia or its association with the

trophoblast differentiation has not been well established. On
one hand, as O2 availability is reduced, HO activity actually
decreases since molecular O2 is a co-factor required for heme
breakdown (Appleton et al., 2002). On the other hand, although
HO-1 mRNA and protein levels have been shown to increase in
response to hypoxia in several organ systems, placental HO-1
expression under hypoxia is controversial. Using human term
placental explants, Appleton et al. (2003) found that HO-1 lev-
els were unaffected when the explants were exposed to different
O2 tensions. However, George et al. (2012) have reported that
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48 h of chronic hypoxic exposure down-regulated HO-1 expres-
sion in cultured rat placental villous explants. In contrast, in an
established ischemia [reduced uterine perfusion pressure (RUPP])
model, they found that placental HO-1 increased compared to
non-RUPP-treated controls (George et al., 2011b). Interestingly,
using a rat trophoblast stem cell line, Zenclussen et al. (2011) found
that HO-1 inhibition could impair cell viability and abolish their
differentiation to giant cells.

During tumor proliferation, regions of the tumor may have
significantly lower O2 concentrations than healthy tissues as they
rapidly outgrows their own blood supplies. In order to support
continuous growth and proliferation under these hypoxic condi-
tions, cancer cells can alter their metabolism as well as increase
their cytoprotective enzymes, such as HO-1 and its metabolite
CO. Pharmacological or genetic activation of HO-1 significantly
improves survival of many tumors, such as hepatomas, thyroid
carcinomas, chronic myeloid leukemias, gastric carcinomas, and
gliomas. In contrast, HO-1 inhibition can reduce colon carcino-
mas, acute myeloid leukemias, and hormone-refractory prostate
cancers (Was et al., 2010). Expression of HO-1 is further ele-
vated in response to anti-cancer treatments, such as chemotherapy,
radiotherapy, and photodynamic therapy, all of which can induce
hypoxia, oxidation, and pro-apoptosis or pro-necrosis in cancer
cells (Was et al., 2010). Induction of HO-1 seems to counter-
act these treatments, hindering the effectiveness of anti-cancer
therapies, and inducing resistance.

The mechanisms involved in the cytoprotective effects of HO-1
in tumor cells are still not fully known. One pathway that has been
postulated is the removal of free heme. Another is the increase of
cellular biliverdin/bilirubin, both strong antioxidants. In tumors,
there are high free heme levels due to massive hemorrhaging and
necrosis of host cells and tissues. In the fetomaternal interface, cell
apoptosis is constantly occurring, but it is not clear if free heme
resulting from cell death has any role in affecting HO-1 expression.

HO-1 IN PLACENTAL VASCULATURE DEVELOPMENT
Normal placental development is a balance of angiogenesis and
vasculogenesis, which is believed to be mediated by a crosstalk
between different cell types. Although HO-1-deficient animals
do not show any visible phenotype suggestive of vasculature
defects, accumulating evidence reveals an association between
HO-1 deficiency and poor angiogenesis. Direct effects of HO-1 on
angiogenesis have been mostly studied in endothelial or endothe-
lial progenitor cells (EPCs). Deramaudt et al. (1998) have shown
that the overexpression of HO-1 enhances endothelial cell prolif-
eration. Li Volti et al. (2005) showed that by inhibiting HO-1 by
antisense strategies, both endothelial cell proliferation and cap-
illary formation decrease in vitro, which may be associated with
the cell cycle. However, the effect of HO-1 on angiogenesis can
also be indirect and mediated through pro-angiogenic factors or
the recruitment of EPCs. The upregulation of HO-1 (and hence
CO) increases the synthesis of the pro-angiogenic factors, vascular
endothelial growth factor (VEGF), monocyte chemotactic pro-
tein 1 (MCP-1 or CCL2), transforming growth factor (TGF)-β,
and IL-8; and decreases production of anti-angiogenic media-
tors: soluble Flt-1 (sFlt-1), soluble endoglin (sEng), and CXCL10
(Cudmore et al., 2007; Deshane et al., 2007; Dulak et al., 2008;

Loboda et al., 2008), to result in a stimulation of angiogenesis and
vasculogenesis.

