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Sara DEHGHAN*1, Mahnaz SADEGHI*1, Anne PÖPPEL†‡, Rainer FISCHER†, Reinhard LAKES-HARLAN§,
Hamid Reza KAVOUSI*, Andreas VILCINSKAS†‡ and Mohammad RAHNAMAEIAN†‡2

*Department of Plant Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, P. O. Box: 76169-133, Kerman, Iran
†LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen,
Winchesterstrasse 2, 35394, Giessen, Germany
‡Interdisciplinary Research Center, Institute for Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring
26-32, 35392, Giessen, Germany
§AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, 35392,
Giessen, Germany

Synopsis
Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae
due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenyl-
propanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions.
Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS
(chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The
aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in
Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%.
Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with
0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT–PCR revealed that
both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding
wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets
greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression
pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks
at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways
in safflower during wounding and especially salinity stress.
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INTRODUCTION

As ground-anchored sessile organisms, plants have evolved di-
verse adaptive and defence mechanisms in order to survive in
threatening environmental conditions. Growth-limiting factors



Abbreviations: 4CL, 4-Coumarate:CoA ligase; aa, amino acid; C4H, cinnamate 4-hydroxylase; CHS, chalcone synthase; hat, hours after treatment; PAL, phenylalanine ammonia-lyase;
SA, salicylic acid.
1 These authors contributed equally to this work.
2 To whom correspondence should be addressed (email Mohammad.Rahnamaeian@agrar.uni-giessen.de).

including drought, salinity, cold, UV rays as well as pathogenic
micro-organisms, e.g. fungi, bacteria, viruses, etc. all can jeop-
ardize the plant life if not negated by plant protective responses.
In breeding programmes, identification of protecting factors in
plants against challenging factors is a prerequisite. In this con-
text, keeping our efforts in identification and characterization of
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Figure 1 Phenylpropanoid and flavonoid pathways in plants
PAL and CHS in respective phenylpropanoid and flavonoid pathways are shown in red. The scheme was adapted after
[14–18].

involved genes in plant responses to biotic and abiotic stresses
[1–4], we report in this study the isolation as well as functional
characterization of two genes in phenylpropanoid and flavon-
oid pathways, i.e. PAL (phenylalanine ammonia-lyase) and CHS
(chalcone synthase) in safflower (Carthamus tinctorius) during
salinity stress, wounding and SA (salicylic acid) treatment as an
inducer of acquired resistance and PR genes expression [5].

We have been recently working on safflower [4] given that this
industrial medicinal oil-seed plant has a rich germplasm collec-
tion in Iran and shows high levels of tolerance/resistance to envir-
onmental stresses. Safflower is a long-day, herbaceous, annual,
self-compatible member of Asteraceae family and Carthamus
genus. Having a well-developed root system, safflower is an
ideal plant in arid and semi-arid climates [6,7]. Iran is one of
the richest countries regarding safflower germplasms including
domestic and wild species [8]. A variety of abiotic/biotic stresses
challenges the safflower namely high-temperature, high relative
humidity, long rainfalls, drought, cold and salinity as well as
many fungal and a few bacterial and viral pathogens [9]. How-
ever, owing to high tolerance/resistance of safflower to envir-
onmental stresses, this plant might be considered as a reference
plant for studying the defence mechanisms. Plant responses to en-
vironmental stimuli are governed by a complicated multi-player
crosstalk among different defence pathways. In higher plants,
phenylpropanoid biosynthetic pathway produces the important
metabolites, e.g. flavonoids, isoflavonoids, lignin, anthocyanin,
phytoalexins, antimicrobial furanocoumarins, hydroxyl cinnam-
ate esters and phenolic esters, which are all critical players in de-
velopment, structural protection, defence responses to microbial