Stromal cell-derived factor-1 (SDF-1 or CXCL12) plays a major
regulatory role in the migration, recruitment, and retention of
EPCs to areas of ischemic injury and contributes to neovascu-
larization. Inactivation of SDF-1 or its receptor in mice leads to
intrauterine deaths due to abnormalities in vascular development
(Ma et al., 1998; Ratajczak et al., 2006). The first study reveal-
ing that HO-1 is directly involved in regulating angiogenesis via
the SDF-1 pathway is from the laboratory of Agarwal (Deshane
et al., 2007). They demonstrated that SDF-1 upregulates HO-1 in
endothelial cells through a protein kinase C-dependent, butVEGF-
independent, pathway. In the absence of HO-1, SDF-1 was unable
to promote endothelial tube formation and migration or induce
the formation of capillary sprouts and aortic rings. Interestingly,
these defects can be reversed by exogenous CO administration.
In addition, they observed that the impairment of wound heal-
ing in HO-1-deficient mice is due, in part, to a reduction of EPC
recruitment and capillary formation. These HO-1-deficient EPCs
were unable to re-endothelialize the retina after ischemic injury
(Deshane et al., 2007).

In the placenta, SDF-1 expression has been found in trophoblast
cells, especially EVTs. Hanna et al. (2003) showed that SDF-1 pro-
duced by EVTs induces the specific migration of human blood
CD16− natural killer (NK) cells via CXCR-4 receptors. CD16− NK
cells are a unique subset of blood NK cells that share a similar phe-
notype with decidual NK (dNK) cells. Therefore, these recruited
CD16− NK cells may be the actual precursors of dNK cells, which
play important roles in spiral artery remodeling and placental vas-
culature formation. To date, it is unknown if HO-1 is involved in
uterine NK (uNK) recruitment by SDF-1. Since significant reduc-
tions in uNK cells and in uNK-related angiogenic factors were
indeed found in the HO-1-deficient (Het, HO-1+/−) placenta
(Zenclussen et al., 2011; Zhao et al., 2011; Linzke et al., 2014), we
speculate that HO-1 may have a regulatory role in mediating the
crosstalk between EVTs and decidual stromal cells, including uNK
cells (Du et al., 2012; Ren et al., 2012).

Expression of HO-1 in endothelial cells has been shown to also
promote angiogenesis by downregulating anti-angiogenic medi-
ators. Cudmore et al. (2007) demonstrated that adenoviral over-
expression of HO-1 diminishes the production of anti-angiogenic
sFlt1 receptor and sEng in response to the VEGF ligand in endothe-
lial cells. In contrast, significantly higher levels of sFlt1 and sEng
were found in HO-1-deficient compared to Wt mice. George et al.
(2012) showed that HO-1 reduces hypoxia-induced sFlt-1 levels
and oxidative stress in placental villi through CO and bilirubin.
Since sFlt1 and sEng are key mediators in the pathogenesis of pre-
eclampsia, the observation that HO-1 can suppress the release
of sFlt1 and sEng was further investigated. Zhao et al. (2009)
found that maternal plasma sFlt-1 levels, as well as diastolic blood
pressures, were significantly elevated in pregnant HO-1 Het mice
compared to Wt mice, suggesting that pregnant HO-1-deficient
dams have characteristics similar to those in pre-eclampsia. More-
over, George et al. (2011a) also showed that an induction of HO-1
could alleviate sFlt-1-induced hypertension in pregnant rats.

The placenta has a complex and well-organized vascular net-
work comprised of both maternal and fetal vessels. In early
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pregnancy, the uterine spiral arteries become remodeled into low
resistance and high capacitance vessels, which is necessary to sup-
port the dynamically growing placenta and fetus. The association
of HO-1 and uteroplacental vascular formation has been investi-
gated by Zhao et al. (2011), Wong et al. (2012) using HO-1 Het
mice. They collected placentas at E10.5, since this gestational
age corresponds to the second trimester in human pregnancies,
when the uteroplacental vasculature is becoming established. His-
tochemical staining revealed significant differences in the placental
vasculature from HO-1 Het dams compared to pregnant Wt dams,
such as thinner junction zones, a reduction in maternal sinusoidal
number and size in the labyrinth, and a disorganization of fetal
capillaries. These observations suggest that HO-1 deficiency is
associated with vascular malformations in the labyrinth (Zhao
et al., 2011). A vascular corrosion technique to cast placentas and
CT imaging to reconstruct 3D images were used to visualize the
vasculature of the placentas at ∼E16.5. They found that HO-1 Het
placentas were smaller with a reduced labyrinth vessel volume and
a thin maternal vascular region. Spiral arteries also appeared to be
highly branched, but found to have smaller diameters (Zhao et al.,
2011; Wong et al., 2012). They concluded that a partial deficiency
of HO-1 leads to insufficient spiral artery remodeling and enlarge-
ment, which may by an underlying cause of pregnancy disorders,
such as pre-eclampsia and intrauterine growth restriction (IUGR).

The formation of the uteroplacental vasculature network is a
very complex event that involves not only endothelial cells, but
also, trophoblast, uNK, decidual stromal, and infiltrating immune
cells. These cells produce many cytokines, chemokines, growth
factors, and angiogenic factors. Zhao et al. (2011) used PCR arrays
to measure and then compare gene expression profiles from preg-
nant Wt and HO-1 Het uteri. Genes encoding for pro-angiogenic
factors, such as growth factors, matrix metallopeptidase, and
cytokines/chemokines, were significantly downregulated, while
genes controlling anti-angiogenic factors were upregulated in HO-
1 Het uteri. These data strongly suggest that the role of HO-1 in
placental vasculature development is not due to a single event, but
involves several cell types and the regulation of complex series of
multiple steps.

Tumor angiogenesis initially begins with cancer cells releasing
signaling molecules to the surrounding host tissues. These signals
activate specific host genes that, in turn, stimulate the synthesis
of proteins that stimulate new blood vessel growth. Unlike the
tightly regulated and organized vasculature of the placenta, blood
vessels of tumors are highly aberrant, dysfunctional, and uncon-
trolled. Despite the differences, the basic mechanism of tumor
angiogenesis is very similar to those of uteroplacental vascular
formation. HO-1 has also been suggested to be pro-angiogenic
in many different tumor models, such as melanomas, pancreatic
cancers, lung carcinomas, and gliomas (Was et al., 2010). By either
inhibiting or inducing HO-1, researchers have found that HO-1
plays a critical role in mediating both VEGF-stimulated endothe-
lial cell proliferation and SDF-1-induced EPC recruitment (Was
et al., 2010).

Like that occurring in the placenta, the vascularization of
tumors is also a complex process, relying not only on endothelial
cells, but also on infiltrating immune cells, such as macrophages.
In vivo studies have showed that an increased expression of HO-1 is

associated with an augmented angiogenesis in human gliomas and
melanomas. Mouse studies have shown that TAMs promote angio-
genesis in tumors by both producing pro-angiogenic factors and
physically assisting the sprouting of blood vessels. Further studies
have shown that TAMs are comprised of phenotypically and func-
tionally distinct subsets, including the pro-angiogenic (TIE2+)
and the angiostatic/inflammatory (CD11c+) macrophages. The
location and ratio of these two populations vary by the type and
grade of the tumor (Welford et al., 2011). Since HO-1 is highly
expressed in macrophages, it would be interesting to understand
how HO-1 contributes to the differentiation and function of TAM
subsets. In addition, macrophages are also observed in both decid-
uae and labyrinths. It may be of further interest to characterize
whether macrophages in the placenta are pro-angiogenic or angio-
static, and to investigate their function in uteroplacental vascular
formation.

HO-1 IMMUNOMODULATION AND FACILITATION OF
IMMUNOTOLERANCE AND IMMUNE PRIVILEGE
During early pregnancy, fetal-derived trophoblast cells, especially
in EVTs, penetrate deep into the uterine wall to form the decidua.
At the same time, many maternal leukocytes, including mono-
cytes, macrophages, dendritic cells (DCs), NK cells, neutrophils,
and regulatory T cells (Tregs), also infiltrate into the decidua in
order to support early placental development. Interestingly, direct
contact of the semi-allogeneic EVTs with maternal leukocytes and
decidual stromal cells does not induce rejection, but instead results
in immune privilege. Initial studies suggest that prevention of
fetal rejection is associated with an increased ratio of T helper
type 2 (Th2) compared to Th1 cytokines produced by maternal
leukocytes. However, a wealth of follow-up studies indicates that
tolerance mechanisms initiated here are much more complicated
than initially thought. It appears to involve the adaption of both
innate and adaptive immune responses, locally, and systemically,
aided by endocrine pathways (Arck and Hecher, 2013; Erlebacher,
2013).