attacks and tolerance to abiotic stimuli [10,11]. As phenylpro-
panoid pathway is a gateway for production of many secondary
metabolites [12,13], the investigation of characteristics as well
as expression patterns of involved genes in production of these
metabolites, e.g. PAL and CHS, for a better understanding of de-
fence mechanisms towards various stresses appears significantly
useful. PAL is the initial enzyme in phenylpropanoid pathway and
the key participant in the lignification process [12], which con-
verts the phenylalanine to trans-cinnamic acid via non-oxidative
removal of ammonia as depicted in Figure 1. PAL is a critical
enzyme for plant responses to environmental stresses as if its de
novo synthesis is activated following pathogen attack, wounding,
UV irradiation, as well as iron and phosphate depletion [19]. It
is, also, responsive to phytohormones ethylene, jasmonic acid,
SA and methyl jasmonate [20–24]. CHS is another important en-
zyme in phenylpropanoid cascade and the key enzyme in flavon-
oid biosynthesis (Figure 1). Flavonoids are the major groups of
plant secondary metabolites with essential roles in physiological
processes. Flavonoids have not only been considered for their
significance in plants nutritional value [25], but are also import-
ant in terms of plant protection against UV rays, pathogen attacks
and herbivores [26–29].

Since only one gene, i.e. C4H (cinnamate 4-hydroxylase), of
phenylpropanoid pathway in safflower has been isolated and char-
acterized so far [4], in this study the coding sequences of safflower
PAL (CtPAL) and CHS (CtCHS), which are typically encoded by
small multi-gene families, have been partially isolated and their
expression profiles during SA treatment, wounding and salinity
stress were monitored in order to further dissect the high levels
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Table 1 Sequences of primer pairs used for isolation and semi-quantitative RT–PCR in this study

Gene Primer Sequence (5′-3′) Amplicon size (bp)

Phenylalanine ammonia-lyase (isolation) Ct-PAL-Fwd CTCCTCCAGGGTTACTCC 872

Ct-PAL-Rev CCTTTGAACCCGTAATCC

Chalcone synthase (isolation; RT–PCR) Ct-CHS-Fwd AAACGCTTCATGATGTACCA 559

Ct-CHS-Rev GCCGACTTCTTCCTCATCTC

Phenylalanine ammonia-lyase (RT–PCR) Ct-PAL2-Fwd GCAGAAACCCAAACAAGA 267

Ct-PAL2-Rev TTAACAAGCTCGGAGAATT

18S rRNA (RT–PCR) 18S rRNA-Fwd ACTCACCTCAAGACT 199

18S rRNA-Rev CTTTGGCACATCC

of resistance/tolerance of safflower to different environmental
stresses..

MATERIALS AND METHODS

Plant material and growth condition
Seeds of safflower var. 22-191 (kindly provided by Dr Maham-
madinejad, Department of Agronomy, Shahid Bahonar Univer-
sity of Kerman, Iran) were sterilized with 70 % (v/v) ethanol and
sodium hypochlorite [5 % (w/v) active chlorine] for 2 and 15 min,
respectively. Having vernalized at 4 ◦C for 2 h, seeds were sown
on water-soaked sterile filter papers. The germinated seeds were
transplanted into 15-cm-diameter pots filled with prewashed sand
and kept in the greenhouse at 26 +− 2 ◦C and photoperiod of 16 h
with every other 2 days irrigation regime. Fertilization by Hoag-
land solution was performed once a week.

Isolation of partial sequences of CtPAL and CtCHS
genes
Isolation of genomic DNA from leaves was carried out after
Saghai-Maroof et al. [30]. The available coding sequences
of PAL orthologues in members of Asteraceae family, i.e.
Helianthus annuus, Rudbeckia hirta, Cynara scolymus and Gyn-
ara bicolor, were used to design the isolating primer pair for
CtPAL. Likewise, the coding sequences of CHS genes in R.
hirta, Lactuca sativa, G. bicolor and Silybum marianum were
considered to design the isolating primers for CtCHS. Table 1
shows the sequences of primers used in this study, which were
synthesized by Eurofin MWG Operon (Germany). Amplicons of
CtPAL (872 bp) and CtCHS (559 bp) were obtained by perform-
ing PCR on genomic DNA using 1 pmol of gene-specific primer
pairs. Temperatures of annealing for CtPAL and CtCHS were 51
and 56 ◦C, respectively.