HO-1 has been long accepted as an anti-inflammatory and
immunosuppressive molecule. Its induction by pharmacological
activators, through gene transfer, and delivery of heme metabo-
lites (CO and bilirubin) produce immunosuppressive effects in
a variety of conditions or disorders, such as autoimmune dis-
ease and organ transplantation (Becker et al., 2007; Tzima et al.,
2009). HO-1 is expressed in circulating monocytes and tissue
macrophages. In HO-1 knockout mice, residential macrophages
such as spleen sinusoidal lining cells and liver Kupffer cells, are
absent (Kovtunovych et al.,2010); while adoptively transferring Wt
macrophages to HO-1-deficient mice has been shown to reverse
disease (Kovtunovych et al., 2014), suggesting an important role
of HO-1 in macrophage survival and function. Lee and Chau
(2002) reported that HO-1 in macrophages mediates the anti-
inflammatory function of IL-10, a classic Th2 cytokine. Inhibition
of HO-1 protein or HO activity significantly reverses the inhibitory
effect of IL-10 on the production of tumor necrosis factor-alpha
(TNF-α) induced by lipopolysaccharide (LPS; Lee and Chau,
2002).

The adverse effects of HO-1 deficiency related to immune reg-
ulation during pregnancy are mostly observed in the context of
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human and murine spontaneous abortions. It has been reported
that women with early miscarriages are prone to have longer (GT)n
repeats in the HO-1 promoter region, and thus a lower expres-
sion of HO-1 (Denschlag et al., 2004). Zenclussen et al. (2002) has
used two different models to elucidate the importance of HO-1
in spontaneous abortions. HO-1 levels in placentas and deciduae
were reduced in mice with sonic stress or IL-12-induced abor-
tions. When HO-1 was delivered to spontaneous abortion mice
via adenoviral transfer, rates of abortion declined with an increase
of the IL-4 to interferon-gamma (IFN-γ) ratio in spleen lympho-
cytes and a decrease in apoptosis at the fetomaternal interface
(Zenclussen et al., 2006b). Similarly, induction of HO activity can
increase the expression of Bag-1, an anti-apoptotic factor, at the
fetomaternal interface as well as activate Tregs, to collectively result
in a lower spontaneous abortion rate (Zenclussen et al., 2005).
Inhibition of HO activity by treatment with zinc protoporphyrin
(ZnPP) not only increased abortion rates in normal as well as
abortion-prone pregnancies; but also, was found to abolish the
protective effects of the transfer of Tregs (Schumacher et al., 2012).
In addition, transfer of Tregs from healthy pregnant mice into
abortion-prone mice reduced fetal rejection rates and resulted in
the upregulation of HO-1 and TGF-β at the fetomaternal interface
(Zenclussen et al., 2006a). Even with so much evidence showing
the importance of HO-1 in the maintenance of a normal preg-
nancy, the exact mechanisms responsible for immunoregulation
in the fetomaternal interface have not been fully elucidated.

Decidual macrophages are present throughout gestation and
reside near the cytotrophoblast shell in close contact with
EVTs. Decidual macrophages phagocytose apoptotic EVTs and
secrete IL-10 and indoleamine 2,3-dioxygenase (IDO), adding
to the tolerogenic Th2 environment. Gene expression profil-
ing showed that decidual macrophages are immunosuppres-
sive and anti-inflammatory with high expression of CCL18,

CD206, insulin-like growth factor (IGF-1), IDO, and other
genes associated with M2-polarized macrophages (Gustafsson
et al., 2008). Recent evidence suggests that HO-1 is critically
involved in macrophage polarization to the M2 phenotype
(Weis et al., 2009; Choi et al., 2010; Sierra-Filardi et al., 2010;
Figure 2). HO-1 expression levels are significantly higher in M2
macrophages and induction of HO-1 can significantly enhance
IL-10 production, while it has no effect on M1 cytokine pro-
duction (Sierra-Filardi et al., 2010). More interestingly, HO-1
may mediate the M1 to M2 phenotypic switch when mice
are treated with heme (Choi et al., 2010). Further investiga-
tions are needed to best understand the function of HO-1 in
decidual macrophages and how HO-1 contributes to placental
development.