Cloning of CtPAL and CtCHS amplicons into
sequencing vector
To clone the amplicons of CtPAL and CtCHS into pTZ57R/T
vector, InsTAcloneTM PCR Cloning Kit (Thermo SCIENTIFIC,
# K1213) and competent cells of Escherichia coli strain JM107

were recruited. In brief, based upon blue/white screening, re-
combinant colonies were selected for DNA extraction by GF-1
Plasmid DNA Extraction Kit (Vivantis). Sequences of isolated
region of CtPAL and CtCHS genes were obtained using M13
universal primers (Faza Pajooh Biotech). Sequences were certi-
fied by means of Chromas Lite 2.01 (Technelysium) after clipping
the vector sequence.

Conserved domains, homology and phylogenetic
analyses
Bioinformatics analysis of CtPAL and CtCHS aa (amino acid)
sequences were performed in conserved domain platform [31,32]
at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. The aa
sequences of CtPAL and CtCHS were analysed for homology us-
ing ClustalW [33]. Constructions of phylogenetic tree based on
nucleotide sequence for CtPAL and CtCHS genes were carried
out using Phylogeny.fr program [34–36]. Briefly, sequences were
aligned with the highest accuracy by MUSCLE [37]. Phylogen-
etic trees were constructed based upon the maximum likelihood
approach executed in PhyML 3.0 software [38,39]. Graphical
demonstration of trees was completed by TreeDyn [40].

Gene expression analyses
Wounding, salinity and SA treatments were all performed on
14-day-old seedlings. For wounding, leaves were comparably
equally pressed with sterile blunt-nosed thumb forceps. For sa-
linity, seedlings were drenched with 150 mM sodium chloride
solution. For SA treatment, two experimental groups of 0.1 and
1 mM SA were considered. SA solutions were applied on leaves
using sprayer. Following each treatment, samplings were done in
a time course, i.e. 0, 3, 6, 12, 24 and 48 hat (hours after treat-
ment). Taken into account the potential diurnal rhythm in the
gene expression patterns, all treatments were started at 8 am.

RNA extraction and cDNA synthesis
RNAs were extracted by means of RNXTM Plus Kit (Cinnagen)
from the treated seedlings according to manufacturer’s instruc-
tions. Next to DNaseI treatment of RNA samples, 1 μg of RNAs,
using RevertAid First Strand cDNA Synthesis Kit (Thermo SCI-
ENTIFIC, # K1691), was reverse transcribed to corresponding
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Figure 2 Amino acid sequence alignment (A) and phylogenetic analysis (B) of CtPAL orthologues
Sequence alignment and aa conservation profile for PAL orthologues were generated by ClustalW. Constructions of
phylogenetic tree based on nucleotide sequence for PAL gene was carried out by Phylogeny.fr program. In brief, sequences
were aligned with the highest accuracy by MUSCLE. Phylogenetic tree was constructed based upon the maximum likelihood
approach executed in PhyML 3.0 software. Graphical demonstration of tree was completed by TreeDyn. Accession numbers
for (A): Carthamus tinctorius (AFK25796); Cynara cardunculus (CAL91171); Lactuca sativa (AAL55242); Chrysanthemum
boreale (AGU91428); Rudbeckia hirta (ABN79671); Gynura bicolor (BAJ17655); Helianthus annuus (CAA73065); Ageratina
adenophora (ACT53399); Platycodon grandiflorus (AEM63670); Lonicera japonica (AGE10589); Angelica gigas (AEA72280).
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cDNAs, which were later used as templates for semi-quantitative
RT–PCR.

Semi-quantitative RT–PCR
To normalize the cDNA amounts of different time points in each
treatment, we considered the PCR product intensity of 18S rRNA
as the house-keeping gene. The primer pairs for CtPAL and
CtCHS are given in Table 1. The PCR thermal profile was: 98 ◦C
(5 min) followed by 35 cycles of 98 ◦C (10 s), 52 ◦C (15 s) and
72 ◦C (1 min), and a final extension time at 72 ◦C for 10 min.
An independent experiment was carried out to verify the linear
amplification in such setting. The interpretation was based on the
intensity of PCR products, corresponding to gene transcription
levels.

RESULTS AND DISCUSSION

In this study, besides the partial isolation of coding sequences of
PAL (CtPAL) and CHS (CtCHS) in safflower, the consequences
of salinity stress, wounding, as well as SA treatment, as an stim-
ulus of plant defence against pathogen attacks, on expression
profiles of these genes were investigated. Very little information,
at the molecular level, is available in safflower, thereby keeping
our work on safflower [4], we focused, in this study, on CtPAL and
CtCHS genes, two critical genes in phenylpropanoid and flavon-
oid pathways (Figure 1). These pathways have been proved to
be highly critical in plant protective reactions during biotic and
abiotic stresses [2].

Conserved domains, homology and phylogenetic
analyses of CtPAL
According to the results of conserved domain analysis, the isol-
ated region of safflower PAL, CtPAL, contains the conserved do-
main of Lyase class I_like superfamily (cl00013) accommodating
HAL (histidine ammonia-lyase) and PAL. PAL–HAL conserved
domain (cd00332) is present in plants, fungi, several bacteria and
animals [41]. Phenylalanine and HALs, which are active as ho-
motetramers [42], catalyse the beta-elimination of ammonia from
respective phenylalanine and histidine [43]. Like other homotet-
rameric enzymes in this family, safflower PAL possesses four act-
ive sites, as detected in conserved domain platform. PAL, present
in plants and fungi, catalyses the conversion of L-phenylalanine

to E-cinnamic acid. The aa sequence of the isolated CtPAL frag-
ment comprising 291 aa (GenBank: AFK25796) was used as
an initial query to search, using the protein–protein BLAST tool,
against the non-redundant protein sequences. As a result, the isol-
ated region of CtPAL shows the maximum identity up to 96 % to
PAL of C. scolymus, followed by lettuce PAL (L. sativa) up to
95 %, G. bicolor and R. hirta up to 94 % and sunflower PAL (H.
annuus) and Ageratina adenophora up to 92 %, which are all in
Asteraceae family as shown in Figure 2(A). The inferred evolu-
tionary history of PAL nucleotide sequences from several plant
species and the corresponding phylogenetic tree bring to light a
rather conserved PAL orthologues in Asterids with low genetic
distance (0.2) as depicted in Figure 2(B). The coding sequence of
CtPAL was deposited in GenBank under the accession number
JN998609.

Conserved domains, homology and phylogenetic
analyses of CtCHS
Bioinformatics analysis of CtCHS aa sequence in conserved
domain platform confirmed that the isolated region of CtCHS
possesses the CHS_like (cd00831) conserved domain [44] in-
cluding chalcone and stilbene synthases (Figure 3A). As well, a
malonyl-CoA binding site delivering the substrate to the active
site cysteine [45,46] is detected in safflower CHS. In fact, the
members of condensing enzymes superfamily (cl09938), which
are capable of catalysing a claisen-like condensation reaction,
are engaged in metabolism of fatty acids and biosynthesis of
natural products polyketides [47,48] suggesting a similar activ-
ity for safflower CHS. From the homology point of view, CtCHS
(GenBank: AFI57883) retains considerable identities to its ortho-
logues in C. chinensis (96 %), L. sativa, S. marianum, G. bicolor,
R. hirta (95 %), Dahlia pinnata (94 %), Chrystanthemum nankin-
gense (93 %) and A. adenophora (92 %). The aa sequences of
CHS orthologues in Asteraceae show, as well, a very consider-
able conservation (Figure 3B), which is rooted from the rather
conserved nucleotide sequences of CHS orthologues in this fam-
ily, forming a distinct branch in corresponding phylogenetic tree
(Figure 3B). Likewise, CHS looks highly conserved in members
of Brassicaceae family (Rorippa islandica, Cardamine maritime,
Barbarea vulgaris, Arabis setosifolia, Brassica oleracea) mak-
ing a separate branch (Figure 3B). Musa acuminata, Hypericum
hookerianum and Zingiber officinale were as well summoned to-
gether in a discrete branch to disclose a more conservation in CHS
gene in monocots (Figure 3B). CtCHS partial coding sequence
was deposited in GenBank with accession number JQ425086.