Dendritic cells have also been found in mouse and human
deciduae, and undergo a restricted T cell response to a fetal
specific-antigen. Most decidual DCs (dDCs) remain in an imma-
ture and tolerogenic state (tDCs). These cells exhibit an altered
capacity for antigen presentation, with reduced expression of co-
stimulatory molecules and IL-12, but an enhanced production of
IL-10. tDCs can promote immunotolerance by inducing effector
T cell apoptosis and expansion of CD4+ Tregs. In addition, even
in syngeneic mouse pregnancies, depletion of uterine DCs causes
failure of decidualization and resorption of embryos, suggesting
that a potentially more complex role for DCs in the development of
the fetomaternal interface other than just antigen presentation and
secretion of immunosuppressive cytokines. Moreover, HO-1 con-
tributes to the maintenance of immature and anti-inflammatory
state tDCs. Chauveau et al. (2005) have shown that HO-1 is only
expressed in immature tDCs, but not in mature DCs. HO-1 induc-
tion in mature DCs lead to a loss of DC immunogenicity and
pro-inflammatory function. Moreau et al. (2009) reported that
HO-1 was required for tDCs to delay cardiac allograft rejection

FIGURE 2 | Classical activation (M1) and alternative activation (M2) of

macrophages. Classical activation is mediated by the priming stimulus IFN-γ,
followed by a microbial trigger (lipopolysaccharide, LPS). Alternative activation

is mediated by IL- 4 or IL-13. The uptake of apoptotic cells or lysosomal
storage of host molecules generates anti-inflammatory responses. Cytokines
(IL-10, TGF-β, IFN-α/β) are potent modulators of activation.
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in the rat. Park et al. (2010) showed that expression of HO-1 by
DCs is necessary for CD4+ Tregs to exert their immunoregulatory
activity. Although DCs are well studied in pregnant uteri, the roles
of HO-1 in the differentiation and function of dDCs are still not
yet fully understood.

Tregs (CD4+CD25+foxp3+) contribute to the implantation
and maintenance of early pregnancy via their immunosuppres-
sive and tolerance properties. Many studies have reported that the
frequency of Tregs in mice and human deciduae increases dur-
ing healthy pregnancies, while they decrease in abortion-prone
pregnancies (Erlebacher, 2013). Rowe et al. (2012) found that in
murine pregnancies the number of Tregs double, while Tregs spe-
cific to fetal antigens expand more than 100-fold. Although HO-1
is present in Tregs, the actual function of HO-1 in Tregs has been
controversial. One study reported that the regulatory function
of Tregs is lost when HO activity was abolished by a pharma-
cological inhibitor (Andersen et al., 2009), while another study
demonstrated that an amplification of the Treg population fol-
lowing the same treatment (Biburger et al., 2010). Studies from
HO-1−/− mice have provided a definitive answer: HO-1 expres-
sion in Tregs is not required for Treg immunosuppression (Zelenay
et al., 2007); instead, Treg function is likely to be affected indirectly
by HO-1 expression in antigen-presenting cells (APCs), such as
DCs or macrophages (George et al., 2008). Indeed, Schumacher
et al. (2012) found that HO-1 indirectly contributes to the expan-
sion of the peripheral Treg population by maintaining maternal
DCs in an immature state.

Similar to trophoblasts in pregnancy, malignant cells can
express antigens that mediate recognition by host CD8+ T cells.
These antigens are mostly the result of a point mutation in nor-
mal genes. Cancer cells may have hundreds or even thousands of
mutations in their coding exons, contributing a large repertoire
of antigens that can serve as potential immune targets. Despite
an abundance of antigens, most cancers can still progress and
evade attack by the immune system. This phenomenon of “tumor
escape” may be due to immunosuppression and tolerance in the
tumor microenvironment.