Accession numbers for (B): Carthamus tinctorius (JN998609); Cynara scolymus (AM418588); Chrysanthemum boreale
(KC202425); Lactuca sativa (AF299330); Picrorhiza kurrooa (JQ996410); Ipomoea batatas (D78640); Melissa officinalis
(FN665700); Lilium spp. (AB699156); Liriodendron tulipifera (EU190449); Medicago falcate (JN849814); Camellia cheki-
angoleosa (JN944578); Raphanus sativus (AB087212); Vaccinium myrtillus (AY123770); Cichorium intybus (EF528572).
PAL–HAL family conserved domain in safflower PAL sequence is marked by red line in (A). The bootstrap support values
are specified on the nodes. The scale bar indicates 0.2 substitutions per site.
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Figure 3 Amino acid sequence alignment (A) and phylogenetic analysis (B) of CtCHS orthologues
Sequence alignment and aa conservation profile for CHS orthologues were generated by ClustalW. Constructions of phylo-
genetic tree based on nucleotide sequence for CHS gene was carried out by Phylogeny.fr program. Briefly, sequences
were aligned with the highest accuracy by MUSCLE. Phylogenetic tree was constructed based upon the maximum likeli-
hood approach executed in PhyML 3.0 software. Graphical demonstration of tree was completed by TreeDyn. Accession
numbers for (A): Carthamus tinctorius (AFI57883); Pericallis cruenta (ACF75870); Silybum marianum (AFK65634); Lac-
tuca sativa (BAJ10380); Gynura bicolor (BAJ17656); Rudbeckia hirta (ABN79673); Dahlia pinnata (BAK08888); Agerat-
ina adenophora (ACQ84148); Vitis vinifera (BAA31259); Litchi chinensis (ADB44077); Lilium speciosum (BAE79201);
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Figure 4 Expression patterns of CtPAL and CtCHS genes after SA
treatment with 0.1 mM (A) and 1 mM (B) concentrations
Samplings were done at 0, 3, 6, 12, 24 and 48 hat. RNAs were extracted
from all seedlings and treated with DNaseI. Subsequently, RNAs were
reverse transcribed to corresponding cDNAs. Different PCR products
intensities were referred to as temporal expression level of the genes.
18S rRNA transcription levels were considered as internal house-keep-
ing gene control. Sizes of amplicons: CtPAL: 267 bp; CtCHS 559 bp;
18S rRNA: 199 bp.

Effects of SA treatment on CtPAL and CtCHS gene
expression profiles
Following treatment of safflower with 0.1 mM SA, as a stimulus
of plant responses to pathogen attacks [5], CtPAL transcription
levels in different time points were monitored. Accordingly, a
slight induction of CtPAL gene was observed at 3-6 hat and lev-
elled off thereafter (Figure 4A). On the other hand, for CtCHS
gene only at 3 hat, a noticeable induction was observed (Fig-
ure 4A). In contrast, treatment of safflower plants with 1 mM SA
had a dramatic influence on both genes expression. Indeed, 1 mM
SA treatment led to a biphasic induction pattern of CtPAL gene in
3-6 as well as 24 hat, out of which the latter was much stronger,
followed by calming down during the next 24 h (Figure 4B).
Concerning CtCHS gene expression after 1 mM SA treatment, a
comparable but more augmented expression pattern like that after
0.1 mM SA treatment was observed. A high induction of CtCHS
soon after treatment was detectable peaking at 3 hat, followed by
a fast decline in expression (Figure 4B). A slight rise in CtCHS
expression was also observed at 24 hat.

We treated the safflower plants with two different concentra-
tions of SA, 0.1 and 1 mM, in order to investigate SA-dependency
of CtPAL and CtCHS expressions. Seeing that one of the meta-
bolic pathways for SA biosynthesis is succored by PAL activity,
the latter stronger induction in PAL transcription might be related
to induction of CtPAL by exogenous SA treatment. Generally,
plants respond to environmental stresses, e.g. wounding, patho-
gen attacks, etc. in three main phases [49,50], i.e. (i) develop-
ment of a physical barrier in the immediate vicinity of wounding
or penetrating micro-organism, (ii) activation of defence genes,
transiently, neighbouring the stressed site, and (iii) comparatively
late systemic activation of defence genes in a rather long-lasting
way, of which the first two are almost concomitant. In other
word, biphasic induction of gene activation proposes that those
distinct phases might be triggered by distinctive signalling incid-
ents; a quick initial induction in response to immediate imposed
stress and the slow subsequent response to a generated stress sig-
nal [49]. This general pattern is also observed in this study for
CtPAL and CtCHS in response to 1 mM SA (Figure 4B). A com-
parable expression pattern for both PAL and CHS in alfalfa cell
suspension culture treated with yeast elicitor was also observed
as such the CHS expression maximized at 3 hat and continued
with half strength till 24 hat, whereas expression of PAL was
transient [51]. Similarly, 1 mM SA treatment caused a biphasic
induction of C4H in safflower [4] supporting that expressions of
PAL and C4H are coordinated in safflower in response to en-
vironmental stresses. As observed in the present study, higher
concentration of SA has a more drastic effect on responsiveness
of CtPAL and CtCHS than lower concentration. This observation
substantiates the crucial role of SA in triggering the phenylpro-
panoid pathway, which per se leads to activation of flavonoid
biosynthetic pathway, denoted in induction of respective CtPAL
and CtCHS. In fact, elevation of SA level triggers the SAR (sys-
temic acquired resistance), which immunizes the plants towards
upcoming pathogen attacks [52].

Effects of wounding stress on CtPAL and CtCHS
gene expression profiles
As phenylpropanoid pathway takes clear task in plant responses
to wounding [4,52,53], to characterize the engagement of PAL
and CHS in safflower response to wounding, their expression
patterns were checked in a 48-h time-frame after leaf injury.
Consequently, a slight induction of CtPAL was observed at 3 hat,
which lasted in a half strength level till 24 h (Figure 5A). There

Gossypium hirsutum (ACV72638); Hypericum hookerianum (ABM63466). Accession numbers for (B): Carthamus tinctorius
(JQ425086); Centaurea jacea (EF112474); Rudbeckia hirta (EF070339); Musa acuminata (KF594422); Acacia confuse
(JN812063); Rorippa islandica (DQ399107); Cardamine maritime (DQ208973); Barbarea vulgaris (AF112108); Siraitia
grosvenorii (GU980155); Arabis setosifolia (JQ919899); Daucus carota (AJ006780); Hordeum vulgare (EU921436); Tet-
racentron sinense (DQ366573); Hypericum hookerianum (EF186910); Zingiber officinale (DQ851166); Brassica oleracea
(AY228486); Polygonum cuspidatum (EU647246); Syzygium malaccense (GU233757). The conserved domains of chalcone
and stilbene synthases are marked by red (Chal-sti-synt-N-terminal) and green (Chal-sti-synt-C-terminal) lines in (A). The
bootstrap support values are specified on the nodes. The scale bar indicates 0.5 substitutions per site.
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Figure 5 Expression patterns of CtPAL and CtCHS genes after
wounding (A) and during salinity stress (B)
Samplings were carried out at 0, 3, 6, 12, 24 and 48 hat. RNAs were
extracted from all seedlings and treated with DNaseI. Subsequently,
RNAs were reverse transcribed to corresponding cDNAs. Different PCR
products intensities were referred to as temporal expression level of
the genes. 18S rRNA transcription levels were considered as internal
house-keeping gene control. Sizes of amplicons: CtPAL: 267 bp; CtCHS
559 bp; 18S rRNA: 199 bp.