Most solid tumors consist of many types of infiltrating
leukocytes, including macrophages, DCs, neutrophils, NK cells,
and T and B cells. Interestingly, very similar to the immune
microenvironment in the fetomaternal interface, these infil-
trating cells are mostly polarized toward immunosuppressive
and tumor-promoting phenotypes. For example, TAMs are the
most abundant population and display an M2-like phenotype.
They promote tumor angiogenesis, cell invasion and metasta-
sis, and facilitate cytoprotection from chemotherapy-induced
apoptosis. They exhibit an ineffective ability to present anti-
gens, but can attract Tregs to inhibit T cell activation. Similarly,
DCs in tumors are also immature and functionally incompe-
tent with a tolerance phenotype. Cancer cells secrete substances,
such as VEGF, TGF-β, hepatocyte growth factor, and osteo-
pontin, that can suppress the maturation of DCs (Holtan
et al., 2009). These immature, tDCs express high levels of the
pro-angiogenic cytokine VEGF, the pro-inflammatory cytokines
IL-6 and IL-8, the immunosuppressive mediators IL-10, cyclo-
oxygenase 2 (COX2), TGF-β, and IDO. Besides macrophages
and DCs, immature neutrophils, also called myeloid-derived

suppressor cells (MDSCs), display suppressive functions of T
and NK cells in the tumor site (Gabrilovich and Nagaraj,
2009).

Arnold et al. (2014) demonstrated tumor immune suppres-
sion by macrophages expressing high levels of HO-1. However,
the mechanisms of HO-1 on immunotolerance employed by
macrophages, DCs, and MDSCs have not been fully elucidated.
One possibility is through CO, a metabolite of heme degrada-
tion. It has been shown that CO promotes the development of
tDCs (Remy et al., 2009) and inhibits T cell proliferation (Song
et al., 2004). In addition, Zenclussen et al. (2011) and Linzke
et al. (2014) have reported that CO inhalation successfully restores
the Wt phenotype in HO-1 Het pregnancies. Another puta-
tive mechanism of HO-1 may be mediated through other heme
binding enzymes, such as IDO (Curti et al., 2009) and NADPH
oxidase (Ryter et al., 2006). IDO, a heme binding and trypto-
phan catabolic enzyme, has been suggested to be the key player
involved in the inhibition of cell proliferation and induction of
immunotolerance during infection, pregnancy, transplantation,
autoimmunity, and hematologic malignancies (Curti et al., 2009).
Jung et al. (2010) found that murine DC maturation depends on
IDO expression via a HO-1-dependent pathway. They found that
in IDO deficiency, there is a loss of maturation of DCs in vitro
and in vivo. In addition, inhibition of HO by ZnPP abolished
IDO expression and DC maturation, while the administration
resulted in opposite effects. Therefore, studying the immuno-
suppressive function of leukocytes in the fetomaternal interface
as well as in the tumor site may help reveal the role of HO-1 in
immune regulation (Blancou and Anegon, 2010; Gabrilovich et al.,
2012).

CONCLUSION
HO-1 is a ubiquitous stress-response gene that is expressed
and induced in a large variety of cell types. In the feto-
maternal interface, HO-1 is present in several cells, such as
trophoblasts (especially EVTs), endothelial cells, and infiltrat-
ing leukocytes. Accordingly, HO-1 facilitates multiple functions
during the establishment of the fetomaternal interface, which
include cytoprotection, trophoblast invasion, pro-angiogenesis,
and immune regulation. A deficiency of HO-1 results in preg-
nancy failure. Similarly, HO-1 is also expressed in malignant
cells and infiltrating leukocytes in tumor sites, and shares com-
parable biological functions to promote tumor progression as
those observed during placental development. Teasing out the
function of HO-1 in each cell type may prove challenging and
intriguing; but if successful, would greatly enhance our under-
standing of HO-1 biology as well as of the complex physiological
and pathological processes of pregnancy and tumor formation.
The implications of the similarities of the two systems will help
in the design of integrated approaches to study pregnancy and
cancer.
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