was no detectable CtPAL expression at 48 h after wounding. In
contrast, a much prominent induction of CtCHS in response to
wounding was observed especially at 3 hat followed by a gradual
decline of transcription till 24 hat (Figure 5A). Similar to CtPAL,
no evident expression could be observed for CtCHS at 48 hat.
These results suggest that CtCHS, as a key enzyme in flavonoid
pathway [26], plays a more critical role in safflower response
to wounding than CtPAL. However, in Scutellaria baicalensis
cell suspension, SbPAL1 gene expression elevated in 1-3 h after
wounding and decreased afterward, while SbPAL2, SbPAL3 and
SbCHS climaxed at 24 h after wounding [53]. As well, in ar-
tichoke, wounding stress led to induction of PAL genes in the first
3 h after stress [24]. As observed by Sadeghi et al. [4], wound-
ing causes the induction of safflower cinnamate 4-hydroxylase
(CtC4H) at 3 hat. It appears that the expressions of CtPAL and
CtC4H, like their behaviours in response to the SA treatment,
are coordinated in safflower in response to wounding similar to
coordination of PAL1, 4CL (4-Coumarate:CoA ligase), and C4H
in Arabidopsis in response to light and wounding [54]. It is, also,
observed that in lettuce induction of PAL gene in response to
wounding starts at 6 hat and peaks at 24 hat [55]. Based on our
findings, we conclude that in safflower, CtCHS plays a stronger
role in wound response than CtPAL. In fact, flavonoid pathway
getting started with CHS (Figure 1) is in charge of production
of secondary metabolites, which contribute to cell wall fortifica-
tion as a defence response [4]. Results of this study demonstrate
that the phenylpropanoid pathway in safflower, through which
lignin biosynthesis occurs, becomes activated soon after injury
(Figure 5A) to boost up (i) the biosynthesis of SA as a crucial sig-
nalling molecule in plant immunity by induction of CtPAL (this

study) and CtC4H [4] and (ii) induction of downstream flavonoid
pathway leading to production of phenolic compounds necessary
for cell wall fortification by induction of CtCHS.

Effects of salinity stress on CtPAL and CtCHS gene
expression profiles
To our knowledge, there is minute information available, at mo-
lecular level, on involvement of phenylpropanoid pathway in
plant responses to salinity. We recently reported the engagement
of C4H gene in safflower response to salinity stress [4]. To more
scrutinize the key players of safflower in this pathway, we mon-
itored the expression profiles of CtPAL and CtCHS genes in saline
condition. Consequently, CtPAL expression got slightly induced
at 3 hat and decreased later (Figure 5B). This pattern has also
been observed by Gao et al. [56] in cotyledon, hypocotyls, and
rootlets of Jatropha curcas after treatment with 150 mM sodium
chloride; however, the highest induction of PAL was detected in
roots. Higher induction of PAL may be a defensive reaction to
cellular damages due to high salinity level [56]. In corn inbred
lines stressed with salinity, PAL gene expression elevated transi-
ently, similar to the antioxidant genes expression patterns in these
plants, suggesting a comparable role for PAL in decreasing the
oxidative stress imposed by salinity [57]. For CtCHS, a biphasic
strong induction pattern at 3 and 24 h after salinity stress was
observed (Figure 5B). As discussed earlier, this biphasic pattern
in CtCHS expression might reflect the safflower responses to (i)
the immediate salinity and (ii) the later produced stress signal,
suggesting that CtCHS takes a considerable task in safflower re-
sponse to salinity. This probably indicates the real involvement of
flavonoid defence pathway in salinity stress condition. We could
not find any report on involvement of CHS in plant responses
to salinity stress; however, this prominent biphasic induction of
CtCHS gene expression clearly substantiates a distinctive role for
this gene in safflower tolerance to salinity. This hints at the suit-
ability of CtCHS gene for recruitment in breeding programmes
headed for salinity tolerance in other plants. Overall, in this study,
we provide molecular evidence for the involvement of CtPAL and
CtCHS genes in safflower responses to abiotic stresses. In par-
ticular, CtCHS might be considered as a promising candidate for
improvement of salinity tolerance in plant breeding programmes.
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